The control of a large force is the same principle as the control of a few men:
it is merely a question of dividing up their numbers.

— Sun Zi, The Art of War (c. 400 C.E.), translated by Lionel Giles (1910)

Our life is frittered away by detail.... Simplify, simplify.
— Henry David Thoreau, Walden (1854)

Nothing is particularly hard if you divide it into small jobs.
— Henry Ford

Do the hard jobs first. The easy jobs will take care of themselves.
— Dale Carnegie

CHAPTER ’]

Recursion

1.1 Reductions

Reduction is the single most common technique used in designing algorithms. Reducing
one problem X to another problem Y means to write an algorithm for X that uses an
algorithm for Y as a black box or subroutine. Crucially, the correctness of the resulting
algorithm cannot depend in any way on how the algorithm for Y works. The only thing
we can assume is that the black box solves Y correctly. The inner workings of the black
box are simply none of our business; they’re somebody else’s problem. It’s often best to
literally think of the black box as functioning by magic.

For example, the Russian peasant algorithm described in the previous chapter reduces
the problem of multiplying two arbitrary positive integers to three simpler problems:
addition, mediation (halving), and parity-checking. The algorithm relies on an abstract
“positive integer” data type that supports those three operations, but the correctness of
the multiplication algorithm does not depend on the precise data representation (tally
marks, clay tokens, Babylonian hexagesimal, quipu, counting rods, Roman numerals,
abacus beads, finger positions, Arabic numerals, binary, negabinary, Gray code, balanced
ternary, Fibonacci coding, .. .), or on the precise implementations of those operations.
Of course, the running time of the multiplication algorithm depends on the running
time of the addition, median, and parity operations, but that’s a separate issue from

© Copyright 2016 Jeff Erickson.
This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).
Free distribution is strongly encouraged; commercial distribution is expressly forbidden.
See http:/jeffe.cs.illinois.edu/teaching/algorithms/ for the most recent revision.


http://creativecommons.org/licenses/by-nc-sa/4.0/
http://jeffe.cs.illinois.edu/teaching/algorithms/

1.

RECURSION

correctness. Most importantly, we can create a more efficient multiplication algorithm
just by switching to a more efficient number representation (from Roman numerals to
Arabic numerals, for example).

Similarly, the Huntington-Hill algorithm reduces the problem of apportioning Con-
gress to the problem of maintaining a priority queue that supports the operations INSERT
and ExTracTMax. The abstract data type “priority queue” is a black box; the correctness
of the apportionment algorithm does not depend on any specific priority queue data
structure. Of course, the running time of the apportionment algorithm depends on the
running time of the INSERT and ExTRACTMAX algorithms, but that’s a separate issue from
the correctness of the algorithm. The beauty of the reduction is that we can create a
more efficient apportionment algorithm by simply swapping in a new priority queue
data structure. Moreover, the designer of that data structure does not need to know or
care that it will be used to apportion Congress.

When we design algorithms, we may not know exactly how the basic building blocks
we use are implemented, or how our algorithms might be used as building blocks to
solve even bigger problems. That ignorance is uncomfortable for many beginners, but it
is both unavoidable and extremely useful. Even when you do know precisely how your
components work, it is often extremely helpful to pretend that you don’t.

1.2 Simplify and Delegate

Recursion is a particularly powerful kind of reduction, which can be described loosely as
follows:

* If the given instance of the problem can be solved directly, just solve it directly.

* Otherwise, reduce the instance to one or more simpler instances of the same
problem.

If this self-reference is confusing, it’s helpful to imagine that someone else is going to
solve the simpler problems, just as you would assume for other types of reductions. I like
to call that someone else the Recursion Fairy. Your only task is to simplify the original
problem, or to solve it directly when simplification is either unnecessary or impossible;
the Recursion Fairy will magically take care of all the simpler subproblems for you, using
Methods That Are None Of Your Business So Butt Out.! Mathematically sophisticated
readers might recognize the Recursion Fairy by its more formal name: the Induction
Hypothesis.

There is one mild technical condition that must be satisfied in order for any recursive
method to work correctly: There must be no infinite sequence of reductions to simpler

'When I was a student, I used to attribute recursion to “elves” instead of the Recursion Fairy, referring
to the Brothers Grimm story about an old shoemaker who leaves his work unfinished when he goes to bed,
only to discover upon waking that elves (“Wichtelméanner”) have finished everything overnight. Someone
more entheogenically experienced than I might recognize them as Terence McKenna’s “self-transforming
machine elves”.



1.3. Tower of Hanoi

and simpler instances. Eventually, the recursive reductions must lead to an elementary
base case that can be solved by some other method; otherwise, the recursive algorithm
will loop forever. The most common way to satisfy this condition is to reduce to one
or more smaller instances of the same problem. For example, if the original input is a
skreeble with n glurps, the input to each recursive call should be a skreeble with strictly
less than n glurps. Of course this is impossible if the skreeble has no glurps at all—You
can’t have negative glurps; that would be silly!—so in that case we must grindlebloff the
skreeble using some other method.

1.3 Tower of Hanoi

The Tower of Hanoi puzzle was first published—as an actual physical puzzle!—by
the French recreational mathematician Eduoard Lucas in 1883, under the pseudonym
“N. Claus (de Siam)” (an anagram of “Lucas d’Amiens”).2 The following year, Henri de
Parville described the puzzle with the following remarkable story:3

In the great temple at Benares beneath the dome which marks the centre of the world,
rests a brass plate in which are fixed three diamond needles, each a cubit high and as thick
as the body of a bee. On one of these needles, at the creation, God placed sixty-four discs
of pure gold, the largest disc resting on the brass plate, and the others getting smaller and
smaller up to the top one. This is the Tower of Bramah. Day and night unceasingly the
priests transfer the discs from one diamond needle to another according to the fixed and
immutable laws of Bramah, which require that the priest on duty must not move more than
one disc at a time and that he must place this disc on a needle so that there is no smaller
disc below it. When the sixty-four discs shall have been thus transferred from the needle
on which at the creation God placed them to one of the other needles, tower, temple, and
Brahmins alike will crumble into dust, and with a thunderclap the world will vanish.

\ 4

Figure 1.1. The Tower of Hanoi puzzle

*Lucas later claimed to have invented the puzzle in 1876.
3This English translation is from W. W. Rouse Ball and H. S. M. Coxeter’s book Mathematical Recreations
and Essays.



1.

RECURSION

Of course, as good computer scientists, our first instinct on reading this story is to
substitute the variable n for the hardwired constant 64. And following standard practice
(since most physical instances of the puzzle are made of wood instead of diamonds and
gold), we will refer to the three possible locations for the disks as “pegs” instead of
“needles”. How can we move a tower of n disks from one peg to another, using a third
peg as an occasional placeholder, without ever placing a disk on top of a smaller disk?

As Claus de Siam pointed out in the pamphlet included with his puzzle, the secret to
solving this puzzle is to think recursively. Instead of trying to solve the entire puzzle
all at once, let’s concentrate on moving just the largest disk. We can’t move it at the
beginning, because all the other disks are covering it; we have to move those n — 1 disks
to the third peg before we can move the largest disk. And then after we move the largest
disk, we have to move those n — 1 disks back on top of it.

-l y I

Figure 1.2. The Tower of Hanoi algorithm; ignore everything but the bottom disk.

So now all we have to figure out is how to—i STOP!! | That’s it! We’re done! We've
successfully reduced the n-disk Tower of Hanoi problem to two instances of the (n— 1)-
disk Tower of Hanoi problem, which we can gleefully hand off to the Recursion Fairy—or
to carry the original metaphor further, to the junior monks at the temple.

Our reduction does make one subtle but extremely important assumption: There is a
largest disk. In other words, our recursive algorithm works for any n > 1, but it breaks
down when n = 0. We must handle that base using a different method. Fortunately, the
monks at Benares, being good Buddhists, are quite adept at moving zero disks from one
peg to another in no time at all, by doing nothing.

Figure 1.3. The vacuous base case for the Tower of Hanoi algorithm. There is no spoon.

While it’s tempting to think about how all those smaller disks move around—or more
generally, what happens when the recursion is unrolled—it’s completely unnecessary. For
even slightly more complicated algorithms, unrolling the recursion is far more confusing



1.4. Mergesort

than illuminating. Our only task is to reduce the problem instance we’re given to one or
more simpler instances, or to solve the problem directly if such a reduction is impossible.
Our algorithm is trivially correct when n = 0. For any n > 1, the Recursion Fairy correctly
moves the top n — 1 disks (more formally, the Inductive Hypothesis implies that our
recursive algorithm correctly moves the top n — 1 disks) so our algorithm is correct.

