
Algorithms Lecture 5: Dynamic Programming [Sp’15]

Those who cannot remember the past are doomed to repeat it.

— George Santayana, The Life of Reason, Book I:
Introduction and Reason in Common Sense (1905)

The 1950s were not good years for mathematical research. We had a very interesting
gentleman in Washington named Wilson. He was secretary of Defense, and he actually had a
pathological fear and hatred of the word ‘research’. I’m not using the term lightly; I’m using
it precisely. His face would suffuse, he would turn red, and he would get violent if people
used the term ‘research’ in his presence. You can imagine how he felt, then, about the term
‘mathematical’. The RAND Corporation was employed by the Air Force, and the Air Force had
Wilson as its boss, essentially. Hence, I felt I had to do something to shield Wilson and the Air
Force from the fact that I was really doing mathematics inside the RAND Corporation. What
title, what name, could I choose?

— Richard Bellman, on the origin of his term ‘dynamic programming’ (1984)

If we all listened to the professor, we may be all looking for professor jobs.

— Pittsburgh Steelers’ head coach Bill Cowher, responding to
David Romer’s dynamic-programming analysis of football strategy (2003)

5 Dynamic Programming

5.1 Fibonacci Numbers

5.1.1 Recursive Definitions Are Recursive Algorithms

The Fibonacci numbers Fn, named after Leonardo Fibonacci Pisano¹, the mathematician who
popularized ‘algorism’ in Europe in the 13th century, are defined as follows: F0 = 0, F1 = 1, and
Fn = Fn−1 + Fn−2 for all n≥ 2. The recursive definition of Fibonacci numbers immediately gives
us a recursive algorithm for computing them:

RecFibo(n):
if (n< 2)

return n
else

return RecFibo(n− 1) +RecFibo(n− 2)

How long does this algorithm take? Except for the recursive calls, the entire algorithm
requires only a constant number of steps: one comparison and possibly one addition. If T (n)
represents the number of recursive calls to RecFibo, we have the recurrence

T (0) = 1, T (1) = 1, T (n) = T (n− 1) + T (n− 2) + 1.

This looks an awful lot like the recurrence for Fibonacci numbers! The annihilator method
gives us an asymptotic bound of Θ(φn), where φ = (

p
5+ 1)/2≈ 1.61803398875, the so-called

golden ratio, is the largest root of the polynomial r2 − r − 1. But it’s fairly easy to prove (hint,
hint) the exact solution T(n) = 2Fn+1 − 1. In other words, computing Fn using this algorithm
takes more than twice as many steps as just counting to Fn!

Another way to see this is that the RecFibo is building a big binary tree of additions, with
nothing but zeros and ones at the leaves. Since the eventual output is Fn, our algorithm must

¹literally, “Leonardo, son of Bonacci, of Pisa”
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call RecRibo(1) (which returns 1) exactly Fn times. A quick inductive argument implies that
RecFibo(0) is called exactly Fn−1 times. Thus, the recursion tree has Fn + Fn−1 = Fn+1 leaves,
and therefore, because it’s a full binary tree, it must have 2Fn+1 − 1 nodes.

5.1.2 Memo(r)ization: Remember Everything

The obvious reason for the recursive algorithm’s lack of speed is that it computes the same
Fibonacci numbers over and over and over. A single call to RecFibo(n) results in one recursive call
to RecFibo(n−1), two recursive calls to RecFibo(n−2), three recursive calls to RecFibo(n− 3),
five recursive calls to RecFibo(n− 4), and in general Fk−1 recursive calls to RecFibo(n− k) for
any integer 0≤ k < n. Each call is recomputing some Fibonacci number from scratch.

We can speed up our recursive algorithm considerably just by writing down the results of
our recursive calls and looking them up again if we need them later. This process was dubbed
memoization by Richard Michie in the late 1960s.²

MemFibo(n):
if (n< 2)

return n
else

if F[n] is undefined
F[n]←MemFibo(n− 1) +MemFibo(n− 2)

return F[n]

Memoization clearly decreases the running time of the algorithm, but by how much? If we
actually trace through the recursive calls made by MemFibo, we find that the array F[ ] is filled
from the bottom up: first F[2], then F[3], and so on, up to F[n]. This pattern can be verified by
induction: Each entry F[i] is filled only after its predecessor F[i−1]. If we ignore the time spent
in recursive calls, it requires only constant time to evaluate the recurrence for each Fibonacci
number Fi. But by design, the recurrence for Fi is evaluated only once for each index i! We
conclude that MemFibo performs only O(n) additions, an exponential improvement over the
naïve recursive algorithm!

5.1.3 Dynamic Programming: Fill Deliberately

But once we see how the array F[ ] is filled, we can replace the recursion with a simple loop that
intentionally fills the array in order, instead of relying on the complicated recursion to do it for
us ‘accidentally’.

IterFibo(n):
F[0]← 0
F[1]← 1
for i← 2 to n

F[i]← F[i − 1] + F[i − 2]
return F[n]

Now the time analysis is immediate: IterFibo clearly uses O(n) additions and stores O(n)
integers.

This gives us our first explicit dynamic programming algorithm. The dynamic programming
paradigm was developed by Richard Bellman in the mid-1950s, while working at the RAND

²“My name is Elmer J. Fudd, millionaire. I own a mansion and a yacht.”
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Corporation. Bellman deliberately chose the name ‘dynamic programming’ to hide the mathe-
matical character of his work from his military bosses, who were actively hostile toward anything
resembling mathematical research. Here, the word ‘programming’ does not refer to writing code,
but rather to the older sense of planning or scheduling, typically by filling in a table. For example,
sports programs and theater programs are schedules of important events (with ads); television
programming involves filling each available time slot with a show (and ads); degree programs are
schedules of classes to be taken (with ads). The Air Force funded Bellman and others to develop
methods for constructing training and logistics schedules, or as they called them, ‘programs’. The
word ‘dynamic’ is meant to suggest that the table is filled in over time, rather than all at once (as
in ‘linear programming’, which we will see later in the semester).³

5.1.4 Don’t Remember Everything After All

In many dynamic programming algorithms, it is not necessary to retain all intermediate results
through the entire computation. For example, we can significantly reduce the space requirements
of our algorithm IterFibo by maintaining only the two newest elements of the array:

IterFibo2(n):
prev← 1
curr← 0
for i← 1 to n

next← curr+ prev
prev← curr
curr← next

return curr

(This algorithm uses the non-standard but perfectly consistent base case F−1 = 1 so that
IterFibo2(0) returns the correct value 0.)

5.1.5 Faster! Faster!

Even this algorithm can be improved further, using the following wonderful fact:
�

0 1
1 1

��

x
y

�

=

�

y
x + y

�

In other words, multiplying a two-dimensional vector by the matrix
�

0 1
1 1

�

does exactly the
same thing as one iteration of the inner loop of IterFibo2. This might lead us to believe that
multiplying by the matrix n times is the same as iterating the loop n times:

�

0 1
1 1

�n �
1
0

�

=

�

Fn−1
Fn

�

.

A quick inductive argument proves this fact. So if we want the nth Fibonacci number, we just have
to compute the nth power of the matrix

�

0 1
1 1

�

. If we use repeated squaring, computing the nth
power of something requires only O(log n)multiplications. In this case, that means O(log n) 2×2
matrix multiplications, each of which reduces to a constant number of integer multiplications
and additions. Thus, we can compute Fn in only O(logn) integer arithmetic operations.

This is an exponential speedup over the standard iterative algorithm, which was already an
exponential speedup over our original recursive algorithm. Right?

³“I thought dynamic programming was a good name. It was something not even a Congressman could object to.
So I used it as an umbrella for my activities.”
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5.1.6 Whoa! Not so fast!

Well, not exactly. Fibonacci numbers grow exponentially fast. The nth Fibonacci number is
approximately n log10φ ≈ n/5 decimal digits long, or n log2φ ≈ 2n/3 bits. So we can’t possibly
compute Fn in logarithmic time — we need Ω(n) time just to write down the answer!

The way out of this apparent paradox is to observe thatwe can’t perform arbitrary-precision
arithmetic in constant time. Let M(n) denote the time required to multiply two n-digit numbers.
The matrix-based algorithm’s actual running time obeys the recurrence T (n) = T (bn/2c)+M(n),
which solves to T (n) = O(M(n)) using recursion trees. The fastest known multiplication
algorithm runs in time O(n log n2O(log∗ n)), so that is also the running time of the fastest algorithm
known to compute Fibonacci numbers.

Is this algorithm slower than our initial “linear-time” iterative algorithm? No! Addition isn’t
free, either. Adding two n-digit numbers takes O(n) time, so the running time of the iterative
algorithm is O(n2). (Do you see why?) The matrix-squaring algorithm really is faster than the
iterative addition algorithm, but not exponentially faster.

In the original recursive algorithm, the extra cost of arbitrary-precision arithmetic is
overwhelmed by the huge number of recursive calls. The correct recurrence is T (n) =
T (n − 1) + T (n − 2) + O(n), for which the annihilator method still implies the solution
T (n) = O(φn).

5.2 Longest Increasing Subsequence

In a previous lecture, we developed a recursive algorithm to find the length of the longest
increasing subsequence of a given sequence of numbers. Given an array A[1 .. n], the length of
the longest increasing subsequence is computed by the function call LISbigger(−∞, A[1 .. n]),
where LISbigger is the following recursive algorithm:

LISbigger(prev, A[1 .. n]):
if n= 0

return 0
else

max← LISbigger(prev, A[2 .. n])
if A[1]> prev

L← 1+ LISbigger(A[1], A[2 .. n])
if L >max

max← L
return max

We can simplify our notation slightly with two simple observations. First, the input variable
prev is always either −∞ or an element of the input array. Second, the second argument of
LISbigger is always a suffix of the original input array. If we add a new sentinel value A[0] = −∞
to the input array, we can identify any recursive subproblem with two array indices.

Thus, we can rewrite the recursive algorithm as follows. Add the sentinel value A[0] = −∞.
Let LIS(i, j) denote the length of the longest increasing subsequence of A[ j .. n] with all elements
larger than A[i]. Our goal is to compute LIS(0,1). For all i < j, we have

LIS(i, j) =











0 if j > n

LIS(i, j + 1) if A[i]≥ A[ j]
max{LIS(i, j + 1), 1+ LIS( j, j + 1)} otherwise
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Because each recursive subproblem can be identified by two indices i and j, we can store the
intermediate values in a two-dimensional array LIS[0 ..n, 1 .. n].⁴ Since there are O(n2) entries
in the table, our memoized algorithm uses O(n2) space. Each entry in the table can be computed
in O(1) time once we know its predecessors, so our memoized algorithm runs in O(n2) time.

