
CS 374: Algorithms & Models of Computation,

Fall 2015

More Dynamic Programming
Lecture 12
October 8, 2015

Chandra & Manoj (UIUC) CS374 1 Fall 2015 1 / 43

What is the running time of the following?

Consider computing f(x, y) by recursive function + memoization.

f(x, y) =

x+y−1∑
i=1

x ∗ f(x + y − i, i− 1),

f(0, y) = y f(x, 0) = x.

The resulting algorithm when computing f(n, n) would take:

(A) O(n)

(B) O(n log n)

(C) O(n2)

(D) O(n3)

(E) The function is ill defined - it can not be computed.

Chandra & Manoj (UIUC) CS374 2 Fall 2015 2 / 43

Recipe for Dynamic Programming

1 Develop a recursive backtracking style algorithm A for given
problem.

2 Identify structure of subproblems generated by A on an instance
I of size n

1 Estimate number of different subproblems generated as a
function of n. Is it polynomial or exponential in n?

2 If the number of problems is “small” (polynomial) then they
typically have some “clean” structure.

3 Rewrite subproblems in a compact fashion.

4 Rewrite recursive algorithm in terms of notation for subproblems.

5 Convert to iterative algorithm by bottom up evaluation in an
appropriate order.

6 Optimize further with data structures and/or additional ideas.

Chandra & Manoj (UIUC) CS374 3 Fall 2015 3 / 43

Part I

Edit Distance and Sequence Alignment

Chandra & Manoj (UIUC) CS374 4 Fall 2015 4 / 43

Spell Checking Problem

Given a string “exponen” that is not in the dictionary, how should a
spell checker suggest a nearby string?

What does nearness mean?

Question: Given two strings x1x2 . . . xn and y1y2 . . . ym what is a
distance between them?

Edit Distance: minimum number of “edits” to transform x into y.

Chandra & Manoj (UIUC) CS374 5 Fall 2015 5 / 43

Spell Checking Problem

Given a string “exponen” that is not in the dictionary, how should a
spell checker suggest a nearby string?

What does nearness mean?

Question: Given two strings x1x2 . . . xn and y1y2 . . . ym what is a
distance between them?

Edit Distance: minimum number of “edits” to transform x into y.

Chandra & Manoj (UIUC) CS374 5 Fall 2015 5 / 43

Spell Checking Problem

Given a string “exponen” that is not in the dictionary, how should a
spell checker suggest a nearby string?

What does nearness mean?

Question: Given two strings x1x2 . . . xn and y1y2 . . . ym what is a
distance between them?

Edit Distance: minimum number of “edits” to transform x into y.

Chandra & Manoj (UIUC) CS374 5 Fall 2015 5 / 43

Edit Distance

Definition
Edit distance between two words X and Y is the number of letter
insertions, letter deletions and letter substitutions required to obtain
Y from X.

Example
The edit distance between FOOD and MONEY is at most 4:

FOOD→MOOD→MONOD→MONED→MONEY

Chandra & Manoj (UIUC) CS374 6 Fall 2015 6 / 43

Edit Distance: Alternate View

Alignment
Place words one on top of the other, with gaps in the first word
indicating insertions, and gaps in the second word indicating
deletions.

F O O D
M O N E Y

Formally, an alignment is a set M of pairs (i, j) such that each index
appears at most once, and there is no “crossing”: i < i′ and i is
matched to j implies i′ is matched to j′ > j. In the above example,
this is M = {(1, 1), (2, 2), (3, 3), (4, 5)}. Cost of an alignment is
the number of mismatched columns plus number of unmatched
indices in both strings.

Chandra & Manoj (UIUC) CS374 7 Fall 2015 7 / 43

Edit Distance: Alternate View

Alignment
Place words one on top of the other, with gaps in the first word
indicating insertions, and gaps in the second word indicating
deletions.

