A 5. DIVIDE AND CONQUER |

PEARSON

e
Addison
Wesley

» mergesort

» counting inversions

» randomized quicksort
» median and selection

» closest pair of points

h? SN 1 N0

Lecture slides by Kevin Wayne
Copyright © 2005 Pearson-Addison Wesley

http://www.cs.princeton.edu/~wayne/kleinberg-tardos

Last updated on 3/12/18 9:21 AM

Divide-and-conquer paradigm

Divide-and-conquer.
« Divide up problem into several subproblems (of the same kind).
« Solve (conquer) each subproblem recursively.
« Combine solutions to subproblems into overall solution.

Most common usage.
* Divide problem of size n into two subproblems of size n/2. «—— 0(n) time
- Solve (conquer) two subproblems recursively.
« Combine two solutions into overall solution. «<—— o) time

Consequence.
* Brute force: O®?).
. DIVIDE
* Divide-and-conquer: O(n log n). ET IMPER A

attributed to Julius Caesar

5. DIVIDE AND CONQUER

» mergesort

M! i e

r\ JON KlEINBERG EVA TARDOS
\

SECTIONS 5.1-5.2

Sorting problem

Problem. Given a list L of n elements from a totally ordered universe,
rearrange them in ascending order.

Born In The U.S.A.
Bruce Springsteen

Name Artist A Time Album
12 ¥ Let It Be The Beatles 4:03 LetItBe
13 M Take My Breath Away BERLIN 4:13 Top Gun - Soundtrack
14 ¥ Circle Of Friends Better Than Ezra 3:27 Empire Records
15 ™ Dancing With Myself Billy Idol 4:43 Don't Stop
16 ¥ Rebel Yell Billy Idol 4:49 Rebel Yell
17 M Piano Man Billy Joel 5:36 Greatest Hits Vol. 1
18 ¥ Pressure Billy Joel 3:16 Createst Hits, Vol. 11 (1978 - 1985) (Disc 2)
19 M The Longest Time Billy Joel 3:36 Createst Hits, Vol. 11 (1978 - 1985) (Disc 2)
20 ¥ Atomic Blondie 3:50 Atomic: The Very Best Of Blondie
21 M Sunday Girl Blondie 3:15 Atomic: The Very Best Of Blondie
22 ¥ Call Me Blondie 3:33 Atomic: The Very Best Of Blondie
23 M Dreaming Blondie 3:06 Atomic: The Very Best Of Blondie
24 ¥ Hurricane Bob Dylan 8:32 Desire
25 M The Times They Are A-Changin' Bob Dylan 3:17 Createst Hits
26 & Livin' On A Prayer Bon Jovi 4:11 Cross Road
27 @ Beds Of Roses Bon Jovi 6:35 Cross Road
28 ¥ Runaway Bon Jovi 3:53 Cross Road
29 M Rasputin (Extended Mix) Boney M 5:50 CGCreatest Hits |
30 ¥ Have You Ever Seen The Rain Bonnie Tyler 4:10 Faster Than The Speed Of Night '
31 @ Total Eclipse Of The Heart Bonnie Tyler 7:02 Faster Than The Speed Of Night
32 ¥ Straight From The Heart Bonnie Tyler 3:41 Faster Than The Speed Of Night
33 ™ Holding Out For A Hero Bonny Tyler 5:49 Meat Loaf And Friends
34 © Dancing In The Dark © Bruce Springsteen @ 4:05 Born In The U.S.A.
35 M Thunder Road Bruce Springsteen 4:51 Born To Run
36 ¥ Born To Run Bruce Springsteen 4:30 Born To Run
37 ™ Jungleland Bruce Springsteen 9:34 Born To Run
20 A Toval Tiieal Tiieal (Ta Coineitlain Thho Dieds 2.C7 Coavenertr Miimanm Tha Cavndeeanrle (INic~ O

C) < »

Sorting applications

Obvious applications.
« Organize an MP3 library.
- Display Google PageRank results.
 List RSS news items in reverse chronological order.