It’s not immediately clear what order the recursive algorithm fills the rest of the table; all we
can tell from the recurrence is that each entry LIS[i, j] is filled in after the entries LIS[i, j + 1]
and LIS[ j, j + 1] in the next columns. But just this partial information is enough to give us an
explicit evaluation order. If we fill in our table one column at a time, from right to left, then
whenever we reach an entry in the table, the entries it depends on are already available.

i

j

Dependencies in the memoization table for longest increasing subsequence, and a legal evaluation order

Finally, putting everything together, we obtain the following dynamic programming algorithm:

LIS(A[1 .. n]):
A[0]←−∞ 〈〈Add a sentinel〉〉
for i← 0 to n 〈〈Base cases〉〉

LIS[i, n+ 1]← 0

for j← n downto 1
for i← 0 to j − 1

if A[i]≥ A[ j]
LIS[i, j]← LIS[i, j + 1]

else
LIS[i, j]←max{LIS[i, j + 1], 1+ LIS[ j, j + 1]}

return LIS[0, 1]

As expected, the algorithm clearly uses O(n2) time and space. However, we can reduce the space
to O(n) by only maintaining the two most recent columns of the table, LIS[·, j] and LIS[·, j+1].⁵

This is not the only recursive strategy we could use for computing longest increasing
subsequences efficiently. Here is another recurrence that gives us the O(n) space bound for
free. Let LIS′(i) denote the length of the longest increasing subsequence of A[i .. n] that starts
with A[i]. Our goal is to compute LIS′(0)− 1; we subtract 1 to ignore the sentinel value −∞.
To define LIS′(i) recursively, we only need to specify the second element in subsequence; the
Recursion Fairy will do the rest.

LIS′(i) = 1+max
�

LIS′( j) | j > i and A[ j]> A[i]
	

Here, I’m assuming that max∅= 0, so that the base case is L′(n) = 1 falls out of the recurrence
automatically. Memoizing this recurrence requires only O(n) space, and the resulting algorithm

⁴In fact, we only need half of this array, because we always have i < j. But even if we cared about constant factors
in this class (we don’t), this would be the wrong time to worry about them. The first order of business is to find an
algorithm that actually works; once we have that, then we can think about optimizing it.

⁵See, I told you not to worry about constant factors yet!
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runs in O(n2) time. To transform this memoized recurrence into a dynamic programming
algorithm, we only need to guarantee that LIS′( j) is computed before LIS′(i) whenever i < j.

LIS2(A[1 .. n]):
A[0] = −∞ 〈〈Add a sentinel〉〉

for i← n downto 0
LIS′[i]← 1
for j← i + 1 to n

if A[ j]> A[i] and 1+ LIS′[ j]> LIS′[i]
LIS′[i]← 1+ LIS′[ j]

return LIS′[0]− 1 〈〈Don’t count the sentinel〉〉

5.3 The Pattern: Smart Recursion

In a nutshell, dynamic programming is recursion without repetition. Dynamic programming
algorithms store the solutions of intermediate subproblems, often but not always in some kind of
array or table. Many algorithms students make the mistake of focusing on the table (because
tables are easy and familiar) instead of the much more important (and difficult) task of finding a
correct recurrence. As long as we memoize the correct recurrence, an explicit table isn’t really
necessary, but if the recursion is incorrect, nothing works.

Dynamic programming is not about filling in tables.
It’s about smart recursion!

Dynamic programming algorithms are almost always developed in two distinct stages.

1. Formulate the problem recursively. Write down a recursive formula or algorithm for the
whole problem in terms of the answers to smaller subproblems. This is the hard part. It
generally helps to think in terms of a recursive definition of the object you’re trying to
construct. A complete recursive formulation has two parts:

(a) Describe the precise function you want to evaluate, in coherent English. Without this
specification, it is impossible, even in principle, to determine whether your solution is
correct.

(b) Give a formal recursive definition of that function.

2. Build solutions to your recurrence from the bottom up. Write an algorithm that starts
with the base cases of your recurrence and works its way up to the final solution, by
considering intermediate subproblems in the correct order. This stage can be broken down
into several smaller, relatively mechanical steps:

(a) Identify the subproblems. What are all the different ways can your recursive
algorithm call itself, starting with some initial input? For example, the argument to
RecFibo is always an integer between 0 and n.

(b) Analyze space and running time. The number of possible distinct subproblems
determines the space complexity of your memoized algorithm. To compute the
time complexity, add up the running times of all possible subproblems, ignoring the
recursive calls. For example, if we already know Fi−1 and Fi−2, we can compute Fi in
O(1) time, so computing the first n Fibonacci numbers takes O(n) time.
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(c) Choose a data structure to memoize intermediate results. For most problems,
each recursive subproblem can be identified by a few integers, so you can use a
multidimensional array. For some problems, however, a more complicated data
structure is required.

(d) Identify dependencies between subproblems. Except for the base cases, every
recursive subproblem depends on other subproblems—which ones? Draw a picture of
your data structure, pick a generic element, and draw arrows from each of the other
elements it depends on. Then formalize your picture.

(e) Find a good evaluation order. Order the subproblems so that each subproblem
comes after the subproblems it depends on. Typically, this means you should consider
the base cases first, then the subproblems that depends only on base cases, and so on.
More formally, the dependencies you identified in the previous step define a partial
order over the subproblems; in this step, you need to find a linear extension of that
partial order. Be careful!

(f) Write down the algorithm. You know what order to consider the subproblems, and
you know how to solve each subproblem. So do that! If your data structure is an array,
this usually means writing a few nested for-loops around your original recurrence.
You don’t need to do this on homework or exams.

Of course, you have to prove that each of these steps is correct. If your recurrence is wrong, or if
you try to build up answers in the wrong order, your algorithm won’t work!

5.4 Warning: Greed is Stupid

If we’re very very very very lucky, we can bypass all the recurrences and tables and so forth, and
solve the problem using a greedy algorithm. The general greedy strategy is look for the best
first step, take it, and then continue. While this approach seems very natural, it almost never
works; optimization problems that can be solved correctly by a greedy algorithm are very rare.
Nevertheless, for many problems that should be solved by dynamic programming, many students’
first intuition is to apply a greedy strategy.

For example, a greedy algorithm for the edit distance problem might look for the longest
common substring of the two strings, match up those substrings (since those substitutions don’t
cost anything), and then recursively look for the edit distances between the left halves and
right halves of the strings. If there is no common substring—that is, if the two strings have no
characters in common—the edit distance is clearly the length of the larger string. If this sounds
like a stupid hack to you, pat yourself on the back. It isn’t even close to the correct solution.

Everyone should tattoo the following sentence on the back of their hands, right under all the
rules about logarithms and big-Oh notation:

Greedy algorithms never work!
Use dynamic programming instead!

What, never?
No, never!
What, never?
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Well. . . hardly ever.⁶
A different lecture note describes the effort required to prove that greedy algorithms are

correct, in the rare instances when they are. You will not receive any credit for any greedy
algorithm for any problem in this class without a formal proof of correctness. We’ll push
through the formal proofs for several greedy algorithms later in the semester.

5.5 Edit Distance

The edit distance between two words—sometimes also called the Levenshtein distance—is the
minimum number of letter insertions, letter deletions, and letter substitutions required to
transform one word into another. For example, the edit distance between FOOD and MONEY is at
most four:

FOOD→ MOOD→ MON
∧
D→ MONED→ MONEY

A better way to display this editing process is to place the words one above the other, with a gap
in the first word for every insertion, and a gap in the second word for every deletion. Columns
with two different characters correspond to substitutions. Thus, the number of editing steps is
just the number of columns that don’t contain the same character twice.

F O O D

M O N E Y

It’s fairly obvious that you can’t get from FOOD to MONEY in three steps, so their edit distance
is exactly four. Unfortunately, this is not so easy in general. Here’s a longer example, showing
that the distance between ALGORITHM and ALTRUISTIC is at most six. Is this optimal?

A L G O R I T H M

A L T R U I S T I C

To develop a dynamic programming algorithm to compute the edit distance between two
strings, we first need to develop a recursive definition. Our gap representation for edit sequences
has a crucial “optimal substructure” property. Suppose we have the gap representation for the
shortest edit sequence for two strings. If we remove the last column, the remaining columns
must represent the shortest edit sequence for the remaining substrings. We can easily prove
this by contradiction. If the substrings had a shorter edit sequence, we could just glue the last
column back on and get a shorter edit sequence for the original strings. Once we figure out what
should go in the last column, the Recursion Fairy will magically give us the rest of the optimal
gap representation.

So let’s recursively define the edit distance between two strings A[1 .. m] and B[1 .. n], which
we denote by Edit(A[1 .. m], B[1 .. n]). If neither string is empty, there are three possibilities for
the last column in the shortest edit sequence:

• Insertion: The last entry in the bottom row is empty. In this case, the edit distance is
equal to Edit(A[1 .. m− 1], B[1 .. n]) + 1. The +1 is the cost of the final insertion, and the
recursive expression gives the minimum cost for the other columns.

⁶Greedy methods hardly ever work!
So give three cheers, and one cheer more,
for the careful Captain of the Pinafore!

Then give three cheers, and one cheer more,
for the Captain of the Pinafore!
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• Deletion: The last entry in the top row is empty. In this case, the edit distance is equal to
Edit(A[1 .. m], B[1 .. n− 1]) + 1. The +1 is the cost of the final deletion, and the recursive
expression gives the minimum cost for the other columns.

• Substitution: Both rows have characters in the last column. If the characters are the same,
the substitution is free, so the edit distance is equal to Edit(A[1 .. m−1], B[1 .. n−1]). If the
characters are different, then the edit distance is equal to Edit(A[1 .. m−1], B[1 .. n−1])+1.

The edit distance between A and B is the smallest of these three possibilities:⁷

Edit(A[1 .. m], B[1 .. n]) =min







Edit(A[1 .. m− 1], B[1 .. n]) + 1

Edit(A[1 .. m], B[1 .. n− 1]) + 1

Edit(A[1 .. m− 1], B[1 .. n− 1]) +
�

A[m] 6= B[n]
�







This recurrence has two easy base cases. The only way to convert the empty string into a
string of n characters is by performing n insertions. Similarly, the only way to convert a string of
m characters into the empty string is with m deletions, Thus, if ε denotes the empty string, we
have

Edit(A[1 .. m],ε) = m, Edit(ε, B[1 .. n]) = n.

Both of these expressions imply the trivial base case Edit(ε,ε) = 0.
Now notice that the arguments to our recursive subproblems are always prefixes of the original

strings A and B. We can simplify our notation by using the lengths of the prefixes, instead of the
prefixes themselves, as the arguments to our recursive function.

Let Edit(i, j) denote the edit distance between the prefixes A[1 .. i] and B[1 .. j].

This function satisfies the following recurrence:

Edit(i, j) =



























i if j = 0

j if i = 0

min











Edit(i − 1, j) + 1,

Edit(i, j − 1) + 1,

Edit(i − 1, j − 1) +
�

A[i] 6= B[ j]
�











otherwise

The edit distance between the original strings A and B is just Edit(m, n). This recurrence
translates directly into a recursive algorithm; the precise running time is not obvious, but it’s
clearly exponential in m and n. Fortunately, we don’t care about the precise running time
of the recursive algorithm. The recursive running time wouldn’t tell us anything about our
eventual dynamic programming algorithm, so we’re just not going to bother computing it.⁸

Because each recursive subproblem can be identified by two indices i and j, we can memoize
intermediate values in a two-dimensional array Edit[0 .. m, 0 .. n]. Note that the index ranges
start at zero to accommodate the base cases. Since there are Θ(mn) entries in the table, our
memoized algorithm uses Θ(mn) space. Since each entry in the table can be computed in Θ(1)
time once we know its predecessors, our memoized algorithm runs in Θ(mn) time.

⁷Once again, I’m using Iverson’s bracket notation
�

P
�

to denote the indicator variable for the logical proposition P,
which has value 1 if P is true and 0 if P is false.