F O O D
M O N E Y

Formally, an alignment is a set M of pairs (i, j) such that each index
appears at most once, and there is no “crossing”: i < i′ and i is
matched to j implies i′ is matched to j′ > j. In the above example,
this is M = {(1, 1), (2, 2), (3, 3), (4, 5)}.

Cost of an alignment is
the number of mismatched columns plus number of unmatched
indices in both strings.

Chandra & Manoj (UIUC) CS374 7 Fall 2015 7 / 43

Edit Distance: Alternate View

Alignment
Place words one on top of the other, with gaps in the first word
indicating insertions, and gaps in the second word indicating
deletions.

F O O D
M O N E Y

Formally, an alignment is a set M of pairs (i, j) such that each index
appears at most once, and there is no “crossing”: i < i′ and i is
matched to j implies i′ is matched to j′ > j. In the above example,
this is M = {(1, 1), (2, 2), (3, 3), (4, 5)}. Cost of an alignment is
the number of mismatched columns plus number of unmatched
indices in both strings.

Chandra & Manoj (UIUC) CS374 7 Fall 2015 7 / 43

Edit Distance Problem

Problem
Given two words, find the edit distance between them, i.e., an
alignment of smallest cost.

Chandra & Manoj (UIUC) CS374 8 Fall 2015 8 / 43

Applications

1 Spell-checkers and Dictionaries

2 Unix diff

3 DNA sequence alignment . . . but, we need a new metric

Chandra & Manoj (UIUC) CS374 9 Fall 2015 9 / 43

Similarity Metric

Definition
For two strings X and Y, the cost of alignment M is

1 [Gap penalty] For each gap in the alignment, we incur a cost δ.

2 [Mismatch cost] For each pair p and q that have been matched
in M, we incur cost αpq; typically αpp = 0.

Edit distance is special case when δ = αpq = 1.

Chandra & Manoj (UIUC) CS374 10 Fall 2015 10 / 43

Similarity Metric

Definition
For two strings X and Y, the cost of alignment M is

1 [Gap penalty] For each gap in the alignment, we incur a cost δ.

2 [Mismatch cost] For each pair p and q that have been matched
in M, we incur cost αpq; typically αpp = 0.

Edit distance is special case when δ = αpq = 1.

Chandra & Manoj (UIUC) CS374 10 Fall 2015 10 / 43

An Example

Example

o c u r r a n c e
o c c u r r e n c e Cost = δ + αae

Alternative:

o c u r r a n c e
o c c u r r e n c e Cost = 3δ

Or a really stupid solution (delete string, insert other string):

o c u r r a n c e
o c c u r r e n c e

Cost = 19δ.

Chandra & Manoj (UIUC) CS374 11 Fall 2015 11 / 43

What is the edit distance between...

What is the minimum edit distance for the following two strings, if
insertion/deletion/change of a single character cost 1 unit?

374

473

(A) 1

(B) 2

(C) 3

(D) 4

(E) 5

Chandra & Manoj (UIUC) CS374 12 Fall 2015 12 / 43

What is the edit distance between...

What is the minimum edit distance for the following two strings, if
insertion/deletion/change of a single character cost 1 unit?

373

473

(A) 1

(B) 2

(C) 3

(D) 4

(E) 5

Chandra & Manoj (UIUC) CS374 13 Fall 2015 13 / 43

What is the edit distance between...

What is the minimum edit distance for the following two strings, if
insertion/deletion/change of a single character cost 1 unit?

37

473

(A) 1

(B) 2

(C) 3

(D) 4

(E) 5

Chandra & Manoj (UIUC) CS374 14 Fall 2015 14 / 43

Sequence Alignment

Input Given two words X and Y, and gap penalty δ and
mismatch costs αpq

Goal Find alignment of minimum cost

Chandra & Manoj (UIUC) CS374 15 Fall 2015 15 / 43

Edit distance
Basic observation

Let X = αx and Y = βy
α, β: strings.
x and y single characters.
Think about optimal edit distance between X and Y as alignment,
and consider last column of alignment of the two strings:

α x
β y

or
α x
βy

or
αx
β y

Observation
Prefixes must have optimal alignment!