Some problems become easier once elements are sorted.
 |dentify statistical outliers.
« Binary search in a database.
« Remove duplicates in a mailing list.

Non-obvious applications.
« Convex hull.

Closest pair of points.

Interval scheduling / interval partitioning.

Scheduling to minimize maximum lateness.

Minimum spanning trees (Kruskal’s algorithm).

Mergesort

« Recursively sort left half.
« Recursively sort right half.
« Merge two halves to make sorted whole.

,,,,,,,

First Draft
of a

S Report on the
EDVAC

John von Neumann

input

sort left half

A G L O R

sort right half

merge results

A G H I L M O R S T

Merging

Goal. Combine two sorted lists A and B into a sorted whole C.
* Scan A and B from left to right.
* Compare a; and b,.
* If a; < bj, append a; to C (no larger than any remaining element in B).
* If a; > b, append b; to C (smaller than every remaining element in A).

sorted list A sorted list B

merge to form sorted list C

2 3 / 10 11

Mergesort implementation

Input. List L of n elements from a totally ordered universe.
Output. The n elements in ascending order.

MERGE-SORT(L)

IF (list L has one element)

RETURN L.

Divide the list into two halves A and B.
A < MERGE-SORT(A). «—— T(n/2)
B < MERGE-SORT(B). «—— T'(n/2)
L < MERGE(A, B). «— O(n)

RETURN L.

A useful recurrence relation

Def. T(n) = max number of compares to mergesort a list of length =.

Recurrence.

y

0 ifn=1
T(n) < A

 T([n/2]) + T([n/2]) + n ifn>1

N

between |n /2| and n — 1 compares

Solution. T (n) is O(n log, n).

Assorted proofs. We describe several ways to solve this recurrence.
Initially we assume n is a power of 2 and replace < with = in the recurrence.

Divide-and-conquer recurrence: recursion tree

Proposition. If T(n) satisfies the following recurrence, then T'(n) = n log; n.

| \

0 itn=1 assuming n

T(n) — is a power of 2
2T(n/2) + n iftn>1

\

T(n) n =n

T(n/?2) T(n/2) 2 (n/2) =n

T(n/4) T(n/4) T(n/4) T(n/4) 4 (n/4) = n
TN N

T(n/8) Tm/8) Twm/8 Tm/8 Twm/8) Tm/8) Tm/8) Tn/8) 8 (n/8) = n

T(n) =nlogan
10

Proof by induction

Proposition. If T(n) satisfies the following recurrence, then T'(n) = n log; n.

y

0 itn =1
T(n) = «

2T(n/2) + n ifn>1

Pf. [by induction on n]
* Base case: whenn=1,T(1)= 0=nlog n.
 Inductive hypothesis: assume T(n) = nlog, n.
- Goal: show that T(2n) = 2nlog, (2n).

recurrence

T(2n) 2T(n) +2n

inductive hypothesis — = 2n10g2n + 2n

271 (logz (2n) — 1) + 2n

2nlogx(2n). =

AN

assuming n
is a power of 2

11

Divide-and-conquer: quiz 1 L

Which is the exact solution of the following recurrence?

m o N w P

0
T(n) =

itn=1

T(|n/2]) + T([n/2]) + n—1 ifn>1

T no longer assuming n
is a power of 2

T(n) = n|logx n|

T(n) = n[log n]

T(n) = n|logzn|

T(n) = nllogan

+ plog2nl g

— plloganl 4 g

Not even Knut

N knows.

12

Analysis of mergesort recurrence

Proposition. If T(n) satisfies the following recurrence, then T(n) <n [log:n].

y

0 itn =1
T(n) < <

 T([n/2]) + T([n/2]) + n ifn>1

T no longer assuming n
is a power of 2

Pf. [by strong induction on n]
* Base case: n=1.
* Define ny=|n/2]and n,=[n/2] and note that n=n, + n,.
* Induction step: assume true for 1,2, ...,n—1.