Here’s the recursive Hanoi algorithm expressed in pseudocode. The algorithm moves
a stack of n disks from a source peg (src) to a destination peg (dst) using a third
temporary peg (tmp) as a placeholder. Notice that the algorithm correctly does nothing
at all when n = 0.

Hanoi(n, src, dst, tmp):
ifn>0
Hanoi(n — 1,src,tmp,dst)  {(Recurse!))
move disk n from src to dst
Hanoi(n— 1, tmp, dst,src)  {(Recurse!))

Let T(n) denote the number of moves required to transfer n disks—the running time
of our algorithm. Our vacuous base case implies that T(0) = 0, and the more general
recursive algorithm implies that T(n) = 2T(n— 1) + 1 for any n > 1. By writing out the
first several values of T(n), we can easily guess that T(n) = 2" —1; a straightforward
induction proof implies that this guess is correct.# In particular, moving a tower of 64
disks requires 264 — 1 = 18,446,744,073,709,551,615 individual moves. Thus, even at
the impressive rate of one move per second, the monks at Benares will be at work for
approximately 585 billion years (“plus de cing millards de siécles”) before tower, temple,

and Brahmins alike will crumble into dust, and with a thunderclap the world will vanish.

Introduce the phrase divide and conquer.

1.4 Mergesort

Mergesort is one of the earliest algorithms proposed for sorting. According to Donald
Knuth, it was proposed by John von Neumann as early as 1945.

1. Divide the input array into two subarrays of roughly equal size.

2. Recursively mergesort each of the subarrays.

3. Merge the newly-sorted subarrays into a single sorted array.

The first step is completely trivial—we only need to compute the median array
index—and we can delegate the second step to the Recursion Fairy. All the real work is
done in the final step; the two sorted subarrays can be merged using a simple linear-time
algorithm. Here’s a complete description of the algorithm; to keep the recursive structure
clear, we separate out the merge step as an independent subroutine.

“Alternatively, we can use the annihilator method described in the Appendix on solving recurrences.

1 8. 8. ¢



1.

RECURSION

Input S O R T I NGEXAMPL
Dividee S O R T I N|G E X A M P L
Recurse: I N O S R T|/AE G L M P X
Merge: A E G I L M NOPRSTX

Figure 1.4. A mergesort example.

MERGE(A[1..n],m):
i1 je—m+1
fork<—1ton
ifj>n
MERGESORT(A[1..n]): Blk] < A[i]; i —i+1
ifn>1 else if i > m
m«|n/2] Blk] —A[j]; je—j+1
MERGESORT(A[1..m]) else if A[i] < A[j]
MERGESORT(A[m + 1..n]) Blk] —A[i]; i —i+1
MERGE(A[1..n],m) else
BLk] —ALjL; o j+1
forke—1ton
A[k] « B[k]
Figure 1.5. Mergesort
Correctness

To prove that this algorithm is correct, we apply our old friend induction twice, first to
the MERGE subroutine then to the top-level MERGESORT algorithm.

Lemma 1.1. MERGE correctly merges the subarrays A[1..m] and Alm + 1..n], assuming
those subarrays are sorted in the input.

Proof: Let A[1..n] be any array and m any integer such that the subarrays A[1..m] and
A[m+ 1..n] are sorted. We prove that for all k from O to n, the last n — k — 1 iterations
of the main loop correctly merge A[i..m] and A[j..n] into B[k ..n]. The proof proceeds
by induction on n —k + 1, the number of elements remaining to be merged.

If k > n, the algorithm correctly merges the two empty subarrays by doing absolutely
nothing. (This is the base case of the inductive proof.) Otherwise, there are four cases to
consider for the kth iteration of the main loop.

* If j > n, subarray A[j .. n] is empty, so min(A[i .mJUA[j ..n]) =A[i].
* Otherwise, if i > m, subarray A[i..m] is empty, so min (A[i .mJUA[] .. n]) =A[j].
* Otherwise, if A[i] < A[j], then min (A[i .mJUA[j .. n]) =A[i].
* Otherwise, we must have A[i] > A[j], and thus min (A[i .mJUA[j .. n]) =A[j].
In all four cases, B[ k] is correctly assigned the smallest element of A[i..m]UA[j..n]. In

the two cases with the assignment B[ k] < A[i], the Recursion Fairy correctly merges—
sorry, I mean the Induction Hypothesis implies that the last n — k iterations of the main



1.5. Quicksort

loop correctly merge A[i + 1..m] and A[j..n] into B[k + 1..n]. Similarly, in the other
two cases, the Recursion Fairy correctly merges the rest of the subarrays. O

Theorem 1.2. MERGESORT correctly sorts any input array A[1..n].

Proof: We prove the theorem by induction on n. If n < 1, the algorithm correctly does
nothing. Otherwise, the Recursion Fairy correctly sorts—sorry, I mean the induction
hypothesis implies that our algorithm correctly sorts—the two smaller subarrays A[1..m]
and A[m + 1..n], after which they are correctly MERGEd into a single sorted array (by
Lemma 1.1). O

Analysis

What'’s the running time? Because the MERGESORT algorithm is recursive, its running
time is easily expressed by a recurrence. MERGE clearly takes linear time, because it’s a
simple for-loop with constant work per iteration. We immediately obtain the following
recurrence for MERGESORT:

T(n) = T([n/21) + T(Ln/2]) + O(n).

As in most divide-and-conquer recurrences, we can safely strip out the floors and ceilings
using a domain transformation, giving us the simpler recurrence

T(n)=2T(n/2)+ O(n).

The “all levels equal” case of the recursion tree method now immediately implies the
closed-form solution T(n) = O(nlogn). (Recursion trees and domain transformations
are described in detail in a separate chapter on solving recurrences, in the appendix.)

1.5 Quicksort

Quicksort is another recursive sorting algorithm, discovered by Tony Hoare in 1962. In
this algorithm, the hard work is splitting the array into subsets so that merging the final
result is trivial.

1. Choose a pivot element from the array.

2. Partition the array into three subarrays containing the elements smaller than the

pivot, the pivot element itself, and the elements larger than the pivot.
3. Recursively quicksort the first and last subarray.
Here’s a more detailed description of the algorithm. In the separate PARTITION

subroutine, the input parameter p is index of the pivot element in the unsorted array;
the subroutine partitions the array and returns the new index of the pivot.



1.

RECURSION

lnput S O R TINGEIXAMPL
Chooseapivot: S 0O R T I N G E X AMP L
Partiton:- A G O E I N L M® T X S R
Recursse: A E G I L M NO®R ST X

Figure 1.6. A quicksort example.

ParTITION(A[1..1],p):
swap A[p] < A[n]

QuickSorT(A[1..n]): i0
if (n> 1) jen
Choose a pivot element A[p] while (i <j) o .
r < PARTITION(A, p) repeat i < i+1until (i > j or Ali] 2 Aln])

e i 1untl (i ot Al <A
QuICKSORT(A[1..r —1]) irFI(Jiei }) j=1luntl ({2 jorA[j] <A[n])

QuickSorT(A[r +1..n])

swap A[i] <> A[j]
swap A[i] <> A[n]
return i

Figure 1.7. Quicksort

Correctness

Just like mergesort, proving QUICKSORT is correct requires two separate induction proofs:
one to prove that PARTITION correctly partitions the array, and the other to prove that
QuickSoRT correctly sorts assuming PARTITION is correct. I'll leave the tedious details as
an exercise for the reader.

Analysis

The analysis is also similar to mergesort. PARTITION runs in O(n) time: j—i = n at the
beginning, j —i = 0 at the end, and we do a constant amount of work each time we
increment i or decrement j. For QUICKSORT, we get a recurrence that depends on r, the
rank of the chosen pivot element:

T(n)=T(r—1)+T(n—r)+0(n)

If we could somehow choose the pivot to be the median element of the array A, we would
have r = [n/2], the two subproblems would be as close to the same size as possible, the
recurrence would become

T(n) =2T([n/21—1) + T([n/2]) + O(n) < 2T(n/2) + O(n),

and we’d have T(n) = O(nlogn) by the recursion tree method.

In fact, as we will see shortly, we can locate the median element in an unsorted array
in linear time. However, the algorithm is fairly complicated, and the hidden constant in
the O(+) notation is large enough to make the resulting sorting algorithm impractical. In



1.6. The Pattern

practice, most programmers settle for something simple, like choosing the first or last
element of the array. In this case, r take any value between 1 and n, so we have

T(n)= 1111ra<xn(T(r —1)+Th—r)+ O(n)).

In the worst case, the two subproblems are completely unbalanced—either r = 1
or r = n—and the recurrence becomes T(n) < T(n— 1)+ O(n). The solution is
T(n) = 0(n?).