Chandra & Manoj (UIUC) CS374 16 Fall 2015 16 / 43

Problem Structure

Observation
Let X = x1x2 · · · xm and Y = y1y2 · · · yn. If (m, n) are not
matched then either the mth position of X remains unmatched or the
nth position of Y remains unmatched.

1 Case xm and yn are matched.
1 Pay mismatch cost αxmyn plus cost of aligning strings

x1 · · · xm−1 and y1 · · · yn−1

2 Case xm is unmatched.
1 Pay gap penalty plus cost of aligning x1 · · · xm−1 and y1 · · · yn

3 Case yn is unmatched.
1 Pay gap penalty plus cost of aligning x1 · · · xm and y1 · · · yn−1

Chandra & Manoj (UIUC) CS374 17 Fall 2015 17 / 43

Subproblems and Recurrence

Optimal Costs

Let Opt(i, j) be optimal cost of aligning x1 · · · xi and y1 · · · yj. Then

Opt(i, j) = min

αxiyj + Opt(i− 1, j− 1),

δ + Opt(i− 1, j),

δ + Opt(i, j− 1)

Base Cases: Opt(i, 0) = δ · i and Opt(0, j) = δ · j

Chandra & Manoj (UIUC) CS374 18 Fall 2015 18 / 43

Subproblems and Recurrence

Optimal Costs

Let Opt(i, j) be optimal cost of aligning x1 · · · xi and y1 · · · yj. Then

Opt(i, j) = min

αxiyj + Opt(i− 1, j− 1),

δ + Opt(i− 1, j),

δ + Opt(i, j− 1)

Base Cases: Opt(i, 0) = δ · i and Opt(0, j) = δ · j

Chandra & Manoj (UIUC) CS374 18 Fall 2015 18 / 43

Recursive Algorithm

Assume X is stored in array A[1..m] and Y is stored in B[1..n]
Array COST stores cost of matching two chars. Thus COST[a, b]
give the cost of matching character a to character b.

EDIST(A[1..m],B[1..n])
If (m = 0) return nδ
If (n = 0) return mδ
m1 = δ + EDIST(A[1..(n− 1)],B[1..m])
m2 = δ + EDIST(A[1..n],B[1..(m− 1)]))
m3 = COST[A[m],B[n]] + EDIST(A[1..(n− 1)],B[1..(m− 1)])
return min(m1,m2,m3)

Chandra & Manoj (UIUC) CS374 19 Fall 2015 19 / 43

Example

DEED and DREAD

Chandra & Manoj (UIUC) CS374 20 Fall 2015 20 / 43

Memoizing the Recursive Algorithm

int M[0..m][0..n]
Initialize all entries of M[i][j] to ∞
return EDIST(A[1..m],B[1..n])

EDIST(A[1..m],B[1..n])
If (M[i][j] <∞) return M[i][j] (* return stored value *)

If (m = 0)
M[i][j] = nδ

ElseIf (n = 0)
M[i][j] = mδ

Else

m1 = δ + EDIST(A[1..(n− 1)],B[1..m])
m2 = δ + EDIST(A[1..n],B[1..(m− 1)]))
m3 = COST[A[m],B[n]] + EDIST(A[1..(n− 1)],B[1..(m− 1)])
M[i][j] = min(m1,m2,m3)

return M[i][j]

Chandra & Manoj (UIUC) CS374 21 Fall 2015 21 / 43

Removing Recursion to obtain Iterative Algorithm

EDIST(A[1..m],B[1..n])
int M[0..m][0..n]
for i = 1 to m do M[i, 0] = iδ
for j = 1 to n do M[0, j] = jδ

for i = 1 to m do
for j = 1 to n do

M[i][j] = min

αxiyj + M[i− 1][j− 1],

δ + M[i− 1][j],

δ + M[i][j− 1]

Analysis
1 Running time is O(mn).