⁸In case you’re curious, the running time of the unmemoized recursive algorithm obeys the following recurrence:

T (m, n) =

¨

O(1) if n= 0 or m= 0,

T (m, n− 1) + T (m− 1, n) + T (n− 1, m− 1) +O(1) otherwise.
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i

j

Dependencies in the memoization table for edit distance, and a legal evaluation order

Each entry Edit[i, j] depends only on its three neighboring entries Edit[i−1, j], Edit[i, j − 1],
and Edit[i − 1, j − 1]. If we fill in our table in the standard row-major order—row by row from
top down, each row from left to right—then whenever we reach an entry in the table, the entries
it depends on are already available. Putting everything together, we obtain the following dynamic
programming algorithm:

EditDistance(A[1 .. m], B[1 .. n]):
for j← 1 to n

Edit[0, j]← j

for i← 1 to m
Edit[i, 0]← i
for j← 1 to n

if A[i] = B[ j]
Edit[i, j]←min {Edit[i − 1, j] + 1, Edit[i, j − 1] + 1, Edit[i − 1, j − 1]}

else
Edit[i, j]←min {Edit[i − 1, j] + 1, Edit[i, j − 1] + 1, Edit[i − 1, j − 1] + 1}

return Edit[m, n]

The resulting table for ALGORITHM→ ALTRUISTIC is shown on the next page. Bold numbers
indicate places where characters in the two strings are equal. The arrows represent the
predecessor(s) that actually define each entry. Each direction of arrow corresponds to a different
edit operation: horizontal=deletion, vertical=insertion, and diagonal=substitution. Bold
diagonal arrows indicate “free” substitutions of a letter for itself. Any path of arrows from the top
left corner to the bottom right corner of this table represents an optimal edit sequence between
the two strings. (There can be many such paths.) Moreover, since we can compute these arrows
in a post-processing phase from the values stored in the table, we can reconstruct the actual
optimal editing sequence in O(n+m) additional time.

The edit distance between ALGORITHM and ALTRUISTIC is indeed six. There are three paths
through this table from the top left to the bottom right, so there are three optimal edit sequences:

A L G O R I T H M

A L T R U I S T I C

A L G O R I T H M

A L T R U I S T I C

I don’t know of a general closed-form solution for this mess, but we can derive an upper bound by defining a new
function

T ′(N) = max
n+m=N

T (n, m) =

¨

O(1) if N = 0,

2T (N − 1) + T (N − 2) +O(1) otherwise.

The annihilator method implies that T ′(N) = O((1+
p

2)N ). Thus, the running time of our recursive edit-distance
algorithm is at most T ′(n+m) = O((1+

p
2)n+m).
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A L G O R I T H M

0→1→2→3→4→5→6→7→8→9
↓↘↘↘↘↘↘↘↘↘

A 1 0→1→2→3→4→5→6→7→8
↓ ↓↘↘↘↘↘↘↘↘↘

L 2 1 0→1→2→3→4→5→6→7
↓ ↓ ↓↘ ↘ ↘ ↘ ↘↘↘↘↘↘↘↘↘

T 3 2 1 1→2→3→4→4→5→6
↓ ↓ ↓ ↓↘ ↘↘↘↘↘↘↘↘↘ ↘ ↘

R 4 3 2 2 2 2→3→4→5→6
↓ ↓ ↓↘↓↘↓↘↓↘ ↘ ↘ ↘

U 5 4 3 3 3 3 3→4→5→6
↓ ↓ ↓↘↓↘↓↘↓↘↘↘↘↘↘↘↘↘ ↘ ↘ ↘

I 6 5 4 4 4 4 3→4→5→6
↓ ↓ ↓↘↓↘↓↘↓ ↓↘ ↘ ↘

S 7 6 5 5 5 5 4 4 5 6
↓ ↓ ↓↘↓↘↓↘↓ ↓↘↘↘↘↘↘↘↘↘ ↘ ↘

T 8 7 6 6 6 6 5 4→5→6
↓ ↓ ↓↘↓↘↓↘↓↘↘↘↘↘↘↘↘↘↓ ↓↘ ↘

I 9 8 7 7 7 7 6 5 5→6
↓ ↓ ↓↘↓↘↓↘↓ ↓ ↓↘↓↘

C 10 9 8 8 8 8 7 6 6 6

The memoization table for Edit(ALGORITHM,ALTRUISTIC)

A L G O R I T H M

A L T R U I S T I C

5.6 More Examples

In the previous note on backtracking algorithms, we saw two other examples of recursive
algorithms that we can significantly speed up via dynamic programming.

5.6.1 Subset Sum

Recall that the Subset Sum problem asks, given a set X of positive integers (represented as an array
X [1 .. n] and an integer T , whether any subset of X sums to T . In that lecture, we developed a
recursive algorithm which can be reformulated as follows. Fix the original input array X [1 .. n]
and the original target sum T , and define the boolean function

SS(i, t) = some subset of X [i .. n] sums to t.

Our goal is to compute S(1, T ), using the recurrence

SS(i, t) =











True if t = 0,

False if t < 0 or i > n,

SS(i + 1, t) ∨ SS(i + 1, t − X [i]) otherwise.

There are only nT possible values for the input parameters that lead to the interesting case
of this recurrence, and we can memoize all such values in an n × T array. If S(i + 1, t) and
S(i + 1, t − X [i]) are already known, we can compute S(i, t) in constant time, so memoizing
this recurrence gives us and algorithm that runs in O(nT) time.⁹ To turn this into an explicit
dynamic programming algorithm, we only need to consider the subproblems S(i, t) in the proper
order:

⁹Even though SubsetSum is NP-complete, this bound does not imply that P=NP, because T is not necessary
bounded by a polynomial function of the input size.

11
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SubsetSum(X [1 .. n], T ):
S[n+ 1, 0]← True
for t ← 1 to T

S[n+ 1, t]← False

for i← n downto 1
S[i, 0] = True
for t ← 1 to X [i]− 1

S[i, t]← S[i + 1, t] 〈〈Avoid the case t < 0〉〉
for t ← X [i] to T

S[i, t]← S[i + 1, t]∨ S[i + 1, t − X [i]]

return S[1, T]

This iterative algorithm clearly always uses O(nT) time and space. In particular, if T is
significantly larger than 2n, this algorithm is actually slower than our naïve recursive algorithm.
Dynamic programming isn’t always an improvement!

5.6.2 NFA acceptance

The other problem we considered in the previous lecture note was determining whether a
given NFA M = (Σ,Q, s, A,δ) accepts a given string w ∈ Σ∗. To make the problem concrete, we
can assume without loss of generality that the alphabet is Σ = {1,2, . . . , |Σ|}, the state set is
Q = {1, 2, . . . , |Q|}, the start state is state 1, and our input consists of three arrays:

• A boolean array A[1 .. |Q|], where A[q] = True if and only if q ∈ A.

• A boolean array δ[1 .. |Q|, 1 .. |Σ|, 1 .. |Q|], where δ[p, a, q] = True if and only if p ∈ δ(q, a).

• An array w[1 .. n] of symbols, representing the input string.

Now consider the boolean function

Accepts?(q, i) = True if and only if M accepts the suffix w[i .. n] starting in state q,

or equivalently,

Accepts?(q, i) = True if and only if δ∗(q, w[i .. n]) contains at least one state in A.

We need to compute Accepts(1,1). The recursive definition of the string transition function δ∗

implies the following recurrence for Accepts?:

Accepts?(q, i) :=



















True if i > n and q ∈ A

False if i > n and q ∈ A
∨

r∈δ(q,a)

Accepts?(r, x) if w= ax

Rewriting this recurrence in terms of our input representation gives us the following:

Accepts?(q, i) :=























True if i > n and A[q] = True

False if i > n and A[q] = False

|Q|
∨

r=1

�

δ[q, w[i], r] ∧ Accepts?(r, i + 1)
�

otherwise

12
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We can memoize this function into a two-dimensional array Accepts?[1 .. |Q|, 1 .. n+ 1]. Each
entry Accepts?[q, i] depends on some subset of entries of the form Accepts?[r, i+1]. So we can fill
the memoization table by considering the possible indices i in decreasing order in the outer loop,
and consider states q in arbitrary order in the inner loop. Evaluating each entry Accepts?[q, i]
requires O(|Q|) time, using an even deeper loop over all states r, and there are O(n|Q|) such
entries. Thus, the entire dynamic programming algorithm requires O(n|Q|2) time.

NFAaccepts?(A[1 .. |Q|], δ[1 .. |Q|, 1 .. |Σ|, 1 .. |Q|], w[1 .. n]):
for q← 1 to |Q|

Accepts?[q, n+ 1]← A[q]
for i← n down to 1

for q← 1 to |Q|
Accepts?[q, i]← False
for r ← 1 to |Q|

if δ[q, w[i], r] and Accepts?[r, i + 1]
Accepts?[q, i]← True

return Accepts?[1, 1]

5.7 Optimal Binary Search Trees

In an earlier lecture, we developed a recursive algorithm for the optimal binary search tree
problem. We are given a sorted array A[1 .. n] of search keys and an array f [1 .. n] of frequency
counts, where f [i] is the number of searches to A[i]. Our task is to construct a binary search
tree for that set such that the total cost of all the searches is as small as possible. We developed
the following recurrence for this problem:

OptCost( f [1 .. n]) = min
1≤r≤n

¨

OptCost( f [1 .. r − 1]) +
n
∑

i=1

f [i] + OptCost( f [r + 1 .. n])

«

To put this recurrence in more standard form, fix the frequency array f , and let OptCost(i, j)
denote the total search time in the optimal search tree for the subarray A[i .. j]. To simplify
notation a bit, let F(i, j) denote the total frequency count for all the keys in the interval A[i .. j]:

F(i, j) :=
j
∑

k=i

f [k]

We can now write

OptCost(i, j) =

¨

0 if j < i

F(i, j) + min
i≤r≤ j

�

OptCost(i, r − 1) +OptCost(r + 1, j)
�

otherwise

The base case might look a little weird, but all it means is that the total cost for searching an
empty set of keys is zero.

The algorithm will be somewhat simpler and more efficient if we precompute all possible
values of F(i, j) and store them in an array. Computing each value F(i, j) using a separate
for-loop would O(n3) time. A better approach is to turn the recurrence

F(i, j) =

¨

f [i] if i = j

F(i, j − 1) + f [ j] otherwise

into the following O(n2)-time dynamic programming algorithm:

13
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InitF( f [1 .. n]):
for i← 1 to n

F[i, i − 1]← 0
for j← i to n

F[i, j]← F[i, j − 1] + f [ j]

This will be used as an initialization subroutine in our final algorithm.
So now let’s compute the optimal search tree cost OptCost(1, n) from the bottom up. We can

store all intermediate results in a table OptCost[1 .. n, 0 .. n]. Only the entries OptCost[i, j] with
j ≥ i − 1 will actually be used. The base case of the recurrence tells us that any entry of the form
OptCost[i, i − 1] can immediately be set to 0. For any other entry OptCost[i, j], we can use the
following algorithm fragment, which comes directly from the recurrence:

ComputeOptCost(i, j):
OptCost[i, j]←∞
for r ← i to j

tmp← OptCost[i, r − 1] +OptCost[r + 1, j]
if OptCost[i, j]> tmp

OptCost[i, j]← tmp
OptCost[i, j]← OptCost[i, j] + F[i, j]

The only question left is what order to fill in the table.
Each entry OptCost[i, j] depends on all entries OptCost[i, r − 1] and OptCost[r + 1, j] with

i ≤ k ≤ j. In other words, every entry in the table depends on all the entries directly to the left
or directly below. In order to fill the table efficiently, we must choose an order that computes
all those entries before OptCost[i, j]. There are at least three different orders that satisfy this
constraint. The one that occurs to most people first is to scan through the table one diagonal at a
time, starting with the trivial base cases OptCost[i, i − 1]. The complete algorithm looks like this:

OptimalSearchTree( f [1 .. n]):
InitF( f [1 .. n])
for i← 1 to n

OptCost[i, i − 1]← 0
for d ← 0 to n− 1

for i← 1 to n− d
ComputeOptCost(i, i + d)

return OptCost[1, n]

We could also traverse the array row by row from the bottom up, traversing each row from
left to right, or column by column from left to right, traversing each columns from the bottom up.