T(n) < Tn)+Tn)+ n

inductive hypothesis —» < mnj [logz n1-| + 1y [logz nz] + n
< |2Moezn1 /9]

| _ gflozsn] /g

< ni[logam] + na[logama] + n -

= n[logan2| +n

< n([logan]-1) +n < logy ng < [logy,n] — 1
= n[logan]. = /

an integer

— e o e o e - o - - — — —— — — — — — — — —

Digression: sorting lower bound

Challenge. How to prove a lower bound for all conceivable algorithms?

Model of computation. Comparison trees.
« Can access the elements only through pairwise comparisons.
« All other operations (control, data movement, etc.) are free.

Cost model. Number of compares.

Q. Realistic model?

Al. Yes. Java, Python, C++, ...

A2. Yes. Mergesort, insertion sort, quicksort, heapsort, ...
A3. No. Bucket sort, radix sorts, ...

sort (* key=None, reverse=False)

This method sorts the list in place, using only < comparisons between items.
Exceptions are not suppressed - if any comparison operations fail, the entire
sort operation will fail (and the list will likely be left in a partially modified
state).

14

Comparison tree (for 3 distinct keys a, b, and ¢)

height of pruned tree =
worst-case number
of compares

yes

code between compares
(e.g., sequence of exchanges)

b<c o2

yes

no yes no

a<c b<c

yes

yes

each reachable leaf corresponds to one (and only one) ordering;
exactly one reachable leaf for each possible ordering

15

Sorting lower bound

Theorem. Any deterministic compare-based sorting algorithm must make
Q(n log n) compares in the worst-case.

Pf. [information theoretic]
* Assume array consists of n distinct values a; through a,.
* Worst-case number of compares = height # of pruned comparison tree.
* Binary tree of height 4 has < 2" l[eaves.
* n! different orderings = n! reachable leaves.

n! leaves < 2h leaves

16

Sorting lower bound

Theorem. Any deterministic compare-based sorting algorithm must make
Q(n log n) compares in the worst-case.

Pf. [information theoretic]
* Assume array consists of n distinct values a; through a,.
* Worst-case number of compares = height # of pruned comparison tree.
* Binary tree of height 4 has < 2" l[eaves.
* n! different orderings = n! reachable leaves.

2" > #leaves = n !
= h = logx(n!)

>nloggn—n/In2 =

T

Stirling’s formula

J, @>
“F

Note. Lower bound can be extended to include randomized algorithms.

17

SHUFFLING A LINKED LIST

Problem. Given a singly linked list, rearrange its nodes uniformly at random.
Assumption. Access to a perfect random-number generator. N
all n! permutations

equally likely

Performance. O(nlog n) time, O(log n) extra space.

L
input i

2*—)3*—)4*—)5*—)6*—)7*—)7114[[

L
shuffled l

5*_>6*_>2*—>7*—>3*—>4*—>null

18

5. DIVIDE AND CONQUER

» counting inversions

M! i e

r\ JON KlEINBERG EVA TARDOS
\

SECTION 5.3

Counting inversions

Music site tries to match your song preferences with others.
* You rank n songs.
« Music site consults database to find people with similar tastes.

Similarity metric: number of inversions between two rankings.
* My rank: 1,2,...,n.
* Your rank: a,a,,...,a,.

* Songsiandjare inverted ifi < j, buta; > a;.

A le ol c
1 2 3 4 5

1 3 4 2 5

2 inversions: 3-2,4-2

Brute force: check all ®#?) pairs.

20

Counting inversions: applications

- Voting theory.

« Collaborative filtering.

« Measuring the “sortedness” of an array.
 Sensitivity analysis of Google’s ranking function.
- Rank aggregation for meta-searching on the Web.

« Nonparametric statistics (e.g., Kendall’s tau distance).

Rank Aggregation Methods for the Web

Cynthia Dwork:* Ravi Kumarf Moni Naor* D. Sivakumar?

ABSTRACT

We consider the problem of combining ranking results from
various sources. In the context of the Web, the main ap-
plications include building meta-search engines, combining
ranking functions, selecting documents based on multiple
criteria, and improving search precision through word asso-
ciations. We develop a set of techniques for the rank aggre-
gation problem and compare their performance to that of
well-known methods. A primary goal of our work is to de-
sign rank aggregation techniques that can effectively combat
“spam,” a serious problem in Web searches. Experiments
show that our methods are simple, efficient, and effective.