Chandra & Manoj (UIUC) CS374 22 Fall 2015 22 / 43

Removing Recursion to obtain Iterative Algorithm

EDIST(A[1..m],B[1..n])
int M[0..m][0..n]
for i = 1 to m do M[i, 0] = iδ
for j = 1 to n do M[0, j] = jδ

for i = 1 to m do
for j = 1 to n do

M[i][j] = min

αxiyj + M[i− 1][j− 1],

δ + M[i− 1][j],

δ + M[i][j− 1]

Analysis

1 Running time is O(mn).

Chandra & Manoj (UIUC) CS374 22 Fall 2015 22 / 43

Removing Recursion to obtain Iterative Algorithm

EDIST(A[1..m],B[1..n])
int M[0..m][0..n]
for i = 1 to m do M[i, 0] = iδ
for j = 1 to n do M[0, j] = jδ

for i = 1 to m do
for j = 1 to n do

M[i][j] = min

αxiyj + M[i− 1][j− 1],

δ + M[i− 1][j],

δ + M[i][j− 1]

Analysis
1 Running time is O(mn).

2 Space used is O(mn).

Chandra & Manoj (UIUC) CS374 22 Fall 2015 22 / 43

Matrix and DAG of Computation

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
..
.

..
.

i, j

m, n

α
x
i x

j
δ

δ

0, 0

Figure : Iterative algorithm in previous slide computes values in row order.

Chandra & Manoj (UIUC) CS374 23 Fall 2015 23 / 43

Example

DEED and DREAD

Chandra & Manoj (UIUC) CS374 24 Fall 2015 24 / 43

Sequence Alignment in Practice

1 Typically the DNA sequences that are aligned are about 105

letters long!

2 So about 1010 operations and 1010 bytes needed

3 The killer is the 10GB storage

4 Can we reduce space requirements?

Chandra & Manoj (UIUC) CS374 25 Fall 2015 25 / 43

Optimizing Space

1 Recall

M(i, j) = min

αxiyj + M(i− 1, j− 1),

δ + M(i− 1, j),

δ + M(i, j− 1)

2 Entries in jth column only depend on (j− 1)st column and
earlier entries in jth column

3 Only store the current column and the previous column reusing
space; N(i, 0) stores M(i, j− 1) and N(i, 1) stores M(i, j)

Chandra & Manoj (UIUC) CS374 26 Fall 2015 26 / 43

Computing in column order to save space

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
..
.

..
.

i, j

m, n

α
x
i x

j
δ

δ

0, 0

Figure : M(i, j) only depends on previous column values. Keep only two
columns and compute in column order.

Chandra & Manoj (UIUC) CS374 27 Fall 2015 27 / 43

Space Efficient Algorithm

for all i do N[i, 0] = iδ
for j = 1 to n do

N[0, 1] = jδ (* corresponds to M(0, j) *)

for i = 1 to m do

N[i, 1] = min

αxiyj + N[i− 1, 0]

δ + N[i− 1, 1]

δ + N[i, 0]
for i = 1 to m do

Copy N[i, 0] = N[i, 1]

Analysis

Running time is O(mn) and space used is O(2m) = O(m)

Chandra & Manoj (UIUC) CS374 28 Fall 2015 28 / 43

Analyzing Space Efficiency

1 From the m× n matrix M we can construct the actual
alignment (exercise)

2 Matrix N computes cost of optimal alignment but no way to
construct the actual alignment

3 Space efficient computation of alignment? More complicated
algorithm — see notes and Kleinberg-Tardos book.

Chandra & Manoj (UIUC) CS374 29 Fall 2015 29 / 43

Part II

Longest Common Subsequence
Problem

Chandra & Manoj (UIUC) CS374 30 Fall 2015 30 / 43

LCS Problem

Definition
LCS between two strings X and Y is the length of longest common
subsequence between X and Y.

Example
LCS between ABAZDC and BACBAD is

4 via ABAD

Derive a dynamic programming algorithm for the problem.