OptimalSearchTree2( f [1 .. n]):
InitF( f [1 .. n])
for i← n downto 1

OptCost[i, i − 1]← 0
for j← i to n

ComputeOptCost(i, j)
return OptCost[1, n]

OptimalSearchTree3( f [1 .. n]):
InitF( f [1 .. n])
for j← 0 to n

OptCost[ j + 1, j]← 0
for i← j downto 1

ComputeOptCost(i, j)
return OptCost[1, n]

No matter which of these orders we actually use, the resulting algorithm runs in Θ(n3) time
and uses Θ(n2) space. We could have predicted these space and time bounds directly from the
original recurrence.

OptCost(i, j) =

¨

0 if j = i − i

F(i, j) + min
i≤r≤ j

�

OptCost(i, r − 1) +OptCost(r + 1, j)
�

otherwise
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Three different evaluation orders for the table OptCost[i, j].

First, the function has two arguments, each of which can take on any value between 1 and n, so
we probably need a table of size O(n2). Next, there are three variables in the recurrence (i, j,
and r), each of which can take any value between 1 and n, so it should take us O(n3) time to fill
the table.

5.8 The CYK Parsing Algorithm

In the same earlier lecture, we developed a recursive backtracking algorithm for parsing context-
free languages. The input consists of a string w and a context-free grammar G in Chomsky
normal form—meaning every production has the form A→ a, for some symbol a, or A→ BC , for
some non-terminals B and C . Our task is to determine whether w is in the language generated
by G.

Our backtracking algorithm recursively evaluates the boolean function Generates?(A, x),
which equals True if and only if string x can be derived from non-terminal A, using the following
recurrence:

Generates?(A, x) =



















True if |x |= 1 and A→ x

False if |x |= 1 and A 6→ x
∨

A→BC

∨

y•z=x
Generates?(B, y)∧Generates?(C , z) otherwise

This recurrence was transformed into a dynamic programming algorithm by Tadao Kasami in
1965, and again independently by Daniel Younger in 1967, and again independently by John
Cocke in 1970, so naturally the resulting algorithm is known as “Cocke-Younger-Kasami”, or more
commonly the CYK algorithm.

We can derive the CYK algorithm from the previous recurrence as follows. As usual for
recurrences involving strings, we need to modify the function slightly to ease memoization. Fix
the input string w, and then let Gen?(A, i, j) = True if and only if the substring w[i .. j] can be
derived from non-terminal A. Now our earlier recurrence can be rewritten as follows:

Gen?(A, i, j) =























True if i = j and A→ w[i]
False if i = j and A 6→ w[i]

∨

A→BC

j−1
∨

k=i

Gen?(B, i, k)∧Gen?(C , k+ 1, j) otherwise

This recurrence can be memoized into a three-dimensional boolean array Gen[1 .. |Γ |, 1 .. n, 1 .. n],
where the first dimension is indexed by the non-terminals Γ in the input grammar. Each
entry Gen[A, i, j] in this array depends on entries of the form Gen[ · , i, k] for some k < j, or
Gen[ · , k + 1, j] for some k ≥ i. Thus, we can fill the array by increasing j in the outer loop,
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decreasing i in the middle loop, and considering non-terminals A in arbitrary order in the inner
loop. The resulting dynamic programming algorithm runs in O(n3 · |Γ |) time.

CYK(w, G):
for i← 1 to n

for all non-terminals A
if G contains the production A→ w[i]

Gen[A, i, i]← True
else

Gen[A, i, i]← False
for j← 1 to n

for i← n down to j + 1
for all non-terminals A

Gen[A, i, j]← False
for all production rules A→ BC

for k← i to j − 1
if Gen[B, i, k] and Gen[C , k+ 1, j]

Gen[A, i, j]← True
return Gen[S, 1, n]

5.9 Dynamic Programming on Trees

So far, all of our dynamic programming example use a multidimensional array to store the results
of recursive subproblems. However, as the next example shows, this is not always the most
appropriate date structure to use.

A independent set in a graph is a subset of the vertices that have no edges between them.
Finding the largest independent set in an arbitrary graph is extremely hard; in fact, this is one of
the canonical NP-hard problems described in another lecture note. But from some special cases of
graphs, we can find the largest independent set efficiently. In particular, when the input graph is
a tree (a connected and acyclic graph) with n vertices, we can compute the largest independent
set in O(n) time.

In the recursion notes, we saw a recursive algorithm for computing the size of the largest
independent set in an arbitrary graph:

MaximumIndSetSize(G):
if G =∅

return 0

v← any node in G
withv← 1+MaximumIndSetSize(G \ N(v))
withoutv←MaximumIndSetSize(G \ {v})
return max{withv, withoutv}.

Here, N(v) denotes the neighborhood of v: the set containing v and all of its neighbors. As we
observed in the other lecture notes, this algorithm has a worst-case running time of O(2n poly(n)),
where n is the number of vertices in the input graph.

Now suppose we require that the input graph is a tree; we will call this tree T instead of G
from now on. We need to make a slight change to the algorithm to make it truly recursive. The
subgraphs T \ {v} and T \ N(v) are forests, which may have more than one component. But the
largest independent set in a disconnected graph is just the union of the largest independent sets
in its components, so we can separately consider each tree in these forests. Fortunately, this has
the added benefit of making the recursive algorithm more efficient, especially if we can choose
the node v such that the trees are all significantly smaller than T . Here is the modified algorithm:
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MaximumIndSetSize(T ):
if T =∅

return 0
v← any node in T
withv← 1
for each tree T ′ in T \ N(v)

withv← withv+MaximumIndSetSize(T ′)
withoutv← 0
for each tree T ′ in T \ {v}

withoutv← withoutv+MaximumIndSetSize(T ′)
return max{withv, withoutv}.

Now let’s try to memoize this algorithm. Each recursive subproblem considers a subtree
(that is, a connected subgraph) of the original tree T . Unfortunately, a single tree T can have
exponentially many subtrees, so we seem to be doomed from the start!

Fortunately, there’s a degree of freedom that we have not yet exploited: We get to choose
the vertex v. We need a recipe—an algorithm!—for choosing v in each subproblem that limits
the number of different subproblems the algorithm considers. To make this work, we impose
some additional structure on the original input tree. Specifically, we declare one of the vertices
of T to be the root, and we orient all the edges of T away from that root. Then we let v be the
root of the input tree; this choice guarantees that each recursive subproblem considers a rooted
subtree of T . Each vertex in T is the root of exactly one subtree, so now the number of distinct
subproblems is exactly n. We can further simplify the algorithm by only passing a single node
instead of the entire subtree:

MaximumIndSetSize(v):
withv← 1
for each grandchild x of v

withv← withv+MaximumIndSetSize(x)
withoutv← 0
for each child w of v

withoutv← withoutv+MaximumIndSetSize(w)
return max{withv, withoutv}.

What data structure should we use to store intermediate results? The most natural choice is
the tree itself! Specifically, for each node v, we store the result of MaximumIndSetSize(v) in a
new field v.MIS. (We could use an array, but then we’d have to add a new field to each node
anyway, pointing to the corresponding array entry. Why bother?)

What’s the running time of the algorithm? The non-recursive time associated with each
node v is proportional to the number of children and grandchildren of v; this number can be
very different from one vertex to the next. But we can turn the analysis around: Each vertex
contributes a constant amount of time to its parent and its grandparent! Since each vertex has at
most one parent and at most one grandparent, the total running time is O(n).

What’s a good order to consider the subproblems? The subproblem associated with any
node v depends on the subproblems associated with the children and grandchildren of v. So we
can visit the nodes in any order, provided that all children are visited before their parent. In
particular, we can use a straightforward post-order traversal.

Here is the resulting dynamic programming algorithm. Yes, it’s still recursive. I’ve swapped
the evaluation of the with-v and without-v cases; we need to visit the kids first anyway, so why
not consider the subproblem that depends directly on the kids first?
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MaximumIndSetSize(v):
withoutv← 0
for each child w of v

withoutv← withoutv+MaximumIndSetSize(w)
withv← 1
for each grandchild x of v

withv← withv+ x .MIS
v.MIS←max{withv, withoutv}
return v.MIS

Another option is to store two values for each rooted subtree: the size of the largest
independent set that includes the root, and the size of the largest independent set that excludes
the root. This gives us an even simpler algorithm, with the same O(n) running time.

MaximumIndSetSize(v):
v.MISno← 0
v.MISyes← 1
for each child w of v

v.MISno← v.MISno+MaximumIndSetSize(w)
v.MISyes← v.MISyes+w.MISno

return max{v.MISyes, v.MISno}

Exercises

Sequences/Arrays

1. In a previous life, you worked as a cashier in the lost Antarctican colony of Nadira, spending
the better part of your day giving change to your customers. Because paper is a very rare
and valuable resource in Antarctica, cashiers were required by law to use the fewest bills
possible whenever they gave change. Thanks to the numerological predilections of one of
its founders, the currency of Nadira, called Dream Dollars, was available in the following
denominations: $1, $4, $7, $13, $28, $52, $91, $365.¹⁰

(a) The greedy change algorithm repeatedly takes the largest bill that does not exceed
the target amount. For example, to make $122 using the greedy algorithm, we first
take a $91 bill, then a $28 bill, and finally three $1 bills. Give an example where this
greedy algorithm uses more Dream Dollar bills than the minimum possible.

(b) Describe and analyze a recursive algorithm that computes, given an integer k, the
minimum number of bills needed to make k Dream Dollars. (Don’t worry about
making your algorithm fast; just make sure it’s correct.)

(c) Describe a dynamic programming algorithm that computes, given an integer k, the
minimum number of bills needed to make k Dream Dollars. (This one needs to be
fast.)

2. Suppose you are given an array A[1 .. n] of numbers, which may be positive, negative, or
zero, and which are not necessarily integers.

¹⁰For more details on the history and culture of Nadira, including images of the various denominations of Dream
Dollars, see http://moneyart.biz/dd/.
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(a) Describe and analyze an algorithm that finds the largest sum of of elements in a
contiguous subarray A[i .. j].

(b) Describe and analyze an algorithm that finds the largest product of of elements in a
contiguous subarray A[i .. j].