Another common heuristic is called “median of three”—choose three elements
(usually at the beginning, middle, and end of the array), and take the median of those
three elements the pivot. Although this heuristic is somewhat more efficient in practice
than just choosing one element, especially when the array is already (nearly) sorted, we
can still have r = 2 or r = n—1 in the worst case. With the median-of-three heuristic, the
recurrence becomes T(n) < T(1)+ T(n—2)+0(n), whose solution is still T(n) = O(n?).

Intuitively, the pivot element should "usually" fall somewhere in the middle of the
array, say between n/10 and 9n/10. This observation suggests that the average-case
running time should be O(nlogn). Although this intuition is actually correct (at least
under the right formal assumptions), we are still far from a proof that quicksort is usually
efficient. We will formalize this intuition about average-case behavior in a later chapter.

1.6 The Pattern

Both mergesort and and quicksort follow a general three-step pattern shared by all divide
and conquer algorithms:

1. Divide the given instance of the problem into several independent smaller in-
stances.

2. Delegate each smaller instance to the Recursion Fairy.

3. Combine the solutions for the smaller instances into the final solution for the
given instance.

If the size of any subproblem falls below some constant threshold, the recursion bottoms
out. Hopefully, at that point, the problem is trivial, but if not, we switch to a different
algorithm instead.

Proving a divide-and-conquer algorithm correct almost always requires induction.
Analyzing the running time requires setting up and solving a recurrence, which usually
(but unfortunately not always!) can be solved using recursion trees, perhaps after a
simple domain transformation.

Move discussion of recursion tree technique from appendix to here?

* kK



1.

RECURSION

10

*1.7 Selection

So how do we find the median element of an array in linear time? The following algorithm
was discovered by Manuel Blum, Bob Floyd, Vaughan Pratt, Ron Rivest, and Bob Tarjan
in the early 1970s. Their algorithm actually solves the more general problem of selecting
the kth largest element in an n-element array, given the array and the integer k as input,
using a variant of an algorithm called either “quickselect” or “one-armed quicksort”.
The basic quickselect algorithm chooses a pivot element, partitions the array using the
PARTITION subroutine from QuickSorT, and then recursively searches only one of the
two subarrays.

QuickSELECT(A[1..n], k):
ifn=1
return Af1]
else
Choose a pivot element A[p]
r « PARTITION(A[1..n],p)

ifk<r

return QuUickSELECT(A[1..r —1],k)
elseif k >r

return QUickSELECT(A[r +1..n],k—r)
else

return Al r]

The worst-case running time of QUICKSELECT obeys a recurrence similar to the
QuickSorT recurrence. We don’t know the value of r or which subarray we’ll recursively
search, so we’ll just assume the worst.

T(n) < max (max{T(r —1), T(n—r)}+ O(n))

We can simplify the recurrence by using £ to denote the length of the recursive subproblem:

T(n) < max T{)+0(n)
0<f<n—1

As with quicksort, we get the solution T(n) = O(n?) when £ = n— 1, which happens
when the chosen pivot element is either the smallest element or largest element of the
array.

We could avoid this quadratic behavior if we could somehow magically choose a
good pivot, where { < an for some constant a < 1. In this case, the recurrence would
simplify to

T(n) < T(an)+ O(n).

This recurrence expands into a descending geometric series, which is dominated by its
largest term, so T(n) = O(n).



*1.7. Selection

The Blum-Floyd-Pratt-Rivest-Tarjan algorithm chooses a good pivot for one-armed
quicksort by recursively computing the median of a carefully-selected subset of the input
array. Specifically, we divide the input array into [n/5] blocks, each containing exactly 5
elements, except possibly the last. (If the last block isn’t full, just throw in a few o0s.)
We compute the median of each block by brute force, collect those medians into a new
array M[1..[n/5]], and then recursively compute the median of this new array. Finally
we use the median of medians (called “mom” in the following pseudocode) as the pivot
in one-armed quicksort.

MoMSELECT(A[1..n], k):
if n <25 ({{or whatever))
use brute force

else
m <« [n/5]
fori —1tom
M[i] < Mep1aNOFFIvE(A[5i —4..51]) ((Brute forcel))
mom «— MoMSELEcT(M[1..m],|m/2]) {(Recursion!)

r < PARTITION(A[1..n], mom)

ifk<r

return MOMSELECT(A[1..r —1],k) {(Recursion!)
elseif k > r

return MoMSELECT(A[r +1..n],k—r) {(Recursion!))
else

return mom

The first key insight is that the median of medians is in fact a good pivot. The median
of medians is larger than |_[n /51/ 2J — 1 ~ n/10 block medians, and each block median
is larger than two other elements in its block. Thus, mom is larger than at least 3n/10
elements in the input array; symmetrically, mom is smaller than at least 3n/10 input
elements. Thus, in the worst case, the last recursive call searches an array of size at most
7n/10.

We can visualize the algorithm’s behavior by drawing the input array as a 5 x [n/5]
grid, which each column represents five consecutive elements. For purposes of illustration,
imagine that we sort every column from top down, and then we sort the columns by their
middle element. (Let me emphasize that the algorithm does not actually do this!) In this
arrangement, the median-of-medians is the element closest to the center of the grid.

The left half of the first three rows of the grid contains 3n/10 elements, each of
which is smaller than the median-of-medians. If the element we’re looking for is larger
than the median-of-medians, our algorithm will throw away everything smaller than the
median-of-median, including those 3n/10 elements, before recursing. Thus, the input
to the recursive subproblem contains at most 7n/10 elements. A symmetric argument
applies when our target element is smaller than the median-of-medians.

Okay, so mom is a good pivot, but now the algorithm is making two recursive calls
instead of just one; how do we know the resulting running time is still linear? The

11



1. RECURSION

12

Figure 1.8. Visualizing the median of medians

0000000l eees
000000006
0000000068888888

0000000000000000
0000000 00000000

Figure 1.9. Discarding approximately 3/10 of the array

second key insight is that the total size of the two recursive subproblems is a constant
factor smaller than the size of the original input array. The worst-case running time of
the algorithm obeys the recurrence

T(n) <0(n)+ T(n/5)+ T(7n/10).

The recursion tree method implies the solution T(n) = O(n); the total work at each level
of level of the recursion tree is at most 9/10 the total work at the previous level. If we
had used blocks of size 3 instead of 5, the running time recurrence would have been

T(n)<0(n)+T(n/3)+T(2n/3),
whose solution is O(nlog n)—no better than sorting!

Finer analysis reveals that the constant hidden by the O() is quite large, even if
we count only comparisons. Selecting the median of 5 elements requires at most 6
comparisons, so we need at most 6n/5 comparisons to set up the recursive subproblem.
We need another n — 1 comparisons to partition the array after the recursive call returns.
So a more accurate recurrence for the worst-case number of comparisons is

T(n) < 11n/5+ T(n/5) + T(7n/10).

The recursion tree method implies the upper bound

11n 9\ 1ln
T(n) < —Z(—) = —".10=22n.
5 4 10 5
i>0
This algorithm isn’t as awful in practice as this worst-case analysis predicts—getting a
worst-case partition at every level of recursion is incredibly unlikely—but it is still worse

than sorting for even moderately large arrays..



1.8. Multiplication

1.8 Multiplication

In Chapter o, we saw two different algorithms for multiplying two n-digit numbers in
0(n?) time: the grade-school lattice algorithm and the Russian peasant algorithm.

Perhaps we can get a more efficient algorithm by splitting the numbers in half, and
exploiting the following identity:

(10™a + b)(10™c +d) = 10*™ac + 10™(bc + ad) + bd

Here is a divide-and-conquer algorithm that computes the product of two n-digit
numbers x and y, based on this formula. Each of the four sub-products e, f, g,h is
computed recursively. The last line does not involve any multiplications, however; to
multiply by a power of ten, we just shift the digits and fill in the right number of zeros.

Murtipiy(x, y,n):

ifn=1
return x - y

else
m«— [n/2]
a <« |x/10™]; b« x mod 10™ {(x =10™a+ b))
c<|y/10™]; d « y mod 10™ {(y =10"c +d))
e «— Murtiriy(a,c,m)
f < Murtipry(b, d, m)
g <« Murripry(b, c,m)
h « Murtipry(a,d, m)
return 10%™e +10™(g +h) + f

Correctness of this algorithm follows easily by induction. The running time for this
algorithm is given by the recurrence

T(n) =4T([n/2]) +0©(n), T(1)=1,

which solves to T(n) = ©(n?) by the recursion tree method (after a simple domain
transformation). Hmm. . . I guess this didn’t help after all.