Chandra & Manoj (UIUC) CS374 31 Fall 2015 31 / 43

LCS Problem

Definition
LCS between two strings X and Y is the length of longest common
subsequence between X and Y.

Example
LCS between ABAZDC and BACBAD is 4 via ABAD

Derive a dynamic programming algorithm for the problem.

Chandra & Manoj (UIUC) CS374 31 Fall 2015 31 / 43

LCS Problem

Definition
LCS between two strings X and Y is the length of longest common
subsequence between X and Y.

Example
LCS between ABAZDC and BACBAD is 4 via ABAD

Derive a dynamic programming algorithm for the problem.

Chandra & Manoj (UIUC) CS374 31 Fall 2015 31 / 43

Part III

Maximum Weighted Independent Set
in Trees

Chandra & Manoj (UIUC) CS374 32 Fall 2015 32 / 43

Maximum Weight Independent Set Problem

Input Graph G = (V,E) and weights w(v) ≥ 0 for each
v ∈ V

Goal Find maximum weight independent set in G

A

B

C

DE

F

20

5

2

2

10

15

Maximum weight independent set in above graph: {B,D}

Chandra & Manoj (UIUC) CS374 33 Fall 2015 33 / 43

Maximum Weight Independent Set Problem

Input Graph G = (V,E) and weights w(v) ≥ 0 for each
v ∈ V

Goal Find maximum weight independent set in G

A

B

C

DE

F

20

5

2

2

10

15

Maximum weight independent set in above graph: {B,D}

Chandra & Manoj (UIUC) CS374 33 Fall 2015 33 / 43

Maximum Weight Independent Set in a Tree

Input Tree T = (V,E) and weights w(v) ≥ 0 for each v ∈ V

Goal Find maximum weight independent set in T

r

a b

c d e f g

h i j

10

5 8

4 4
9

2 7 8

11

3

Maximum weight independent set in above tree: ??

Chandra & Manoj (UIUC) CS374 34 Fall 2015 34 / 43

Towards a Recursive Solution

For an arbitrary graph G:

1 Number vertices as v1, v2, . . . , vn
2 Find recursively optimum solutions without vn (recurse on

G− vn) and with vn (recurse on G− vn−N(vn) & include vn).

3 Saw that if graph G is arbitrary there was no good ordering that
resulted in a small number of subproblems.

What about a tree? Natural candidate for vn is root r of T?

Chandra & Manoj (UIUC) CS374 35 Fall 2015 35 / 43

Towards a Recursive Solution

For an arbitrary graph G:

1 Number vertices as v1, v2, . . . , vn
2 Find recursively optimum solutions without vn (recurse on

G− vn) and with vn (recurse on G− vn−N(vn) & include vn).

3 Saw that if graph G is arbitrary there was no good ordering that
resulted in a small number of subproblems.

What about a tree?

Natural candidate for vn is root r of T?

Chandra & Manoj (UIUC) CS374 35 Fall 2015 35 / 43

Towards a Recursive Solution

For an arbitrary graph G:

1 Number vertices as v1, v2, . . . , vn
2 Find recursively optimum solutions without vn (recurse on

G− vn) and with vn (recurse on G− vn−N(vn) & include vn).

3 Saw that if graph G is arbitrary there was no good ordering that
resulted in a small number of subproblems.

What about a tree? Natural candidate for vn is root r of T?

Chandra & Manoj (UIUC) CS374 35 Fall 2015 35 / 43

Towards a Recursive Solution

Natural candidate for vn is root r of T? Let O be an optimum
solution to the whole problem.

Case r 6∈ O : Then O contains an optimum solution for each
subtree of T hanging at a child of r.

Case r ∈ O : None of the children of r can be in O. O − {r}
contains an optimum solution for each subtree of T
hanging at a grandchild of r.

Subproblems? Subtrees of T rooted at nodes in T.