Keywords: rank aggregation, ranking functions, meta-
search, multi-word queries, spam

21

Counting inversions: divide-and-conquer

Divide: separate list into two halves A and B.

Conquer: recursively count inversions in each list.

Return sum of three counts.

input

1 5 4 8 10 2 6 9 3 /

count inversions in left half A count inversions in right half B
1 5 4 8 10 2 6 9 3 /
5-4 6-3 9-3 9-7

count inversions (a, b) withac Aand b B

1 5 4 8 10 2 6 9 3 /

4-2 4-3 5-2 5-3 8-2 8-3 8-6 8-7 10-2 10-3 10-6 10-7 10-9

outputl + 3 + 13 =17

Combine: count inversions (a, b) with a € A and b € B.

22

Counting inversions: how to combine two subproblems?

Q. How to count inversions (a, b) with a € A and b € B?
A. Easy if A and B are sorted!

Warmup algorithm.
* Sort A and B.
* For each element b € B,
- binary search in A to find how elements in A are greater than b.

list A list B

7 10 18 3 14 20 23 2 11 16
sort A sort B

3 / 10 14 18 2 11 16 20 23

binary search to count inversions (a, b) withac A and b < B

3 / 10 14 18 2 11 16 20 23

5 2 1 0 0

Counting inversions: how to combine two subproblems?

Count inversions (a, b) with a € A and b € B, assuming A and B are sorted.
* Scan A and B from left to right.
* Compare a; and b,.

If a; < bj, then q; is not inverted with any element left in B.

If a; > bj, then b; is inverted with every element left in A.
Append smaller element to sorted list C.

count inversions (a, b) withac< Aand b € B

a; 18 by 20 23

t > 2 1®

merge to form sorted list C

2 3 / 10 11

Counting inversions: divide-and-conquer algorithm implementation

Input. List L.
Output. Number of inversions in Land L in sorted order.

SORT-AND-COUNT(L)

IF (list L has one element)

RETURN (0, L).

Divide the list into two halves A and B.
(ra, A) < SORT-AND-COUNT(A). «— T(n/2)
(rg, B) <= SORT-AND-COUNT(B). «— T(n/2)

(rap, L) <= MERGE-AND-COUNT(A, B). «<—— O(n)

RETURN (ra + 7B + raB, L).

25

Counting inversions: divide-and-conquer algorithm analysis

Proposition. The sort-and-count algorithm counts the number of inversions
in a permutation of size n in O(nlog n) time.

Pf. The worst-case running time T(n) satisfies the recurrence:

O(1) if n=1

 T(In/2]) + T(In/2]) + ©(n) ifn>1

26

v 5. DIVIDE AND CONQUER

CHARLES E. LEISERSON

RONALD L. RIVEST

‘ CLIFFORD STEIN
- . . h - ~—

» randomized quicksort

SECTION 7.1-7.3

3-WAY PARTITIONING

Goal. Given an array A and pivot element p, partition array so that:
* Smaller elements in left subarray L.
* Equal elements in middle subarray M.
* Larger elements in right subarray R.

Challenge. O(n) time and O(1) space.

the array A

7 6 12 3 11 8 9 1 4 10 2

p

the partitioned array A

31 4 2 6 7 12 11 8 9 10

L M | R

28

Randomized quicksort

* Pick a random pivot element p € A.
* 3-way partition the array into L, M, and R.
* Recursively sort both L and R.

the array A 7 6 12 3 11 8§ 9 1 4 10 2
p
partition A 3 1 4 2 6 7 12 11 8 9 10
sort L 1 2 3 4 6
sort R 6 7 8 9 10 11 12

the sorted array A 1 2 3 4 6 7 g 9 10 11 12

Randomized quicksort

* Pick a random pivot element p € A.
* 3-way partition the array into L, M, and R.
* Recursively sort both L and R.