As early as 1956, Andrei Kolmogorov, one of the giants of 20th century mathematics,
publicly conjectured that there is no algorithm to multiply two n-digit numbers in o(n?)
time. In 1960, Kolmogorov organized a seminar at Moscow University, where he restated
his “n“ conjecture” and posed several related problems that he planned to discuss at
future meetings. Almost exactly one week later, 23-year-old student Anatolii Karatsuba
presented Kolmogorov with a remarkable counterexample. According to Karastuba
himself,

After the seminar | told Kolmogorov about the new algorithm and about the disproof
of the n? conjecture. Kolmogorov was very agitated because this contradicted his very
plausible conjecture. At the next meeting of the seminar, Kolmogorov himself told the
participants about my method, and at that point the seminar was terminated.

13



1.

RECURSION

14

Karastuba observed that the middle coefficient bc + ad can be computed from the other
two coefficients ac and bd using only one more recursive multiplication, via the following
algebraic identity:

ac+bd—(a—b)(c—d)=bc+ad

This trick lets us replace the four recursive calls in the previous algorithm with just three
recursive calls, as shown below:

FastMutLTIiPLY(X, ¥, n):
ifn=1
return x - y

else
m«— [n/2]
a <« |x/10™]; b« x mod 10™ {(x =10ma + b))
c<|y/10™]; d « y mod 10™ {(y =10"c +d))
e « FastMurtirLy(a,c,m)
f < FastMuttirLy(b,d, m)
g < FastMurTtipPLy(a — b,c —d, m)
return 10>™e +10™(e+ f —g) + f

The running time of Karatsuba’s FAsTMuLTIPLY algorithm is given by the recurrence
T(n) <3T([n/2])+0(n), T(1)=1.

After a domain transformation to remove the ceilings, the recursion tree technique
implies the solution T(n) = O(n'83) = 0(n1-585), a significant improvement over our
earlier quadratic-time algorithm.> Karatsuba’s algorithm arguably launched the design
and analysis of algorithms as a formal field of study.

Of course, in practice, all this is done in binary instead of decimal.

We can take this idea even further, splitting the numbers into more pieces and
combining them in more complicated ways, to obtain even faster multiplication algorithms.
Andrei Toom and Stephen Cook discovered an infinite family of algorithms that split
any integer into k parts, each with n/k digits, and then compute the product using
only 2k — 1 recursive multiplications. For any fixed k, the resulting algorithm runs in
O(n'*1/(gk)y time, where the hidden constant in the O(-) notation depends on k.

Ultimately, this divide-and-conquer strategy led Gauss (yes, really) to the discovery
of the Fast Fourier transform, which is described in detail in a later chapter. The
fastest multiplication algorithm known, published by Martin Fiirer in 2007 and based on
FFTs, runs in O(nlogn2°0°8" ™) time. Here, log* n denotes the slowly growing iterated

5My presentation simplifies the actual history slightly. In fact, Karatsuba proposed an algorithm based
on the formula (a + ¢)(b + d) —ac — bd = bc + ad. This algorithm also runs in O(n'8%) time, but the actual
recurrence is slightly messier: a—b and ¢ —d are still m-digit numbers, but a + b and ¢ + d might each
have m + 1 digits. The simplification presented here is due to Donald Knuth.



1.9. Exponentiation

logarithm of n, which is the number of times one must take the logarithm of n before the
value is less than 1:

. {1 ifn<2,
lgtn=

1+1g*(lgn) otherwise.

For all practical purposes, log*n < 6. It is widely conjectured that the best possible
algorithm for multiply two n-digit numbers runs in ©(nlogn) time.
1.9 Exponentiation

Given a number a and a positive integer n, suppose we want to compute a”". The
standard naive method is a simple for-loop that does n — 1 multiplications by a:

SLowPowER(a, n):
X —a
fori —2ton
Xe—Xx-a
return x

This iterative algorithm requires n multiplications.

Notice that the input a could be an integer, or a rational, or a floating point number.
In fact, it doesn’t need to be a number at all, as long as it’s something that we know how
to multiply. For example, the same algorithm can be used to compute powers modulo
some finite number (an operation commonly used in cryptography algorithms) or to
compute powers of matrices (an operation used to evaluate recurrences and to compute
shortest paths in graphs). Since we don’t know what kind of things we’re multiplying,
we can’t know how long a multiplication takes, so we're forced analyze the running time
in terms of the number of multiplications.

There is a much faster divide-and-conquer method, using the following simple

recursive formula:
at = g2l g2,

What makes this approach more efficient is that once we compute the first factor al™/2!,
we can compute the second factor a/™/?! using at most one more multiplication.

FasTPoweR(a, n):
ifn=1
return a

else
x « FastPowEeR(a,|n/2])
if n is even
return x - x
else
return x - x - a

15



Homework

Homework

Homework

1.

RECURSION

16

The total number of multiplications satisfies the recurrence T(n) < T(|n/2]) + 2,
with the base case T(1) = 0. After a domain transformation, recursion trees give us the
solution T(n) = O(logn).

Incidentally, this algorithm is asymptotically optimal—any algorithm for computing a"
must perform at least Q(logn) multiplications. In fact, when n is a power of two, this
algorithm is exactly optimal. However, there are slightly faster methods for other values
of n. For example, our divide-and-conquer algorithm computes a'® in six multiplications

(@®=a’-a’-a;a’ =a®*-a®-a; a® = a-a-a), but only five multiplications are necessary
(a — a? — a® — a®> — a'® — a'®). Itis an open question whether the absolute minimum

number of multiplications for a given exponent n can be computed efficiently.

Exercises

Tower of Hanoi

1. Prove that the original recursive Tower of Hanoi algorithm performs exactly the same
sequence of moves—the same disks, to and from the same pegs, in the same order—as
each of the following non-recursive algorithms. The pegs are labeled 0, 1, and 2, and
our problem is to move a stack of n disks from peg O to peg 2 (as shown on page 3).

(a) If nis even, swap pegs 1 and 2. At the ith step, make the only legal move that
avoids peg i mod 3. If there is no legal move, then all disks are on peg i mod 3,
and the puzzle is solved.

(b) Pretend that disks n+ 1, n+ 2, and n + 3 are at the bottom of pegs 0, 1, and 2,
respectively. Repeatedly make the only legal move that satisfies the following
constraints, until no such move is possible.

* Do not place an odd disk directly on top of another odd disk.
* Do not place an even disk directly on top of another even disk.
* Do not undo the previous move.

(¢) Let p(n) denote the smallest integer k such that n/2* is not an integer.

Hanoi(n):
i1
while p(i) <n
if n—1iis even
move disk p(i) forward {(0->1-2-0)
else
move disk p(i) backward (0 —2—1— 0))
i—i+1

For example, p(42) = 2, because 42/2! is an integer but 42/22 is not. (Equiva-
lently, p(n) is one more than the position of the least significant 1 in the binary
representation of n.) Because its behavior resembles the marks on a ruler, p(n) is
sometimes called the ruler function.



Exercises

2. A less familiar chapter in the Tower of Hanoi’s history is its brief relocation of the = Homework
temple from Benares to Pisa in the early 13th century. The relocation was organized
by the wealthy merchant-mathematician Leonardo Fibonacci, at the request of the
Holy Roman Emperor Frederick II, who had heard reports of the temple from soldiers
returning from the Crusades. The Towers of Pisa and their attendant monks became
famous, helping to establish Pisa as a dominant trading center on the Italian peninsula.

Unfortunately, almost as soon as the temple was moved, one of the diamond
needles began to lean to one side. To avoid the possibility of the leaning tower
falling over from too much use, Fibonacci convinced the priests to adopt a more
relaxed rule: Any number of disks on the leaning needle can be moved together to
another needle in a single move. It was still forbidden to place a larger disk on top
of a smaller disk, and disks had to be moved one at a time onto the leaning needle or
between the two vertical needles.

= | 2 [N
e =] £
PR R = S D REN =W

Figure 1.10. The Towers of Pisa. In the fifth move, two disks are taken off the leaning needle.

|

=S
==

Y
J
/

Thanks to Fibonacci’s new rule, the priests could bring about the end of the universe
somewhat faster from Pisa then they could than could from Benares. Fortunately, the
temple was moved from Pisa back to Benares after the newly crowned Pope Gregory
IX excommunicated Frederick II, making the local priests less sympathetic to hosting
foreign heretics with strange mathematical habits. Soon afterward, a bell tower
was erected on the spot where the temple once stood; it too began to lean almost
immediately.

Describe an algorithm to transfer a stack of n disks from one vertical needle to
the other vertical needle, using the smallest possible number of moves. Exactly how
many moves does your algorithm perform?

3. Consider the following restricted variants of the Tower of Hanoi puzzle. In each
problem, the pegs are numbered 0, 1, and 2, as in problem 1, and your task is to move
a stack of n disks from peg 1 to peg 2.

(a) Suppose you are forbidden to move any disk directly between peg 1 and peg 2;  Exam
every move must involve peg 0. Describe an algorithm to solve this version of the
puzzle in as few moves as possible. Exactly how many moves does your algorithm
make?

17



1.