How many of them? O(n)

Chandra & Manoj (UIUC) CS374 36 Fall 2015 36 / 43

Towards a Recursive Solution

Natural candidate for vn is root r of T? Let O be an optimum
solution to the whole problem.

Case r 6∈ O : Then O contains an optimum solution for each
subtree of T hanging at a child of r.

Case r ∈ O : None of the children of r can be in O. O − {r}
contains an optimum solution for each subtree of T
hanging at a grandchild of r.

Subproblems? Subtrees of T rooted at nodes in T.

How many of them? O(n)

Chandra & Manoj (UIUC) CS374 36 Fall 2015 36 / 43

Towards a Recursive Solution

Natural candidate for vn is root r of T? Let O be an optimum
solution to the whole problem.

Case r 6∈ O : Then O contains an optimum solution for each
subtree of T hanging at a child of r.

Case r ∈ O : None of the children of r can be in O. O − {r}
contains an optimum solution for each subtree of T
hanging at a grandchild of r.

Subproblems? Subtrees of T rooted at nodes in T.

How many of them? O(n)

Chandra & Manoj (UIUC) CS374 36 Fall 2015 36 / 43

Towards a Recursive Solution

Natural candidate for vn is root r of T? Let O be an optimum
solution to the whole problem.

Case r 6∈ O : Then O contains an optimum solution for each
subtree of T hanging at a child of r.

Case r ∈ O : None of the children of r can be in O. O − {r}
contains an optimum solution for each subtree of T
hanging at a grandchild of r.

Subproblems? Subtrees of T rooted at nodes in T.

How many of them?

O(n)

Chandra & Manoj (UIUC) CS374 36 Fall 2015 36 / 43

Towards a Recursive Solution

Natural candidate for vn is root r of T? Let O be an optimum
solution to the whole problem.

Case r 6∈ O : Then O contains an optimum solution for each
subtree of T hanging at a child of r.

Case r ∈ O : None of the children of r can be in O. O − {r}
contains an optimum solution for each subtree of T
hanging at a grandchild of r.

Subproblems? Subtrees of T rooted at nodes in T.

How many of them? O(n)

Chandra & Manoj (UIUC) CS374 36 Fall 2015 36 / 43

Example

r

a b

c d e f g

h i j

10

5 8

4 4
9

2 7 8

11

3

Chandra & Manoj (UIUC) CS374 37 Fall 2015 37 / 43

A Recursive Solution

T(u): subtree of T hanging at node u
OPT(u): max weighted independent set value in T(u)

OPT(u) =

max

{∑
v child of u OPT(v),

w(u) +
∑

v grandchild of u OPT(v)

Chandra & Manoj (UIUC) CS374 38 Fall 2015 38 / 43

A Recursive Solution

T(u): subtree of T hanging at node u
OPT(u): max weighted independent set value in T(u)

OPT(u) = max

{∑
v child of u OPT(v),

w(u) +
∑

v grandchild of u OPT(v)

Chandra & Manoj (UIUC) CS374 38 Fall 2015 38 / 43

Iterative Algorithm

1 Compute OPT(u) bottom up. To evaluate OPT(u) need to
have computed values of all children and grandchildren of u

2 What is an ordering of nodes of a tree T to achieve above?

Post-order traversal of a tree.

Chandra & Manoj (UIUC) CS374 39 Fall 2015 39 / 43

Iterative Algorithm

1 Compute OPT(u) bottom up. To evaluate OPT(u) need to
have computed values of all children and grandchildren of u

2 What is an ordering of nodes of a tree T to achieve above?
Post-order traversal of a tree.

Chandra & Manoj (UIUC) CS374 39 Fall 2015 39 / 43

Iterative Algorithm

MIS-Tree(T):
Let v1, v2, . . . , vn be a post-order traversal of nodes of T

for i = 1 to n do

M[vi] = max

(∑
vj child of vi

M[vj],

w(vi) +
∑

vj grandchild of vi
M[vj]

)
return M[vn] (* Note: vn is the root of T *)