For example, given the array [−6, 12,−7, 0,14,−7, 5] as input, your first algorithm should
return the integer 19, and your second algorithm should return the integer 504.

sum=19
︷ ︸︸ ︷

−6 12 −7 0 14 −7 5
︸ ︷︷ ︸

product=504

For the sake of analysis, assume that comparing, adding, or multiplying any pair of numbers
takes O(1) time.

[Hint: Problem (a) has been a standard computer science interview question since at least
the mid-1980s. You can find many correct solutions on the web; the problem even has its own
Wikipedia page! But at least in 2013, the few solutions I found on the web for problem (b)
were all either slower than necessary or actually incorrect.]

3. This series of exercises asks you to develop efficient algorithms to find optimal subsequences
of various kinds. A subsequence is anything obtained from a sequence by extracting a
subset of elements, but keeping them in the same order; the elements of the subsequence
need not be contiguous in the original sequence. For example, the strings C, DAMN, YAIOAI,
and DYNAMICPROGRAMMING are all subsequences of the string DYNAMICPROGRAMMING.

(a) Let A[1 .. m] and B[1 .. n] be two arbitrary arrays. A common subsequence of A and
B is another sequence that is a subsequence of both A and B. Describe an efficient
algorithm to compute the length of the longest common subsequence of A and B.

(b) Let A[1 .. m] and B[1 .. n] be two arbitrary arrays. A common supersequence of A
and B is another sequence that contains both A and B as subsequences. Describe an
efficient algorithm to compute the length of the shortest common supersequence of A
and B.

(c) Call a sequence X [1 .. n] of numbers bitonic if there is an index i with 1< i < n, such
that the prefix X [1 .. i] is increasing and the suffix X [i .. n] is decreasing. Describe an
efficient algorithm to compute the length of the longest bitonic subsequence of an
arbitrary array A of integers.

(d) Call a sequence X [1 .. n] of numbers oscillating if X [i]< X [i + 1] for all even i, and
X [i]> X [i+1] for all odd i. Describe an efficient algorithm to compute the length of
the longest oscillating subsequence of an arbitrary array A of integers.

(e) Describe an efficient algorithm to compute the length of the shortest oscillating
supersequence of an arbitrary array A of integers.

(f) Call a sequence X [1 .. n] of numbers convex if 2 · X [i] < X [i − 1] + X [i + 1] for
all i. Describe an efficient algorithm to compute the length of the longest convex
subsequence of an arbitrary array A of integers.

(g) Call a sequence X [1 .. n] of numbers weakly increasing if each element is larger than
the average of the two previous elements; that is, 2 · X [i]> X [i−1]+ X [i−2] for all
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i > 2. Describe an efficient algorithm to compute the length of the longest weakly
increasing subsequence of an arbitrary array A of integers.

(h) Call a sequence X [1 .. n] of numbers double-increasing if X [i]> X [i−2] for all i > 2.
(In other words, a semi-increasing sequence is a perfect shuffle of two increasing
sequences.) Describe an efficient algorithm to compute the length of the longest
double-increasing subsequence of an arbitrary array A of integers.

?(i) Recall that a sequence X [1 .. n] of numbers is increasing if X [i] < X [i + 1] for all i.
Describe an efficient algorithm to compute the length of the longest common increasing
subsequence of two given arrays of integers. For example, 〈1,4, 5,6, 7,9〉 is the longest
common increasing subsequence of the sequences 〈3, 1,4, 1,5, 9,2,6, 5,3, 5,8, 9,7, 9,3〉
and 〈1, 4,1, 4,2, 1,3, 5,6, 2,3, 7,3,0, 9,5〉.

4. Describe an algorithm to compute the number of times that one given array X [1 .. k]
appears as a subsequence of another given array Y [1 .. n]. For example, if all characters in
X and Y are equal, your algorithm should return

�n
k

�

. For purposes of analysis, assume that
adding two `-bit integers requires Θ(`) time.

5. You and your eight-year-old nephew Elmo decide to play a simple card game. At the
beginning of the game, the cards are dealt face up in a long row. Each card is worth a
different number of points. After all the cards are dealt, you and Elmo take turns removing
either the leftmost or rightmost card from the row, until all the cards are gone. At each
turn, you can decide which of the two cards to take. The winner of the game is the player
that has collected the most points when the game ends.

Having never taken an algorithms class, Elmo follows the obvious greedy strategy—
when it’s his turn, Elmo always takes the card with the higher point value. Your task is to
find a strategy that will beat Elmo whenever possible. (It might seem mean to beat up on a
little kid like this, but Elmo absolutely hates it when grown-ups let him win.)

(a) Prove that you should not also use the greedy strategy. That is, show that there is
a game that you can win, but only if you do not follow the same greedy strategy as
Elmo.

(b) Describe and analyze an algorithm to determine, given the initial sequence of cards,
the maximum number of points that you can collect playing against Elmo.

(c) Five years later, Elmo has become a much stronger player. Describe and analyze an
algorithm to determine, given the initial sequence of cards, the maximum number of
points that you can collect playing against a perfect opponent.

6. It’s almost time to show off your flippin’ sweet dancing skills! Tomorrow is the big dance
contest you’ve been training for your entire life, except for that summer you spent with
your uncle in Alaska hunting wolverines. You’ve obtained an advance copy of the the list of
n songs that the judges will play during the contest, in chronological order.

You know all the songs, all the judges, and your own dancing ability extremely well.
For each integer k, you know that if you dance to the kth song on the schedule, you will be
awarded exactly Score[k] points, but then you will be physically unable to dance for the
next Wait[k] songs (that is, you cannot dance to songs k+ 1 through k+Wait[k]). The
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dancer with the highest total score at the end of the night wins the contest, so you want
your total score to be as high as possible.

Describe and analyze an efficient algorithm to compute the maximum total score you
can achieve. The input to your sweet algorithm is the pair of arrays Score[1 .. n] and
Wait[1 .. n].

7. You are driving a bus along a highway, full of rowdy, hyper, thirsty students and a soda
fountain machine. Each minute that a student is on your bus, that student drinks one
ounce of soda. Your goal is to drop the students off quickly, so that the total amount of
soda consumed by all students is as small as possible.

You know how many students will get off of the bus at each exit. Your bus begins
somewhere along the highway (probably not at either end) and move s at a constant speed
of 37.4 miles per hour. You must drive the bus along the highway; however, you may drive
forward to one exit then backward to an exit in the opposite direction, switching as often
as you like. (You can stop the bus, drop off students, and turn around instantaneously.)

Describe an efficient algorithm to drop the students off so that they drink as little soda
as possible. Your input consists of the bus route (a list of the exits, together with the travel
time between successive exits), the number of students you will drop off at each exit, and
the current location of your bus (which you may assume is an exit).

8. A palindrome is any string that is exactly the same as its reversal, like I, or DEED, or
RACECAR, or AMANAPLANACATACANALPANAMA.

(a) Describe and analyze an algorithm to find the length of the longest subsequence
of a given string that is also a palindrome. For example, the longest palindrome
subsequence of MAHDYNAMICPROGRAMZLETMESHOWYOUTHEM is MHYMRORMYHM, so given
that string as input, your algorithm should output the number 11.

(b) Describe and analyze an algorithm to find the length of the shortest supersequence
of a given string that is also a palindrome. For example, the shortest palindrome
supersequence of TWENTYONE is TWENTOYOTNEWT, so given the string TWENTYONE as
input, your algorithm should output the number 13.

(c) Any string can be decomposed into a sequence of palindromes. For example, the
string BUBBASEESABANANA (“Bubba sees a banana.”) can be broken into palindromes
in the following ways (and many others):

BUB • BASEESAB • ANANA

B • U • BB • A • SEES • ABA • NAN • A

B • U • BB • A • SEES • A • B • ANANA

B • U • B • B • A • S • E • E • S • A • B • A • N • ANA

Describe and analyze an efficient algorithm to find the smallest number of palin-
dromes that make up a given input string. For example, given the input string
BUBBASEESABANANA, your algorithm would return the integer 3.
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9. Suppose you have a black-box subroutine Quality that can compute the ‘quality’ of any
given string A[1 .. k] in O(k) time. For example, the quality of a string might be 1 if the
string is a Québecois curse word, and 0 otherwise.

Given an arbitrary input string T[1 .. n], we would like to break it into contiguous
substrings, such that the total quality of all the substrings is as large as possible. For
example, the string SAINTCIBOIREDESACRAMENTDECRISSE can be decomposed into the
substrings SAINT • CIBOIRE • DE • SACRAMENT • DE • CRISSE, of which three (or possibly
four) are sacres.

Describe an algorithm that breaks a string into substrings of maximum total quality,
using the Quality subroutine.

10. (a) Suppose we are given a set L of n line segments in the plane, where each segment
has one endpoint on the line y = 0 and one endpoint on the line y = 1, and all 2n
endpoints are distinct. Describe and analyze an algorithm to compute the largest
subset of L in which no pair of segments intersects.

(b) Suppose we are given a set L of n line segments in the plane, where each segment
has one endpoint on the line y = 0 and one endpoint on the line y = 1, and all 2n
endpoints are distinct. Describe and analyze an algorithm to compute the largest
subset of L in which every pair of segments intersects.

(c) Suppose we are given a set L of n line segments in the plane, where the endpoints
of each segment lie on the unit circle x2 + y2 = 1, and all 2n endpoints are distinct.
Describe and analyze an algorithm to compute the largest subset of L in which no
pair of segments intersects.

(d) Suppose we are given a set L of n line segments in the plane, where the endpoints
of each segment lie on the unit circle x2 + y2 = 1, and all 2n endpoints are distinct.
Describe and analyze an algorithm to compute the largest subset of L in which every
pair of segments intersects.

11. Let P be a set of n points evenly distributed on the unit circle, and let S be a set of m
line segments with endpoints in P. The endpoints of the m segments are not necessarily
distinct; n could be significantly smaller than 2m.

(a) Describe an algorithm to find the size of the largest subset of segments in S such that
every pair is disjoint. Two segments are disjoint if they do not intersect even at their
endpoints.

(b) Describe an algorithm to find the size of the largest subset of segments in S such that
every pair is interior-disjoint. Two segments are interior-disjoint if their intersection
is either empty or an endpoint of both segments.

(c) Describe an algorithm to find the size of the largest subset of segments in S such that
every pair intersects.

(d) Describe an algorithm to find the size of the largest subset of segments in S such that
every pair crosses. Two segments cross if they intersect but not at their endpoints.

For full credit, all four algorithms should run in O(mn) time.
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12. A shuffle of two strings X and Y is formed by interspersing the characters into a new
string, keeping the characters of X and Y in the same order. For example, the string
BANANAANANAS is a shuffle of the strings BANANA and ANANAS in several different ways.

BANANAANANAS BANANAANANAS BANANAANANAS

Similarly, the strings PRODGYRNAMAMMIINCG and DYPRONGARMAMMICING are both shuffles of
DYNAMIC and PROGRAMMING:

PRODGYRNAMAMMIINCG DYPRONGARMAMMICING

Given three strings A[1 .. m], B[1 .. n], and C[1 .. m+n], describe and analyze an algorithm
to determine whether C is a shuffle of A and B.

13. Describe and analyze an efficient algorithm to find the length of the longest contiguous
substring that appears both forward and backward in an input string T[1 .. n]. The forward
and backward substrings must not overlap. Here are several examples:

• Given the input string ALGORITHM, your algorithm should return 0.