RECURSION

Homework

Fun

Exam

Homework

Homework

Fun Homework

Research

18

(b) Suppose you are only allowed to move disks from peg O to peg 2, from peg 2 to

4.

peg 1, or from peg 1 to peg 0. Equivalently, suppose the pegs are arranged in a
circle and numbered in clockwise order, and you are only allowed to move disks
counterclockwise. Describe an algorithm to solve this version of the puzzle in as
few moves as possible. How many moves does your algorithm make? [Hint: See
the chapter on solving recurrences in the appendix.]

Finally, suppose your only restriction is that you may never move a disk directly
from peg 1 to peg 2. Describe an algorithm to solve this version of the puzzle in
as few moves as possible. How many moves does your algorithm make? [Hint:
This variant is considerably harder to analyze than the other two.]

(0

©

9

8®

Figure 1.11. The first several moves in a counterclockwise Towers of Hanoi solution.

A German mathematician developed a new variant of the Towers of Hanoi puzzle,

known in the US literature as the “Liberty Towers” puzzle.® In this variant, there is a

row of k pegs, numbered from 1 to k. In a single turn, you are allowed to move the

smallest disk on peg i to either peg i —1 or peg i + 1, for any index i; as usual, you

are not allowed to place a bigger disk on a smaller disk. Your mission is to move a

stack of n disks from peg 1 to peg k.

(a) Describe a recursive algorithm for the case k = 3. Exactly how many moves does
your algorithm make? (This is the same as part (a) of the previous question.)

(b) Describe a recursive algorithm for the case k = n + 1 that requires at most o(n®)
moves. [Hint: Use part (a).]

(c) Describe a recursive algorithm for the case k = n + 1 that requires at most O(n?)
moves. [Hint: Don’t use part (a).]

(d) Describe a recursive algorithm for the case k = 4/n that requires at most a
polynomial number of moves. (What polynomial??)

(e) Describe and analyze a recursive algorithm for arbitrary n and k. How small must
k be (as a function of n) so that the number of moves is bounded by a polynomial
in n?

%No it isn’t.



Exercises

Sorting

5. Suppose you are given a stack of n pancakes of different sizes. You want to sort the  Exam, easy
pancakes so that smaller pancakes are on top of larger pancakes. The only operation
you can perform is a flip—insert a spatula under the top k pancakes, for some integer
k between 1 and n, and flip them all over.

= —

Figure 1.12. Flipping the top four pancakes.

(a) Describe an algorithm to sort an arbitrary stack of n pancakes using as few flips as
possible. Exactly how many flips does your algorithm perform in the worst case?

(b) Now suppose one side of each pancake is burned. Describe an algorithm to sort
an arbitrary stack of n pancakes, so that the burned side of every pancake is facing
down, using as few flips as possible. Exactly how many flips does your algorithm
perform in the worst case?

[Hint: This problem has nothing to do with the Tower of Hanoi!]

6. Prove that quicksort with the median-of-three heuristic requires Q(n?) time to sort an  Homework
array of size n in the worst case. Specifically, for any integer n, describe a permutation
of the integers 1 through n, such that in every recursive call to median-of-three-
quicksort, the pivot is always the second smallest element of the array. Designing this
permutation requires intimate knowledge of the PARTITION subroutine.

(a) Asawarm-up exercise, assume that the PARTITION subroutine is stable, meaning it
preserves the existing order of all elements smaller than the pivot, and it preserves
the existing order of all elements smaller than the pivot.

(b) Assume that the PARTITION subroutine uses the specific algorithm listed on page
8, which is not stable.

7. (a) Prove that the following algorithm actually sorts its input. Homework, google

STOOGESORT(A[0..n—1]):

if n=2and A[0] > A[1]
swap A[0] «— A[1]

elseif n > 2
m=1[2n/3]
STOOGESORT(A[0..m—1])
STOOGESORT(A[n—m..n—1])
STOOGESORT(A[0..m—1])

19



1.

RECURSION

Homework

Homework, google

20

9.

(b)

Would STooGESORT still sort correctly if we replaced m = [2n/3] with m =
|2n/3]? Justify your answer.

(0

State a recurrence (including the base case(s)) for the number of comparisons
executed by STOOGESORT.

D

Solve the recurrence, and prove that your solution is correct. [Hint: Ignore the
ceiling.]

(e)

Prove that the number of swaps executed by STOOGESORT is at most ('21)

. Consider the following cruel and unusual sorting algorithm, due to Gary Miller.

CRUEL(A[1..n]):

ifn>1
CrUEL(A[1..n/2])
CruEL(A[n/2+1..n])
UNUSUAL(A[1..n])

UNUSUAL(A[1..n]):
ifn=2
ifA[1]>A[2]
swap A[1] «— A[2]

{{the only comparison!))

else
fori —1ton/4
swap Ali +n/4] <= Ali +n/2]

{(swap 2nd and 3rd quarters))

UNUsUAL(A[1..n/2])
UNuUsUAL(A[n/2+1..n])
UnusuaL(A[n/4+1..3n/4])

{{recurse on left half))
{(recurse on right half))
{{recurse on middle half))

Notice that the comparisons performed by the algorithm do not depend at all on the
values in the input array; such a sorting algorithm is called oblivious. Assume for
this problem that the input size n is always a power of 2.

(a) Prove by induction that CRUEL correctly sorts any input array. [Hint: Consider
an array that contains n/4 1s, n/4 2s, n/4 3s, and n/4 4s. Why is this special case

enough?]

(b)

Prove that CRUEL would not correctly sort if we removed the for-loop from
UNUSUAL.

(@

Prove that CRUEL would not correctly sort if we swapped the last two lines of
UNUSUAL.

@

(e) What is the running time of CRUEL? Justify your answer.

What is the running time of UNusuAL? Justify your answer.

An inversion in an array A[1..n] is a pair of indices (i,j) such that i < j and
Ali] > A[j]. The number of inversions in an n-element array is between 0 (if the
array is sorted) and ('21) (if the array is sorted backward). Describe and analyze an



Exercises

algorithm to count the number of inversions in an n-element array in O(nlogn) time.
[Hint: Modify mergesort.]

10. (a)

(b)

(o)

Suppose you are given two sets of n points, one set {p;,ps,...,p,} on the line
y = 0 and the other set {q;,q5,...,q,} on the line y = 1. Create a set of n line
segments by connect each point p; to the corresponding point q;. Describe and
analyze a divide-and-conquer algorithm to determine how many pairs of these
line segments intersect, in O(nlogn) time. [Hint: See the previous problem.]

Now suppose you are given two sets {p;,pa,...,Pn} and {qi,qs,...,q,} of n
points on the unit circle. Connect each point p; to the corresponding point g;.
Describe and analyze a divide-and-conquer algorithm to determine how many
pairs of these line segments intersect in O(nlog? n) time. [Hint: Use your solution
to part (a).]

Prove that your algorithm from part (b) actually runs in O(nlogn) time.

q 99, 9, 9, 4 (A

p, p, P, Py PP, Py

¢ Py q, s

Figure 1.13. Eleven intersecting pairs of segments with endpoints on parallel lines, and ten intersecting pairs of
segments with endpoints on a circle.

11. (a)

(b)

()]

Describe an algorithm that sorts an input array A[1..n] by calling a subroutine
SortSorT(k), which sorts the subarray A[k +1.k+ ﬁ] in place, given an
arbitrary integer k between 0 and n — 4/n as input. (To simplify the problem,
assume that 4/n is an integer.) Your algorithm is only allowed to inspect or
modify the input array by calling SQRTSORT; in particular, your algorithm must
not directly compare, move, or copy array elements. How many times does your
algorithm call SQRTSORT in the worst case?

Prove that your algorithm from part (a) is optimal up to constant factors. In other
words, if f(n) is the number of times your algorithm calls SQRTSORT, prove that
no algorithm can sort using o(f(n)) calls to SQrRTSORT. (See Chapter *-Lower
Bounds-:.)

Now suppose SQRTSORT is implemented recursively, by calling your sorting
algorithm from part (a). For example, at the second level of recursion, the
algorithm is sorting arrays roughly of size n'/4. What is the worst-case running

Long homework

Homework

Homework

Homework

21



1. RECURSION

time of the resulting sorting algorithm? (To simplify the analysis, assume that the
. k .
array size n has the form 22, so that repeated square roots are always integers.)

Selection

Homework 12. Suppose we are given a set S of n items, each with a value and a weight. For any
element x € S, we define two subsets

e S_, is the set of all elements of S whose value is smaller than the value of x.
e S. . is the set of all elements of S whose value is larger than the value of x.

For any subset R C S, let w(R) denote the sum of the weights of elements in R.
The weighted median of R is any element x such that w(S.,) < w(S)/2 and
w(Ss,) <w(S)/2.