Space: O(n) to store the value at each node of T
Running time:

1 Naive bound: O(n2) since each M[vi] evaluation may take
O(n) time and there are n evaluations.

2 Better bound: O(n). A value M[vj] is accessed only by its
parent and grand parent.

Chandra & Manoj (UIUC) CS374 40 Fall 2015 40 / 43

Iterative Algorithm

MIS-Tree(T):
Let v1, v2, . . . , vn be a post-order traversal of nodes of T

for i = 1 to n do

M[vi] = max

(∑
vj child of vi

M[vj],

w(vi) +
∑

vj grandchild of vi
M[vj]

)
return M[vn] (* Note: vn is the root of T *)

Space:

O(n) to store the value at each node of T
Running time:

1 Naive bound: O(n2) since each M[vi] evaluation may take
O(n) time and there are n evaluations.

2 Better bound: O(n). A value M[vj] is accessed only by its
parent and grand parent.

Chandra & Manoj (UIUC) CS374 40 Fall 2015 40 / 43

Iterative Algorithm

MIS-Tree(T):
Let v1, v2, . . . , vn be a post-order traversal of nodes of T

for i = 1 to n do

M[vi] = max

(∑
vj child of vi

M[vj],

w(vi) +
∑

vj grandchild of vi
M[vj]

)
return M[vn] (* Note: vn is the root of T *)

Space: O(n) to store the value at each node of T
Running time:

1 Naive bound: O(n2) since each M[vi] evaluation may take
O(n) time and there are n evaluations.

2 Better bound: O(n). A value M[vj] is accessed only by its
parent and grand parent.

Chandra & Manoj (UIUC) CS374 40 Fall 2015 40 / 43

Iterative Algorithm

MIS-Tree(T):
Let v1, v2, . . . , vn be a post-order traversal of nodes of T

for i = 1 to n do

M[vi] = max

(∑
vj child of vi

M[vj],

w(vi) +
∑

vj grandchild of vi
M[vj]

)
return M[vn] (* Note: vn is the root of T *)

Space: O(n) to store the value at each node of T
Running time:

1 Naive bound: O(n2) since each M[vi] evaluation may take
O(n) time and there are n evaluations.

2 Better bound: O(n). A value M[vj] is accessed only by its
parent and grand parent.

Chandra & Manoj (UIUC) CS374 40 Fall 2015 40 / 43

Iterative Algorithm

MIS-Tree(T):
Let v1, v2, . . . , vn be a post-order traversal of nodes of T

for i = 1 to n do

M[vi] = max

(∑
vj child of vi

M[vj],

w(vi) +
∑

vj grandchild of vi
M[vj]

)
return M[vn] (* Note: vn is the root of T *)

Space: O(n) to store the value at each node of T
Running time:

1 Naive bound: O(n2) since each M[vi] evaluation may take
O(n) time and there are n evaluations.

2 Better bound: O(n). A value M[vj] is accessed only by its
parent and grand parent.

Chandra & Manoj (UIUC) CS374 40 Fall 2015 40 / 43

Example

r

a b

c d e f g

h i j

10

5 8

4 4
9

2 7 8

11

3

Chandra & Manoj (UIUC) CS374 41 Fall 2015 41 / 43

Takeaway Points

1 Dynamic programming is based on finding a recursive way to
solve the problem. Need a recursion that generates a small
number of subproblems.

2 Given a recursive algorithm there is a natural DAG associated
with the subproblems that are generated for given instance; this
is the dependency graph. An iterative algorithm simply evaluates
the subproblems in some topological sort of this DAG.

3 The space required to evaluate the answer can be reduced in
some cases by a careful examination of that dependency DAG
of the subproblems and keeping only a subset of the DAG at
any time.

Chandra & Manoj (UIUC) CS374 42 Fall 2015 42 / 43

	Edit Distance and Sequence Alignment
	Longest Common Subsequence Problem
	Maximum Weighted Independent Set in Trees