• Given the input string RECURSION, your algorithm should return 1, for the substring R.

• Given the input string REDIVIDE, your algorithm should return 3, for the substring
EDI. (The forward and backward substrings must not overlap!)

• Given the input string DYNAMICPROGRAMMINGMANYTIMES, your algorithm should re-
turn 4, for the substring YNAM. (In particular, it should not return 6, for the subsequence
YNAMIR).

14. Dance Dance Revolution is a dance video game, first introduced in Japan by Konami in
1998. Players stand on a platform marked with four arrows, pointing forward, back, left,
and right, arranged in a cross pattern. During play, the game plays a song and scrolls a
sequence of n arrows (

Ü

, Ü,

Ü

, or Ü) from the bottom to the top of the screen. At the
precise moment each arrow reaches the top of the screen, the player must step on the
corresponding arrow on the dance platform. (The arrows are timed so that you’ll step with
the beat of the song.)

You are playing a variant of this game called “Vogue Vogue Revolution”, where the goal
is to play perfectly but move as little as possible. When an arrow reaches the top of the
screen, if one of your feet is already on the correct arrow, you are awarded one style point
for maintaining your current pose. If neither foot is on the right arrow, you must move one
(and only one) of your feet from its current location to the correct arrow on the platform.
If you ever step on the wrong arrow, or fail to step on the correct arrow, or move more
than one foot at a time, or move either foot when you are already standing on the correct
arrow, all your style points are taken away and you lose the game.

How should you move your feet to maximize your total number of style points? For
purposes of this problem, assume you always start with you left foot on

Ü

and you right
foot on Ü, and that you’ve memorized the entire sequence of arrows. For example, if the
sequence is Ü Ü

Ü Ü Ü

Ü

Ü

Ü, you can earn 5 style points by moving you feet as shown
below:
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(a) Prove that for any sequence of n arrows, it is possible to earn at least n/4− 1 style
points.

(b) Describe an efficient algorithm to find the maximum number of style points you can
earn during a given VVR routine. The input to your algorithm is an array Arrow[1 .. n]
containing the sequence of arrows.

15. Consider the following solitaire form of Scrabble. We begin with a fixed, finite sequence
of tiles; each tile contains a letter and a numerical value. At the start of the game, we
draw the seven tiles from the sequence and put them into our hand. In each turn, we form
an English word from some or all of the tiles in our hand, place those tiles on the table,
and receive the total value of those tiles as points. If no English word can be formed from
the tiles in our hand, the game immediately ends. Then we repeatedly draw the next tile
from the start of the sequence until either (a) we have seven tiles in our hand, or (b) the
sequence is empty. (Sorry, no double/triple word/letter scores, bingos, blanks, or passing.)
Our goal is to obtain as many points as possible.

For example, suppose we are given the tile sequence

I2 N2 X8 A1 N2 A1 D3 U5 D3 I2 D3 K8 U5 B4 L2 A1 K8 H5 A1 N2 .

Then we can earn 68 points as follows:

• We initially draw I2 N2 X8 A1 N2 A1 D3 .

• Play the word N2 A1 I2 A1 D3 for 9 points, leaving N2 X8 in our hand.

• Draw the next five tiles U5 D3 I2 D3 K8 .

• Play the word U5 N2 D3 I2 D3 for 15 points, leaving K8 X8 in our hand.

• Draw the next five tiles U5 B4 L2 A1 K8 .

• Play the word B4 U5 L2 K8 for 19 points, leaving K8 X8 A1 in our hand.

• Draw the next three tiles H5 A1 N2 , emptying the list.

• Play the word A1 N2 K8 H5 for 16 points, leaving X8 A1 in our hand.

• Play the word A1 X8 for 9 points, emptying our hand and ending the game.

(a) Suppose you are given as input two arrays Letter[1 .. n], containing a sequence of
letters between A and Z, and Value[A ..Z], where Value[`] is the value of letter `.
Design and analyze an efficient algorithm to compute the maximum number of points
that can be earned from the given sequence of tiles.
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(b) Now suppose two tiles with the same letter can have different values; you are given
two arrays Letter[1 .. n] and Value[1 .. n]. Design and analyze an efficient algorithm to
compute the maximum number of points that can be earned from the given sequence
of tiles.

In both problems, the output is a single number: the maximum possible score. Assume
that you can find all English words that can be made from any set of at most seven tiles,
along with the point values of those words, in O(1) time.

16. Suppose you are given a DFA M = ({0,1},Q, s, A,δ) and a binary string w ∈ {0,1}∗.

(a) Describe and analyze an algorithm that computes the longest subsequence of w that
is accepted by M , or correctly reports that M does not accept any subsequence of w.

?(b) Describe and analyze an algorithm that computes the shortest supersequence of w that
is accepted by M , or correctly reports that M does not accept any supersequence of w.
[Hint: Careful!]

Analyze both of your algorithms in terms of the parameters n= |w| and k = |Q|.

17. Vankin’s Mile is an American solitaire game played on an n× n square grid. The player
starts by placing a token on any square of the grid. Then on each turn, the player moves
the token either one square to the right or one square down. The game ends when player
moves the token off the edge of the board. Each square of the grid has a numerical value,
which could be positive, negative, or zero. The player starts with a score of zero; whenever
the token lands on a square, the player adds its value to his score. The object of the game
is to score as many points as possible.

For example, given the grid below, the player can score 8−6+7−3+4= 10 points by
placing the initial token on the 8 in the second row, and then moving down, down, right,
down, down. (This is not the best possible score for these values.)

−1 7 −8 10 −5

−4 −9 8
⇓
−6 0

5 −2 −6
⇓
−6 7

−7 4 7⇒−3
⇓
−3

7 1 −6 4
⇓
−9

(a) Describe and analyze an efficient algorithm to compute the maximum possible score
for a game of Vankin’s Mile, given the n× n array of values as input.

(b) In the European version of this game, appropriately called Vankin’s Kilometer, the
player can move the token either one square down, one square right, or one square
left in each turn. However, to prevent infinite scores, the token cannot land on the
same square more than once. Describe and analyze an efficient algorithm to compute
the maximum possible score for a game of Vankin’s Kilometer, given the n× n array
of values as input.¹¹

¹¹If we also allowed upward movement, the resulting game (Vankin’s Fathom?) would be Ebay-hard.
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18. Suppose you are given an m× n bitmap, represented by an array M[1 .. n, 1 .. n] of 0s and
1s. A solid block in M is a subarray of the form M[i .. i′, j .. j′] containing only 1-bits. A
solid block is square if it has the same number of rows and columns.

(a) Describe an algorithm to find the maximum area of a solid square block in M in O(n2)
time.

(b) Describe an algorithm to find the maximum area of a solid block in M in O(n3) time.
?(c) Describe an algorithm to find the maximum area of a solid block in M in O(n2) time.

?19. Describe and analyze an algorithm to solve the traveling salesman problem in O(2n poly(n))
time. Given an undirected n-vertex graph G with weighted edges, your algorithm should
return the weight of the lightest cycle in G that visits every vertex exactly once, or∞ if G
has no such cycles. [Hint: The obvious recursive algorithm takes O(n!) time.]

— Randall Munroe, xkcd (http://xkcd.com/399/)
Reproduced under a Creative Commons Attribution-NonCommercial 2.5 License

?20. Let A = {A1, A2, . . . , An} be a finite set of strings over some fixed alphabet Σ. An edit
center forA is a string C ∈ Σ∗ such that the maximum edit distance from C to any string
inA is as small as possible. The edit radius ofA is the maximum edit distance from an
edit center to a string in A . A set of strings may have several edit centers, but its edit
radius is unique.

EditRadius(A ) = min
C∈Σ∗

max
A∈A

Edit(A, C) EditCenter(A ) = argmin
C∈Σ∗

max
A∈A

Edit(A, C)

(a) Describe and analyze an efficient algorithm to compute the edit radius of three given
strings.

(b) Describe and analyze an efficient algorithm to approximate the edit radius of an
arbitrary set of strings within a factor of 2. (Computing the exact edit radius is
NP-hard unless the number of strings is fixed.)

Æ21. Let D[1 .. n] be an array of digits, each an integer between 0 and 9. An digital subsequence
of D is a sequence of positive integers composed in the usual way from disjoint substrings
of D. For example, 3, 4,5,6, 8,9, 32,38, 46,64, 83,279 is a digital subsequence of the first
several digits of π:

3 , 1, 4 ,1, 5 ,9, 2, 6 , 5,3, 5, 8 , 9 , 7,9, 3, 2 , 3,8 , 4, 6 , 2, 6,4 ,3, 3, 8,3 , 2,7, 9
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The length of a digital subsequence is the number of integers it contains, not the number of
digits; the preceding example has length 12. As usual, a digital subsequence is increasing
if each number is larger than its predecessor.

Describe and analyze an efficient algorithm to compute the longest increasing digital
subsequence of D. [Hint: Be careful about your computational assumptions. How long does
it take to compare two k-digit numbers?]

For full credit, your algorithm should run in O(n4) time; faster algorithms are worth
extra credit. The fastest algorithm I know for this problem runs in O(n2 log n) time;
achieving this bound requires several tricks, both in the algorithm and in its analysis.

Splitting Sequences/Arrays

22. Every year, as part of its annual meeting, the Antarctican Snail Lovers of Upper Glacierville
hold a Round Table Mating Race. Several high-quality breeding snails are placed at the
edge of a round table. The snails are numbered in order around the table from 1 to n.
During the race, each snail wanders around the table, leaving a trail of slime behind it.
The snails have been specially trained never to fall off the edge of the table or to cross a
slime trail, even their own. If two snails meet, they are declared a breeding pair, removed
from the table, and whisked away to a romantic hole in the ground to make little baby
snails. Note that some snails may never find a mate, even if the race goes on forever.

1

2

3

4

5

6

7

8 8

1

5 2

6

3
4

7

The end of a typical Antarctican SLUG race. Snails 6 and 8 never find mates.
The organizers must pay M[3,4] +M[2,5] +M[1, 7].

For every pair of snails, the Antarctican SLUG race organizers have posted a monetary
reward, to be paid to the owners if that pair of snails meets during the Mating Race.
Specifically, there is a two-dimensional array M[1 .. n, 1 .. n] posted on the wall behind the
Round Table, where M[i, j] = M[ j, i] is the reward to be paid if snails i and j meet.

Describe and analyze an algorithm to compute the maximum total reward that the
organizers could be forced to pay, given the array M as input.

23. Suppose you are given a sequence of integers separated by + and × signs; for example:

1+ 3× 2× 0+ 1× 6+ 7
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You can change the value of this expression by adding parentheses in different places. For
example:

(1+ (3× 2))× 0+ (1× 6) + 7= 13

((1+ (3× 2× 0) + 1)× 6) + 7= 19

(1+ 3)× 2× (0+ 1)× (6+ 7) = 208

(a) Describe and analyze an algorithm to compute the maximum possible value the given
expression can take by adding parentheses, assuming all integers in the input are
positive. [Hint: This is easy.]

(b) Describe and analyze an algorithm to compute the maximum possible value the given
expression can take by adding parentheses, assuming all integers in the input are
non-negative.

(c) Describe and analyze an algorithm to compute the maximum possible value the given
expression can take by adding parentheses, with no further restrictions on the input.