Describe and analyze an algorithm to compute the weighted median of a given
weighted set in O(n) time. Your input consists of two unsorted arrays S[1..n] and
WI[1..n], where for each index i, the ith element has value S[i] and weight W[i].
You may assume that all values are distinct and all weights are positive.

13. Consider the generalization of the Blum-Floyd-Pratt-Rivest-Tarjan SELECT algorithm
shown in Figure 1.14, which partitions the input array into [n/b] blocks of size b,
instead of [n/5] blocks of size 5, but is otherwise identical. In the pseudocode below,
the necessary modifications are indicated in red.

Mowm, SELECT(A[1..n], k):
if n < b?
use brute force
else

me«[n/b]
fori—1tom

M[i] « MEDIANOFB(A[b(i —1)+1..bi])
mom,;, <— Mom; SELECT(M[1..m],|m/2])

r < PARTITION(A[1..n],mom,;)

ifk<r

return Mom, SELECT(A[1..r —1],k)
elseif k>r

return Mom, SELECT(A[r +1..n],k—r1)
else

return mom,,

Figure 1.14. A parametrized family of selection algorithms; see problem 13.

Exam (a) State a recurrence for the running time of Mom,SELECT, assuming that b is a
constant (so the subroutine MEDIANOFB runs in O(1) time). In particular, how

22



Exercises

14.

15.

16.

do the sizes of the recursive subproblems depend on the constant b? Consider
even b and odd b separately.

(b) What is the worst-case running time of Mowm;SELECT? [Hint: This is a trick
question. ]

(c) What is the worst-case running time of Mom,SELECT? [Hint: This is an unfair
question. ]

(d) What is the worst-case running time of Mom3SELECT? Finding an upper bound
on the running time is straightforward; the hard part is showing that this analysis
is actually tight. [Hint: See problem 6.]

(e) What is the worst-case running time of Mom4SELECT? Again, the hard part is
showing that the analysis cannot be improved.”

(f) For any constants b > 5, the algorithm Mom,SELECT runs in O(n) time, but
different values of b lead to different constant factors. Let M(b) denote the
minimum number of comparisons required to find the median of b numbers. The
exact value of M(b) is known only for b < 13:

4 56 7 8 9 10 11 12 13
4 6 8 10 12 14 16 18 20 23

b |1
M(b) |0

2 3
13
For each b between 5 and 13, find an upper bound on the running time of

Mowm,, SELECT of the form T(n) < ayn for some explicit constant a;. (For
example, on page 12 we showed that ag; < 22.)

(g) Which value of b yields the smallest constant a;,? [Hint: This is a trick question.]

Prove that the variant of the Blum-Floyd-Pratt-Rivest-Tarjan SELECT algorithm shown
in Figure 1.15, which uses an extra layer of small medians to choose the main pivot,
runs in O(n) time.

(a) Describe an algorithm to determine in O(n) time whether an arbitrary array
A[1..n] contains more than n/4 copies of any value.

(b) Describe and analyze an algorithm to determine, given an arbitrary array A[1..n]
and an integer k, whether A contains more than k copies of any value. Express
the running time of your algorithm as a function of both n and k.

Do not use hashing, or radix sort, or any other method that depends on the

precise input values, as opposed to their order.

Describe an algorithm to compute the median of an array A[1..5] of distinct numbers

7The median of four elements is either the second smallest or the second largest. In 2014, Ke Chen and

Adrian Dumitrescu proved that if we modify Mom,SELECT to find second-smallest elements when k < n/2
and second-largest elements when k > n/2, the resulting algorithm runs in O(n) time! See their paper
“Select with Groups of 3 or 4 Takes Linear Time” (WADS 2015, arXiv:1409.3600) for details.

Exam

Grad homework

Upper bound: Exam
Tight: Homework

Upper bound: Exam
Tight: Homework

Homework

Homework

Exam. Yes, really.

Exam

Homework

23



1. RECURSION

MomoMSELECT(A[1..n], k):
ifn<81
use brute force
else
m <« [n/3]
fori<—1tom
MT[i] < MEDIANOF3(A[3i —2..3i])
mm <« [m/3]
for j « 1 to mm
Mom[j] < MEDIANOF3(M[3j —2..3j])
momom < MomoMSELEcT(Mom[1..mm],|mm/2])

r < PARTITION(A[ 1 .. n], momom)

ifk<r

return MOMOMSELECT(A[1..1r — 1], k)
elseif k>r

return MoMOMSELECT(A[r +1..n],k—r)
else

return momom

Figure 1.15. Selection by median of medians of medians; see problem 14).

using at most 6 comparisons. Instead of writing pseudocode, describe your algorithm
using a decision tree: A binary tree where each internal node contains a comparison
of the form “A[i] 2 A[j]?” and each leaf contains an index into the array.

< >

(an1:a131) (ar1:a31)
7N 7N

< > < >

(azraz1) [am] [am1]  (ariams)
VA VA

< > < >

Figure 1.16. Finding the median of a 3-element array using at most 3 comparisons

Exam 17. (@) Suppose we are given two sorted arrays A[1..n] and B[1..n]. Describe an
algorithm to find the median element in the union of A and B in ©(logn) time.
You can assume that the arrays contain no duplicate elements.

Homework, google (b) Suppose we are given two sorted arrays A[1..m] and B[1..n] and an integer k.
Describe an algorithm to find the kth smallest element in AU B in ©(log(m + n))
time. For example, if k = 1, your algorithm should return the smallest element of
AUB.) [Hint: Use your solution to part (a).]

24



Exercises

()]

@

Now suppose we are given three sorted arraysA[1..n], B[1..n], and C[1..n], and
an integer k. Describe an algorithm to find the kth smallest element in AUBUC
in O(logn) time.

Finally, suppose we are given a two dimensional array A[1..m, 1..n] in which
every row A[i, -] is sorted, and an integer k. Describe an algorithm to find the
kth smallest element in A as quickly as possible. How does the running time of
your algorithm depend on m? [Hint: Use the linear-time SELECT algorithm as a
subroutine. ]

Arithmetic

18. (a)

(b)

()]

Describe and analyze a variant of Karatsuba’s algorithm that multiplies any m-digit
number and any n-digit number, for any n > m, in O(nm'#3~1) time.

Describe an algorithm to compute the decimal representation of 2" in O(n'¢%)
time, using the algorithm from part (a) as a subroutine. (The standard algorithm
that computes one digit at a time requires ©(n?) time.)

Describe a divide-and-conquer algorithm to compute the decimal representation
of an arbitrary n-bit binary number in O(n'8%) time. [Hint: Watch out for an extra
log factor in the running time.]

19. Consider the following classical recursive algorithm for computing the factorial n! of
a non-negative integer n:

@
(b)

(o)

D

FACTORIAL(N):
ifn=0
return 1
else
return n - FACTORIAL(n — 1)

How many multiplications does this algorithm perform?

How many bits are required to write n! in binary? Express your answer in the
form ©(f (n)), for some familiar function f (n). [Hint: (n/2)"? < n! < n".]

Your answer to (b) should convince you that the number of multiplications is not
a good estimate of the actual running time of FAcToriaL. We can multiply any
k-digit number and any [-digit number in O(k - [) time using the grade-school
algorithm (or the Russian peasant algorithm). What is the running time of
FacToriAL if we use this multiplication algorithm as a subroutine?

The following algorithm also computes the factorial function, but using a different
grouping of the multiplications:

Homework

Homework

Homework

Homework

25



1. RECURSION

FacToriaL2(n, m): {(Compute n!/(n—m)!)
ifm=0
return 1
elseifm=1
return n
else
return Factoriar2(n,|m/2]) - Factoriar2(n —|m/2],[m/2])

What is the running time of FacToRr1AL2(n, n) if we use grade-school multiplica-
tion? [Hint: Ignore the floors and ceilings.]

(e) Describe and analyze a variant of Karastuba’s algorithm that multiplies any k-digit
number and any [-digit number, for any k > [, in O(k - 18371) = O(k - 1°-8°) time.

(f) What are the running times of FAcTORIAL(n) and FacToriaL2(n, n) if we use the
modified Karatsuba multiplication from part (e)?

Homework: (a)+(b) or  20. The greatest common divisor of two positive integer x and y, denoted ged(x, y), is
(c)+(d) or (e)+(f) the largest integer d such that both x/d and y/d are integers. Euclid described the
following recursive algorithm?® to compute ged(x, y) in his Elements, written around
300BC:
EucLipGCD(x, y):
ifx=y
return x
elseif x >y
return EucL.IDGCD(x — y, y)
else
return EucLiIpDGCD(x, y — x)

(a) Prove that EucLIDGCD correctly computes ged(x, y). Specifically:
i. Prove that EucL.ipGCD(x, y) divides both x and y.
ii. Prove that every divisor of x and y is also a divisor of EucLIDGCD(x, y).