RANDOMIZED-QUICKSORT(A)

[F (array A has zero or one element)
RETURN.
Pick pivot p € A uniformly at random.
(L, M, R) <= PARTITION-3-WAY(A, p). <—— O(n)
RANDOMIZED-QUICKSORT(L). <«—— T(i)

new analysis required
RANDOMIZED-QUICKSORT(R). «—— Tt —i-1) (i is a random variable—depends on p)

30

Analysis of randomized quicksort

Proposition. The expected number of compares to quicksort an array
of n distinct elements a1 <ax < --- <a, is O(nlogn).

Pf. Consider BST representation of pivot elements.

the original array of elements A

a7 ae ai2 as ail as as ai a4 aio az ais as

T

first pivot
(chosen uniformly at random)

first pivot in
left subarray

31

Analysis of randomized quicksort

Proposition. The expected number of compares to quicksort an array
of n distinct elements a1 <ax < --- <a, is O(nlogn).

Pf. Consider BST representation of pivot elements.
* a; and g; are compared once iff one is an ancestor of the other.

_ _ a3z and ae are compared
first pivot

. L (chosen uniformly at random) (when as is pivot)
first pivot in

left subarray

32

Analysis of randomized quicksort

Proposition. The expected number of compares to quicksort an array
of n distinct elements a1 <ax < --- <a, is O(nlogn).

Pf. Consider BST representation of pivot elements.
* a; and g; are compared once iff one is an ancestor of the other.

_ _ a2 and as are not compared
first pivot

(chosen uniformly at random) (because a3 partitions them)
first pivot in

left subarray

33

Divide-and-conquer: quiz 2 g

Given an array of n =8 distinct elements a1 <a:<-.- <an, what is the
probability that a; and as are compared during randomized quicksort?

A. O
1/n
C. 2/n

34

Divide-and-conquer: quiz 3 g

Given an array of n =2 distinct elements a1 <a:< -.- <an, what is the
probability that a; and a, are compared during randomized quicksort?

A. O
1/n
C. 2/n

35

Analysis of randomized quicksort

Proposition. The expected number of compares to quicksort an array of n
distinct elements a1 <ax < --- <a, is O(nlogn).

Pf. Consider BST representation of pivot elements.

* a; and g; are compared once iff one is an ancestor of the other.
* Pr[a and gjare compared] =2/ (j-i+1), wherei< j.

Pr[az and as compared] = 2/7
compared iff either a2 or ag is chosen
as pivot before any of { a3, as, as, as, a7}

36

Analysis of randomized quicksort

Proposition. The expected number of compares to quicksort an array of n
distinct elements a1 <ax < --- <a, is O(nlogn).

Pf. Consider BST representation of pivot elements.

* a; and g; are compared once iff one is an ancestor of the other.

* Pr[a and gjare compared] =2/ (j-i+1), wherei< j.

n n—i+1
1
- Expected number of compares = ? Y = 2y S: =
=1 5= z—l—l =1 j=2 J
/ — 1
all pairs i and j < =
j=1 J

< 2n(lnn+4+1) =

T

harmonic sum

Remark. Number of compares only decreases if equal elements.

37

Tony Hoare

 Invented quicksort to translate Russian into English.
[but couldn’t explain his algorithm or implement it!]

- Learned Algol 60 (and recursion).
- Implemented quicksort.

ALGORITHM 64

QUICKSORT

C. A. R. Hoare

Elliott Brothers Ltd., Borehamwood, Hertfordshire, Eng.

procedure quicksort (AM,N); value M,N;
array A; integer M,N;
comment Quicksort is a very fast and convenient method of
sorting an array in the random-access store of a computer. The
entire contents of the store may be sorted, since no extra space is
required. The average number of comparisons made is 2(M—N) In
(N—M), and the average number of exchanges is one sixth this
amount. Suitable refinements of this method will be desirable for
its implementation on any actual computer;
begin integer 1,J;
if M < N then begin partition (A,M,N,1.J);
quicksort (AM,J);
quicksort (A, I, N)
end
end quicksort

Communications of the ACM (July 1961)

Tony Hoare
1980 Turing Award

38

NUTS AND BOLTS

Problem. A disorganized carpenter has a mixed pile of n nuts and n bolts.
« The goal is to find the corresponding pairs of nuts and bolts.
« Each nut fits exactly one bolt and each bolt fits exactly one nut.
« By fitting a nut and a bolt together, the carpenter can see which one is
bigger (but cannot directly compare either two nuts or two bolts).