Assume any arithmetic operation takes O(1) time.

24. Suppose you are given a sequence of integers separated by + and − signs; for example:

1+ 3− 2− 5+ 1− 6+ 7

You can change the value of this expression by adding parentheses in different places. For
example:

1+ 3− 2− 5+ 1− 6+ 7= −1

(1+ 3− (2− 5)) + (1− 6) + 7= 9

(1+ (3− 2))− (5+ 1)− (6+ 7) = −17

Describe and analyze an algorithm to compute, given a list of integers separated by + and
− signs, the maximum possible value the expression can take by adding parentheses.

You may only use parentheses to group additions and subtractions; in particular, you
are not allowed to create implicit multiplication as in 1+ 3(−2)(−5) + 1− 6+ 7= 33.

25. A basic arithmetic expression is composed of characters from the set {1,+,×} and
parentheses. Almost every integer can be represented by more than one basic arithmetic
expression. For example, all of the following basic arithmetic expression represent the
integer 14:

1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1

((1+ 1)× (1+ 1+ 1+ 1+ 1)) + ((1+ 1)× (1+ 1))

(1+ 1)× (1+ 1+ 1+ 1+ 1+ 1+ 1)

(1+ 1)× (((1+ 1+ 1)× (1+ 1)) + 1)

Describe and analyze an algorithm to compute, given an integer n as input, the minimum
number of 1’s in a basic arithmetic expression whose value is n. The number of parentheses
doesn’t matter, just the number of 1’s. For example, when n= 14, your algorithm should
return 8, for the final expression above. For full credit, the running time of your algorithm
should be bounded by a small polynomial function of n.
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26. After graduating from Illinois, you decide to interview for a position at the Wall Street
bank Long Live Boole. The managing director of the bank, Eloob Egroeg, is a genius
mathematician who worships George Boole (the inventor of Boolean Logic) every morning
before leaving for the office. The first day of every hired employee is a ’solve-or-die’ day
where s/he has to solve one of the problems posed by Eloob within 24 hours. Those who
fail to solve the problem are fired immediately!

Entering the bank for the first time, you notice that the employee offices are organized in
a straight row, with a large T or F printed on the door of each office. Furthermore, between
each adjacent pair of offices, there is a board marked by one of the symbols ∧,∨, or ⊕.
When you ask about these arcane symbols, Eloob confirms that T and F represent the
boolean values True and False, and the symbols on the boards represent the standard
boolean operators And, Or, and Xor. He also explains that these letters and symbols
describe whether certain combinations of employees can work together successfully. At the
start of any new project, Eloob hierarchically clusters his employees by adding parentheses
to the sequence of symbols, to obtain an unambiguous boolean expression. The project is
successful if this parenthesized boolean expression evaluates to T .

For example, if the bank has three employees, and the sequence of symbols on and
between their doors is T ∧ F ⊕ T , there is exactly one successful parenthesization scheme:
(T ∧ (F ⊕ T )). However, if the list of door symbols is F ∧ T ⊕ F , there is no way to add
parentheses to make the project successful.

Eloob finally poses your solve-or-die interview question: Describe and algorithm to
decide whether a given sequence of symbols can be parenthesized so that the resulting
boolean expression evaluates to T . The input to your algorithm is an array S[0 .. 2n],
where S[i] ∈ {T, F} when i is even, and S[i] ∈ {∨,∧,⊕} when i is odd.

27. Suppose we want to display a paragraph of text on a computer screen. The text consists of a
sequence of n words, where the ith word has length `[i]. We want to break the paragraph
into several lines of total length exactly L. For example, according to TEX, the program
used to typeset these notes, the paragraph you are reading right now is approximately
14.27585 cm ≈ 5.62231 inches wide.

Depending on how the paragraph is broken into lines of text, we must insert different
amounts of white space between the words. The paragraph should be fully justified,
meaning that the first character on each line starts at the left end of the line, and except for
the last line, the last character on each line ends at the right end of the line. There must be
at least one unit of white space between any two words on the same line.

Define the slop of a paragraph layout as the sum over all lines, except the last, of the
cube of the amount of extra white-space in each line, not counting the one unit of required
space between each adjacent pair of words. Specifically, if a line contains words i through j,
then the slop of that line is defined to be

�

L − j + i −
∑ j

k=i `[k]
�3
. Describe a dynamic

programming algorithm to print the paragraph with minimum slop.

28. You have mined a large slab of marble from your quarry. For simplicity, suppose the marble
slab is a rectangle measuring n inches in height and m inches in width. You want to cut
the slab into smaller rectangles of various sizes—some for kitchen countertops, some for
large sculpture projects, others for memorial headstones. You have a marble saw that
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can make either horizontal or vertical cuts across any rectangular slab. At any time, you
can query the spot price P[x , y] of an x-inch by y-inch marble rectangle, for any positive
integers x and y . These prices depend on customer demand, and people who buy marble
countertops are weird, so do not make any assumptions about them; in particular, larger
rectangles may have significantly smaller spot prices. Given the array of spot prices and the
integers m and n as input, describe an algorithm to compute how to subdivide an n×m
marble slab to maximize your profit.

29. A string w of parentheses (( and )) and brackets [[ and ]] is balanced if it satisfies one of
the following conditions:

• w is the empty string.

• w= ((x)) for some balanced string x

• w= [[x]] for some balanced string x

• w= x y for some balanced strings x and y

For example, the string
w= (([[(())]][[]](())))[[(())(())]](())

is balanced, because w= x y , where

x = (( [[(())]] [[]] (()) )) and y = [[ (()) (()) ]] (()).

(a) Describe and analyze an algorithm to determine whether a given string of parentheses
and brackets is balanced.

(b) Describe and analyze an algorithm to compute the length of a longest balanced
subsequence of a given string of parentheses and brackets.

(c) Describe and analyze an algorithm to compute the length of a shortest balanced
supersequence of a given string of parentheses and brackets.

(d) Describe and analyze an algorithm to compute the minimum edit distance from a
given string of parentheses and brackets to a balanced string of parentheses and
brackets.

For each problem, your input is an array w[1 .. n], where w[i] ∈ {((,)),[[,]]} for every
index i.

30. Congratulations! Your research team has just been awarded a $50M multi-year project,
jointly funded by DARPA, Google, and McDonald’s, to produce DWIM: The first compiler
to read programmers’ minds! Your proposal and your numerous press releases all promise
that DWIM will automatically correct errors in any given piece of code, while modifying
that code as little as possible. Unfortunately, now it’s time to start actually making the
damn thing work.

As a warmup exercise, you decide to tackle the following necessary subproblem. Recall
that the edit distance between two strings is the minimum number of single-character
insertions, deletions, and replacements required to transform one string into the other. An
arithmetic expression is a string w such that

• w is a string of one or more decimal digits,
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• w= (x) for some arithmetic expression x , or

• w= x � y for some arithmetic expressions x and y and some binary operator �.

Suppose you are given a string of tokens from the alphabet {#,�,(,)}, where # represents
a decimal digit and � represents a binary operator. Describe an algorithm to compute the
minimum edit distance from the given string to an arithmetic expression.

31. Let P be a set of points in the plane in convex position. Intuitively, if a rubber band were
wrapped around the points, then every point would touch the rubber band. More formally,
for any point p in P, there is a line that separates p from the other points in P. Moreover,
suppose the points are indexed P[1], P[2], . . . , P[n] in counterclockwise order around the
‘rubber band’, starting with the leftmost point P[1].

This problem asks you to solve a special case of the traveling salesman problem, where
the salesman must visit every point in P, and the cost of moving from one point p ∈ P to
another point q ∈ P is the Euclidean distance |pq|.

(a) Describe a simple algorithm to compute the shortest cyclic tour of P.

(b) A simple tour is one that never crosses itself. Prove that the shortest tour of P must be
simple.

(c) Describe and analyze an efficient algorithm to compute the shortest tour of P that
starts at the leftmost point P[1] and ends at the rightmost point P[r].

(d) Describe and analyze an efficient algorithm to compute the shortest tour of P, with
no restrictions on the endpoints.

32. (a) Describe and analyze an efficient algorithm to determine, given a string w and a
regular expression R, whether w ∈ L(R).

(b) Generalized regular expressions allow the binary operator ∩ (intersection) and the
unary operator ¬ (complement), in addition to the usual • (concatenation), + (or),
and ∗ (Kleene closure) operators. NFA constructions and Kleene’s theorem imply that
any generalized regular expression E represents a regular language L(E).

Describe and analyze an efficient algorithm to determine, given a string w and a
generalized regular expression E, whether w ∈ L(E).

In both problems, assume that you are actually given a parse tree for the (generalized)
regular expression, not just a string.

33. Ribonucleic acid (RNA) molecules are long chains of millions of nucleotides or bases of four
different types: adenine (A), cytosine (C), guanine (G), and uracil (U). The sequence of an
RNA molecule is a string b[1 .. n], where each character b[i] ∈ {A, C , G, U} corresponds
to a base. In addition to the chemical bonds between adjacent bases in the sequence,
hydrogen bonds can form between certain pairs of bases. The set of bonded base pairs is
called the secondary structure of the RNA molecule.

We say that two base pairs (i, j) and (i′, j′)with i < j and i′ < j′ overlap if i < i′ < j < j′

or i′ < i < j′ < j. In practice, most base pairs are non-overlapping. Overlapping base pairs
create so-called pseudoknots in the secondary structure, which are essential for some RNA
functions, but are more difficult to predict.
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Suppose we want to predict the best possible secondary structure for a given RNA
sequence. We will adopt a drastically simplified model of secondary structure:

• Each base can be paired with at most one other base.
• Only A-U pairs and C-G pairs can bond.
• Pairs of the form (i, i + 1) and (i, i + 2) cannot bond.
• Overlapping base pairs cannot bond.

The last restriction allows us to visualize RNA secondary structure as a sort of fat tree.
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Example RNA secondary structure with 21 base pairs, indicated by heavy red lines.
Gaps are indicated by dotted curves. This structure has score 22 + 22 + 82 + 12 + 72 + 42 + 72 = 187

(a) Describe and analyze an algorithm that computes the maximum possible number of
bonded base pairs in a secondary structure for a given RNA sequence.

(b) A gap in a secondary structure is a maximal substring of unpaired bases. Large gaps
lead to chemical instabilities, so secondary structures with smaller gaps are more
likely. To account for this preference, let’s define the score of a secondary structure to
be the sum of the squares of the gap lengths. (This score function is utterly fictional;
real RNA structure prediction requires much more complicated scoring functions.)
Describe and analyze an algorithm that computes the minimum possible score of a
secondary structure for a given RNA sequence.

34. A standard method to improve the cache performance of search trees is to pack more
search keys and subtrees into each node. A B-tree is a rooted tree in which each internal
node stores up to B keys and pointers to up to B + 1 children, each the root of a smaller
B-tree. Specifically, each node v stores three fields:

• a positive integer v.d ≤ B,

• a sorted array v.key[1 .. v.d], and

• an array v.child[0 .. v.d] of child pointers.
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In particular, the number of child pointers is always exactly one more than the number of
keys.¹²

Each pointer v.child[i] is either Null or a pointer to the root of a B-tree whose keys
are all larger than v.key[i] and smaller than v.key[i + 1]. In particular, all keys in the
leftmost subtree v.child[0] are smaller than v.key[1], and all keys in the rightmost subtree
v.child[v.d] are larger than v.key[v.d].