(b) What is the worst-case running time of EucLIDGCD(x, y), as a function of x and
y? (Assume that computing x — y requires O(log x + log y) time.)

(c) Prove that the following algorithm also computes ged(x, y):

FasTEUCLIDGCD(x, ¥):
ifx=y
return x
elseif x >y
return FAsTEUcLIDGCD(x mod y, y)
else
return FAsTEUCLIDGCD(x, y mod x)

8Euclid’s algorithm is often incorrectly described as the first recursive algorithm, or even the first
non-trivial algorithm, but only because Western scholars have a culturally ingrained habit of fetishizing
the Greeks, and therefore ignoring mere Aoyiotixdc. In particular, the Egyptian duplation and mediation
algorithm—which I claim is both nontrivial and recursive—predates Euclid by at least 1500 years, and that’s
not the most sophisticated algorithm documented during that era.

26



Exercises

(d) What is the worst-case running time of FAsTEUcLIDGCD(x, y), as a function of x
and y? (Assume that computing x mod y takes O(log x - log y) time.)

(e) Prove that the following algorithm also computes ged(x, y):

BiNnarRYGCD(x, y):
ifx=y
return x
else if x and y are both even
return 2 - BINARYGCD(x /2,y /2)
else if x is even
BIiNARYGCD(x/2,y)
else if y is even
BiNARYGCD(x, y/2)
elseif x >y
return BINARYGCD((x — y)/2,y)
else
return BINARYGCD(x, (y —x)/2)

(f) What is the worst-case running time of FASTEUCLIDGCD(x, y), as a function of x
and y? (Assume that computing x —y takes O(log x +1log y) time, and computing
z/2 requires O(logz) time.)

Arrays

21.

22.

Suppose you are given a 2" x 2™ chessboard with one (arbitrarily chosen) square  Homework
removed. Describe and analyze an algorithm to compute a tiling of the board by

without gaps or overlaps by L-shaped tiles, each composed of 3 squares. Your input is

the integer n and two n-bit integers representing the row and column of the missing

square. The output is a list of the positions and orientations of (4" —1)/3 tiles.

Your algorithm should run in O(4") time. [Hint: First prove that such a tiling always

exists. ]

You are a visitor at a political convention (or perhaps a faculty meeting) with n
delegates; each delegate is a member of exactly one political party. It is impossible to
tell which political party any delegate belongs to; in particular, you will be summarily
ejected from the convention if you ask. However, you can determine whether any pair
of delegates belong to the same party by introducing them to each other. Members of
the same political party always greet each other with smiles and friendly handshakes;
members of different parties always greet each other with angry stares and insults.®

(a) Suppose more than half of the delegates belong to the same political party.  Exam
Describe an efficient algorithm that identifies all members of this majority party.

(b) Now suppose exactly k political parties are represented at the convention and  Homework

20f course, real-world politics is much messier than this simplified model, but this is a theory class!

27



1. RECURSION

one party has a plurality: more delegates belong to that party than to any other.
Present a practical procedure to precisely pick the people from the plurality
political party as parsimoniously as possible. Pretty please.

Homework 23. Most graphics hardware includes support for a low-level operation called blit, or block

Exam: (b)(d)(e) transfer, which quickly copies a rectangular chunk of a pixel map (a two-dimensional
array of pixel values) from one location to another. This is a two-dimensional version
of the standard C library function memcpy ().

Suppose we want to rotate an n x n pixel map 90° clockwise. One way to do
this, at least when n is a power of two, is to split the pixel map into four n/2 x n/2
blocks, move each block to its proper position using a sequence of five blits, and then
recursively rotate each block. (Why five? For the same reason the Tower of Hanoi
puzzle needs a third peg.) Alternately, we could first recursively rotate the blocks
and then blit them into place.

C|A
D|B @
A|B o>
C|D O|lw
B
o|lo

Figure 1.18. The first rotation algorithm (blit then recurse) in action.

(a) Prove that both versions of the algorithm are correct when n is a power of 2.

(b) Exactly how many blits does the algorithm perform when n is a power of 2?

28



Exercises

24.

25.

26.

27.

(c) Describe how to modify the algorithm so that it works for arbitrary n, not just
powers of 2. How many blits does your modified algorithm perform?

(d) What is your algorithm’s running time if a k x k blit takes O(k?) time?
(e) What if a k x k blit takes only O(k) time?

An array A[0..n— 1] of n distinct numbers is bitonic if there are unique indices i
and j such that A[(i —1) mod n] < A[i] > A[(i + 1) mod n] and A[(j — 1) mod n] >
A[j] < A[(j + 1) mod n]. In other words, a bitonic sequence either consists of an
increasing sequence followed by a decreasing sequence, or can be circularly shifted
to become so. For example,

|4 6i9:8:7i5:1:2:3] isbitonic, but
[3:6:9:8:7:5:1:2 4| isnot bitonic.

Describe and analyze an algorithm to find the smallest element in an n-element
bitonic array in O(logn) time. You may assume that the numbers in the input array
are distinct.

Suppose we are given an array A[1..n] of n distinct integers, which could be positive,
negative, or zero, sorted in increasing order so that A[1] < A[2] < --- < A[n].

(a) Describe a fast algorithm that either computes an index i such that A[i] =i or
correctly reports that no such index exists.

(b) Suppose we know in advance that A[1] > 0. Describe an even faster algorithm
that either computes an index i such that A[i] =i or correctly reports that no
such index exists. [Hint: This is really easy.]

Suppose we are given an array A[ 1 .. n] with the special property that A{1] > A[2] and
A[n—1] < A[n]. We say that an element A[x] is a local minimum if it is less than or
equal to both its neighbors, or more formally, if A{lx —1] > A[x] and A[x] < A[x +1].
For example, there are six local minima in the following array:

[of7]7]2]1]3]7|5][4]7][3[3]4[8][6]9]
A A A A A A

We can obviously find a local minimum in O(n) time by scanning through the array.
Describe and analyze an algorithm that finds a local minimum in O(log n) time. [Hint:
With the given boundary conditions, the array must have at least one local minimum.
Why?]

Suppose you are given a sorted array of n distinct numbers that has been rotated
k steps, for some unknown integer k between 1 and n — 1. That is, you are given
an array A[1..n] such that some prefix A[1..k] is sorted in increasing order, the
corresponding suffix A[k + 1..n] is sorted in increasing order, and A[n] < A[1].

Exam

Exam

Exam

Exam

29



Exam

Homework

Homework

Homework

Homework

HWo

1.

RECURSION

30

For example, you might be given the following 16-element array (where k = 10):

9:13:16:18:19 :123:28:31 37:42|—4:0:2:5:7: 8

(a) Describe and analyze an algorithm to compute the unknown integer k.

(b) Describe and analyze an algorithm to determine if the given array contains a
given number x.

28. You are a contestant on the hit game show “Beat Your Neighbors!” You are presented
with an m x n grid of boxes, each containing a unique number. It costs $100 to open
a box. Your goal is to find a box whose number is larger than its neighbors in the grid
(above, below, left, and right). If you spend less money than any of your opponents,
you win a week-long trip for two to Las Vegas and a year’s supply of Rice-A-Roni™,
to which you are hopelessly addicted.

(a) Suppose m = 1. Describe an algorithm that finds a number that is bigger than
either of its neighbors. How many boxes does your algorithm open in the worst
case?

(b) Suppose m = n. Describe an algorithm that finds a number that is bigger than
any of its neighbors. How many boxes does your algorithm open in the worst
case?

(c) Prove that your solution to part (b) is optimal up to a constant factor. (See
Chapter *<Lower Bounds-*.)

29. (a) Let n = 2! —1 for some positive integer £. Suppose someone claims to hold an
unsorted array A[1..n] of distinct £-bit strings; thus, exactly one £-bit string does
not appear in A. Suppose further that the only way we can access A is by calling
the function FETcHBIT(i, j), which returns the jth bit of the string A[i] in O(1)
time. Describe an algorithm to find the missing string in A using only O(n) calls
to FETCHBIT.

(b) Now suppose n = 2¢ — k for some positive integers k and ¢, and again we are
given an array A[1..n] of distinct £-bit strings. Describe an algorithm to find the
k strings that are missing from A using only O(nlogk) calls to FETCHBIT.

Trees

30. (a) Professor George O’Jungle has a 27-node binary tree, in which every node is
labeled with a unique letter of the Roman alphabet or the character &. Preorder
and postorder traversals of the tree visit the nodes in the following order:

* Preorder: IQJHLEMVOTSBRGYZKCA&FPNUDWX
e Postorder: HEMLJVQSGYRZBTCPUDNFW&XAKOI
Draw George’s binary tree.



Exercises

(b) Recall that a binary tree is full if every non-leaf node has exactly two children.

i. Describe and analyze a recursive algorithm to reconstruct an arbitrary full
binary tree, given its preorder and postorder node sequences as input.

ii. Prove that there is no algorithm to reconstruct an arbitrary binary tree from
its preorder and postorder node sequences.

(c) Describe and analyze a recursive algorithm to reconstruct an arbitrary binary
tree, given its preorder and inorder node sequences as input.

(d) Describe and analyze a recursive algorithm to reconstruct an arbitrary binary
search tree, given only its preorder node sequence. Assume all input keys are
distinct. For extra credit, describe an algorithm that runs in O(n) time.

In parts (b), (c), and (d), assume that all keys are distinct and that the input is
consistent with at least one binary tree.

31. For this problem, a subtree of a binary tree means any connected subgraph. A binary
tree is complete if every internal node has two children, and every leaf has exactly
the same depth. Describe and analyze a recursive algorithm to compute the largest
complete subtree of a given binary tree. Your algorithm should return both the root
and the depth of this subtree.

Figure 1.19. The largest complete subtree of this binary tree has depth 2.

32. Suppose we have n points scattered inside a two-dimensional box. A kd-tree'©
recursively subdivides the points as follows. First we split the box into two smaller
boxes with a vertical line, then we split each of those boxes with horizontal lines, and
so on, always alternating between horizontal and vertical splits. Each time we split a
box, the splitting line partitions the rest of the interior points as evenly as possible by
passing through a median point inside the box (not on its boundary). If a box doesn’t
contain any points, we don’t split it any more; these final empty boxes are called cells.

°The term “kd-tree” (pronounced “kay dee tree”) was originally an abbreviation for “k-dimensional
tree”, but more modern usage ignores this etymology, in part because nobody in their right mind would
ever use the letter k to denote dimension instead of the obviously superior d. Etymological consistency
would require calling the data structure in this problem a “2d-tree”, or even a “2-d tree”, but the standard
nomenclature is now “two-dimensional kd-tree”. See also: B-tree (maybe), alpha shape, beta skeleton,
epsilon net, Potomac River, Mississippi River, Lake Michigan, Lake Tahoe, Manhattan Island, the La Brea
Tar Pits, Sahara Desert, Mount Kilimanjaro, South Vietnam, East Timor, the Milky Way Galaxy, the City of
Townsville, and self-driving automobiles.

Exam

Exam

Exam

Homework

31



1. RECURSION

Figure 1.20. A kd-tree for 15 points. The dashed line crosses the four shaded cells.

(a) How many cells are there, as a function of n? Prove your answer is correct.

(b) In the worst case, exactly how many cells can a horizontal line cross, as a function
of n? Prove your answer is correct. Assume that n = 2 — 1 for some integer k.
[Hint: There is more than one function f such that f(16) =4.]

(c) Suppose we are given n points stored in a kd-tree. Describe and analyze an
algorithm that counts the number of points above a horizontal line (such as the
dashed line in the figure) as quickly as possible. [Hint: Use part (b).]

(d) Describe an analyze an efficient algorithm that counts, given a kd-tree containing

n points, the number of points that lie inside a rectangle R with horizontal and
vertical sides. [Hint: Use part (c).]

Exam 33. Let T be a binary tree with n vertices. Deleting any vertex v splits T into at most
three subtrees, containing the left child of v (if any), the right child of v (if any), and
the parent of v (if any). We call v a central vertex if each of these smaller trees has
at most n/2 vertices.

Describe and analyze an algorithm to find a central vertex in an arbitrary given
binary tree. [Hint: First prove that every tree has a central vertex.]

34 14

Figure 1.21. Deleting a central vertex in a 34-node binary tree, leaving subtrees with 14, 7, and 12 nodes.

Fun Homework 34. Let T be a binary tree whose nodes store distinct numerical values. Recall that T is a
binary search tree if and only if either (1) T is empty, or (2) T satisfies the following
recursive conditions:

32



Exercises

The left subtree of T is a binary search tree.

* All values in the left subtree of T are smaller than the value at the root of T.
* The right subtree of T is a binary search tree.

e All values in the right subtree of T are larger than the value at the root of T.

Describe and analyze an algorithm to transform an arbitrary binary tree T with
distinct node values into a binary search tree, using only the following operations:

* Rotate an arbitrary node upward, as shown in Figure 1.22.11
* Swap the left and right subtrees of an arbitrary node, as shown in Figure 1.23.

£L2FE0,

Figure 1.22. Left to right: right rotation at x. Right to left: left rotation at y.

A B B A

Figure 1.23. Swapping the subtrees of x

For both of these operations, some, all, or none of the subtrees A, B, and C
shown in Figures 1.22 and 1.23 may be empty. Figure 1.24 shows a sequence of eight
operations transforming a five-node binary tree into a binary search tree.

N £ Sy in sy, £

Figure 1.24. "Sorting” a binary tree: rotate 2, rotate 2, swap 3, rotate 3, rotate 4, swap 3, rotate 2, swap 4.

Your algorithm cannot directly modify parent or child pointers, and it cannot
allocate new nodes or delete old nodes; the only way it can modify T is using rotations
and swaps. On the other hand, you may compute anything you like for free, as long
as that computation does not modify T. In other words, the running time of your
algorithm is defined to be the number of rotations and swaps that it performs.

""Rotations preserve the inorder sequence of nodes in a binary tree. Partly for this reason, rotations are
used to maintain several types of balanced binary search trees, including AVL trees, red-black trees, splay
trees, scapegoat trees, and treaps. Some of these data structures are described in later chapters.

33



Fun Homework

1.

RECURSION

34

35-

For full credit, your algorithm should use as few rotations and swaps as possible
in the worst case. [Hint: O(n?) operations is not too difficult, but we can do better.]

Bob Ratenbur, a new student in CS 225, is trying to write code to perform preorder,
inorder, and postorder traversals of binary trees. Bob understands the basic idea
behind the traversal algorithms, but whenever he tries to implement them, he keeps
mixing up the recursive calls. Five minutes before the deadline, Bob frantically
submits code with the following structure:

PREORDER(V): INORDER(V): PosTORDER(V):
if v =NuLL if v =NuLL if v =NuLL
return return return
else else else
print label(v) EORDER(left(v)) EORDER(left(v))
IEORDER (left(v)) print label(v) IORDER(right(v))
EORDER (right(v)) EORDER(right(v)) print label(v)

Each Il in this pseudocode hides one of the prefixes PRE, IN, or PosT. Moreover,
each of the following function calls appears exactly once in Bob’s submitted code:

PREORDER(left(v)) PREORDER(right(v))
INORDER(left(v)) INORDER(right(v))
PosTORDER(left(v)) PosTORDER(right(v))

Thus, there are precisely 36 possibilities for Bob’s code. Unfortunately, Bob accidentally

deleted his source code after submitting the executable, so neither you nor he knows
which functions were called where.

Now suppose you are given the output of Bob’s traversal algorithms, executed
on some unknown binary tree T. Bob’s output has been helpfully parsed into three
arrays Pre[1..n], In[1..n], and Post[1..n]. You may assume that these traversal
sequences are consistent with exactly one binary tree T; in particular, the vertex
labels of the unknown tree T are distinct, and every internal node in T has exactly
two children.

(a) Describe an algorithm to reconstruct the unknown tree T from the given traversal
sequences.

(b) Describe an algorithm that either reconstructs Bob’s code from the given traversal
sequences, or correctly reports that the traversal sequences are consistent with
more than one set of algorithms.

For example, given the input

Pre[l.n]=[HAECBTIFGD]
Im[1.n]=[AHDCEIFBG]
Post[1..n]=[AE I BF CD G H]

your first algorithm should return the following tree:



Exercises

(H)
® ()
@ ©
® (®
)6,

and your second algorithm should reconstruct the following code:

PREORDER(V):
if v =NuLL
return
else
print label(v)
PREORDER(left(v))
PosTORDER(right(v))

INORDER(V):
if v =NuLL
return
else
PosTORDER(left(v))
print label(v)
PREORDER(right(v))

POosSTORDER(V):
if v =NuLL
return
else
INORDER(left(v))
INORDER(right(v))
print label(v)

© Copyright 2016 Jeff Erickson.

This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).
Free distribution is strongly encouraged; commercial distribution is expressly forbidden.
See http:/jeffe.cs.illinois.edu/teaching/algorithms/ for the most recent revision.

35


http://creativecommons.org/licenses/by-nc-sa/4.0/
http://jeffe.cs.illinois.edu/teaching/algorithms/

	Recursion
	Reductions
	Simplify and Delegate
	Tower of Hanoi
	Mergesort
	Quicksort
	The Pattern
	Selection
	Multiplication
	Exponentiation