Intuitively, you should have the following picture in mind:

[ ·•

��

< key[1]< ·•

��

< key[2]< ·•

��

· · · ·•

��

< key[d]< ·•

��

]

T0 T1 T2 · · · Td−1 Td

Here Ti is the subtree pointed to by child[i].

The cost of searching for a key x in a B-tree is the number of nodes in the path from
the root to the node containing x as one of its keys. A 1-tree is just a standard binary
search tree.

Fix an arbitrary positive integer B > 0. (I suggest B = 8.) Suppose your are given a
sorted array A[1, . . . , n] of search keys and a corresponding array F[1, . . . , n] of frequency
counts, where F[i] is the number of times that we will search for A[i]. Your task is to
describe and analyze an efficient algorithm to find a B-tree that minimizes the total cost of
searching for the given keys with the given frequencies.

(a) Describe a polynomial-time algorithm for the special case B = 2.

(b) Describe an algorithm for arbitrary B that runs in O(nB+c) time for some fixed
integer c.

(c) Describe an algorithm for arbitrary B that runs in O(nc) time for some fixed integer c
that does not depend on B.

¹²A few comments about B-trees. Normally, B-trees are required to satisfy two additional constraints, which
guarantee a worst-case search cost of O(logB n): Every leaf must have exactly the same depth, and every node except
possibly the root must contain at least B/2 keys. However, in this problem, we are not interested in optimizing the
worst-case search cost, but rather the total cost of a sequence of searches, so we will not impose these additional
constraints.
In most large database systems, the parameter B is chosen so that each node exactly fits in a cache line. Since the

entire cache line is loaded into cache anyway, and the cost of loading a cache line exceeds the cost of searching within
the cache, the running time is dominated by the number of cache faults. This effect is even more noticeable if the data
is too big to fit in RAM; then the cost is dominated by the number of page faults, and B should be roughly the size of a
page. In extreme cases, the data is too large even to fit on disk (or flash-memory “disk”) and is instead distributed on
a bank of magnetic tape cartridges, in which case the cost is dominated by the number of tape faults. (I invite anyone
who thinks tape is dead to visit a supercomputing center like Blue Waters.) In principle, your data might be so large
that the cost of searching is actually dominated by the number of FedEx faults. (See https://what-if.xkcd.com/31/.)
Don’t worry about the cache/disk/tape/FedEx performance in your solutions; just analyze the CPU time as usual.

Designing algorithms with few cache misses or page faults is a interesting pastime; simultaneously optimizing CPU
time and cache misses and page faults and FedEx faults is a topic of active research. Sadly, this kind of design and
analysis requires tools we won’t see in this class.
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Trees and Subtrees

35. Suppose we need to distribute a message to all the nodes in a rooted tree. Initially, only
the root node knows the message. In a single round, any node that knows the message can
forward it to at most one of its children. Design an algorithm to compute the minimum
number of rounds required for the message to be delivered to all nodes in a given tree.

A message being distributed through a tree in five rounds.

36. Oh, no! You have been appointed as the organizer of Giggle, Inc.’s annual mandatory
holiday party! The employees at Giggle are organized into a strict hierarchy, that is, a tree
with the company president at the root. The all-knowing oracles in Human Resources have
assigned a real number to each employee measuring how “fun” the employee is. In order
to keep things social, there is one restriction on the guest list: an employee cannot attend
the party if their immediate supervisor is also present. On the other hand, the president
of the company must attend the party, even though she has a negative fun rating; it’s her
company, after all. Give an algorithm that makes a guest list for the party that maximizes
the sum of the “fun” ratings of the guests.

37. Since so few people came to last year’s holiday party, the president of Giggle, Inc. decides
to give each employee a present instead this year. Specifically, each employee must receive
on the three gifts: (1) an all-expenses-paid six-week vacation anywhere in the world, (2) an
all-the-pancakes-you-can-eat breakfast for two at Jumping Jack Flash’s Flapjack Stack
Shack, or (3) a burning paper bag full of dog poop. Corporate regulations prohibit any
employee from receiving exactly the same gift as his/her direct supervisor. Any employee
who receives a better gift than his/her direct supervisor will almost certainly be fired in a
fit of jealousy.

As Giggle, Inc.’s official party czar, it’s your job to decide which gift each employee
receives. Describe an algorithm to distribute gifts so that the minimum number of people
are fired. Yes, you may send the president a flaming bag of dog poop.

More formally, you are given a rooted tree T , representing the company hierarchy, and
you want to label each node in T with an integer 1, 2, or 3, so that every node has a
different label from its parent. The cost of an labeling is the number of nodes that have
smaller labels than their parents. Describe and analyze an algorithm to compute the
minimum cost of any labeling of the given tree T .

38. After the Flaming Dog Poop Holiday Debacle, you were strongly encouraged to seek other
employment, and so you left Giggle for its competitor Yeehaw! Unfortunately, the new
president of Yeehaw! just decided to imitate Giggle by throwing her own holiday party,
and in light of your past experience, appointed you as the official party organizer. The
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A tree labeling with cost 9.
Bold nodes have smaller labels than their parents.

This is not the optimal labeling for this tree.

president demands that you invite exactly k employees, including the president herself,
and everyone who is invited is required to attend. Yeah, that’ll be fun.

Just like at Giggle, employees at Yeehaw! are organized into a strict hierarchy: a tree
with the company president at the root. The all-knowing oracles in Human Resources
have assigned a real number to each employee indicating the awkwardness of inviting
both that employee and their immediate supervisor; a negative value indicates that the
employee and their supervisor actually like each other. Your goal is to choose a subset of
exactly k employees to invite, so that the total awkwardness of the resulting party is as
small as possible. For example, if the guest list does not include both an employee and
their immediate supervisor, the total awkwardness is zero. The input to your algorithm is
the tree T , the integer k, and the awkwardness of each node in T .

(a) Describe an algorithm that computes the total awkwardness of the least awkward
subset of k employees, assuming the company hierarchy is described by a binary tree.
That is, assume that each employee directly supervises at most two others.

?(b) Describe an algorithm that computes the total awkwardness of the least awkward
subset of k employees, with no restrictions on the company hierarchy.

39. Let T be a rooted binary tree with n vertices, and let k ≤ n be a positive integer. We would
like to mark k vertices in T so that every vertex has a nearby marked ancestor. More
formally, we define the clustering cost of any subset K of vertices as

cost(K) =max
v

cost(v, K),

where the maximum is taken over all vertices v in the tree, and

cost(v, K) =











0 if v ∈ K

∞ if v is the root of T and v 6∈ K

1+ cost(parent(v)) otherwise

Describe and analyze a dynamic-programming algorithm to compute the minimum
clustering cost of any subset of k vertices in T . For full credit, your algorithm should run in
O(n2k2) time.
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To make the following problem statements precise, we must distinguish between several
different types of trees and subtrees:

• By default, a tree is just a connected, acyclic, undirected graph.

• A rooted tree has a distinguished vertex called the root. A tree without a distinguished
root vertex is called an unrooted tree or a free tree.

• In an ordered tree, the neighbors of every vertex have a well-defined cyclic order;
a tree without these orders is called an unordered tree. Equivalently, each node in an
ordered rooted tree has a sequence of children, which are the roots of ordered subtrees;
whereas, each node in an unordered rooted tree has a set of children, which are the
roots of unordered subtrees.

• A binary tree is a rooted tree in which every node has a (possibly empty) left subtree
and a (possibly empty) right subtree. Two binary trees are isomorphic if they are both
empty, or if their left subtrees are isomorphic and their right subtrees are isomorphic.

• A free subtree of a tree is any connected subgraph; a rooted subtree consists of a node
and all its descendants. By default, a subtree of an unrooted tree means a free subtree,
and a subtree of a rooted tree means a rooted subtree. By default, subtrees of ordered
rooted trees are themselves ordered trees.

40. This question asks you to find efficient algorithms to compute the largest common rooted
subtree of two given rooted trees. The precise definition of “common” depends on which
rooted trees we consider to be isomorphic.

(a) Describe an algorithm to find the largest common binary subtree of two given binary
trees.

Two binary trees, with their largest common (rooted) subtree emphasized
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(b) Two ordered trees are isomorphic if they are both empty, or if their ith subtrees
are isomorphic for every index i. Describe an algorithm to find the largest common
ordered subtree of two ordered trees T1 and T2.

(c) Two unordered trees are isomorphic if they are both empty, or the subtrees or each
tree can be ordered so that their ith subtrees are isomorphic for every index i. Describe
an algorithm to find the largest common unordered subtree of two unordered trees
T1 and T2.

41. This question asks you to find efficient algorithms to compute optimal subtrees in unrooted
trees. A subtree of an unrooted tree is any connected subgraph.

(a) Suppose you are given an unrooted tree T with weights on its edges, which may be
positive, negative, or zero. Describe an algorithm to find a path in T with maximum
total weight.

(b) Suppose you are given an unrooted tree T with weights on its vertices, which may
be positive, negative, or zero. Describe an algorithm to find a subtree of T with
maximum total weight.

(c) Let T1 and T2 be ordered trees, meaning that the neighbors of every node have a
well-defined cyclic order. Describe an algorithm to find the largest common ordered
subtree of T1 and T2.

?(d) Let T1 and T2 be unordered trees. Describe an algorithm to find the largest common
unordered subtree of T1 and T2.

42. Sub-branchings of a rooted tree are a generalization of subsequences of a sequence. A
sub-branching of a tree is a subset S of the nodes such that exactly one node in S that does
not have a proper ancestor in S. Any sub-branching S implicitly defines a tree T (S), in
which the parent of a node x ∈ S is the closest proper ancestor (in T) of x that is also in S.

A sub-branching S and its associated tree T (S).

(a) Let T be a rooted tree with labeled nodes. We say that T is boring if, for each node x ,
all children of x have the same label; children of different nodes may have different
labels. A sub-branching S of a labeled rooted tree T is boring if its associated tree
T (S) is boring; nodes in T (S) inherit their labels from T . Describe an algorithm to
find the largest boring sub-branching S of a given labeled rooted tree.

(b) Suppose we are given a rooted tree T whose nodes are labeled with numbers.
Describe an algorithm to find the largest heap-ordered sub-branching of T . That is,
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your algorithm should return the largest sub-branching S such that every node in
T (S) has a smaller label than its children in T (S).

(c) Suppose we are given a binary tree T whose nodes are labeled with numbers. Describe
an algorithm to find the largest binary-search-ordered sub-branching of T . That is,
your algorithm should return a sub-branching S such that every node in T (S) has at
most two children, and an inorder traversal of T (S) is an increasing subsequence of
an inorder traversal of T .

(d) Recall that a rooted tree is ordered if the children of each node have a well-defined
left-to-right order. Describe an algorithm to find the largest binary-search-ordered
sub-branching S of an arbitrary ordered tree T whose nodes are labeled with numbers.
Again, the order of nodes in T (S) should be consistent with their order in T .

?(e) Describe an algorithm to find the largest common ordered sub-branching of two
ordered labeled rooted trees.

Æ(f) Describe an algorithm to find the largest common unordered sub-branching of two
unordered labeled rooted trees. [Hint: This problem will be much easier after you’ve
seen flows.]
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