Brute-force solution. Compare each bolt to each nut—0® (n2) compares.
Challenge. Design an algorithm that makes O(n log n) compares.

39

v 5. DIVIDE AND CONQUER

CHARLES E. LEISERSON

RONALD L. RIVEST

‘ CLIFFORD STEIN
RS R SRS

» median and selection

SECTION 9.3

Median and selection problems

Selection. Given n elements from a totally ordered universe, find kth smallest.
* Minimum: k=1; maximum: k = n.

Median: k=[(n+1)/2].

O(n) compares for min or max.

O(n log n) compares by sorting.

O(n log k) compares with a binary heap. «<— max heap with k smallest

Applications. Order statistics; find the “top £’; bottleneck paths, ...

Q. Can we do it with O(n) compares?
A. Yes! Selection is easier than sorting.

43

Randomized quickselect

* Pick a random pivot element p € A.
* 3-way partition the array into L, M, and R.
* Recur in one subarray—the one containing the ikt smallest element.

QUICK-SELECT(A, k)

Pick pivot p € A uniformly at random.

(L, M, R) <= PARTITION-3-WAY(A, p). «— O(n)

IF (k < |LI) RETURN QUICK-SELECT(L, k). <«—— T(i)

ELSEIF (k >ILI1+1MI) RETURN QUICK-SELECT(R, k—ILI—-IMl) <«— Tm-i-1)

ELSE RETURN p.

44

Randomized quickselect analysis

Intuition. Split candy bar uniformly = expected size of larger piece is 3.

T(n) < TBn/4) +n = 1T(n) < 4n
N

not rigorous: can’t assume
E[T())] = T(E[i])

Def. T(n, k) = expected # compares to select kit smallest in array of length < n.

Def. T(n) = maxi T(n, k).

Proposition. T(n) < 4n.

Pf. [by strong induction on n]
can assume we always recur of
e Assume true for 1.2 n—1 larger of two subarrays since T(n)
>] is monotone non-decreasing
* T(n) satisfies the following recurrence: /

Tn) < n +1/n[2Tn/2) + ... + 2T(n=3) + 2T(n—2) + 2T(n— 1)]

<n+1/n[8n/)+...+8n-3)+8n—-2)+8n-1)]

inductive hypothesis

<n +1/n@3Bn?

= 4 n. " tiny cheat: sum should start at T(|_n/2J)

45

Selection in worst-case linear time

Goal. Find pivot element p that divides list of n elements into two pieces so
that each piece is guaranteed to have < 7/10 n elements.

Q. How to find approximate median in linear time?
A. Recursively compute median of sample of < 2/10 n elements.

. (1) itn=1
(n) = T(7/10n) + T(2/10n) + O(n) otherwise

\

two subproblems
of different sizes!

= T(n) = O(n)

we’ll need to show this

46

ng the pivot element

Choosi

elements eac

|n/5] groups of 5

* Divide n elements into

ORORORC)

OO
NCORCIRCINC)
ONCYRCINCINCY
ONORONONCY
ONORCONCINCR
KONCIRCIRCINC)
ONORCNCNC)
EINCIRCORCIRC)
ONCIRCYRCYNC)
SNCIRCIRCINC)

Choosing the pivot element

* Divide n elements into [n/5] groups of 5 elements each (plus extra).

« Find median of each group (except extra).

medians

48

Choosing the pivot element

Find median of each group (except extra).

Find median of |n /5] medians recursively.

Use median-of-medians as pivot element.

medians

mEdian Of /
medians @ @ e

Divide n elements into [n /5] groups of 5 elements each (plus extra).

49

Median-of-medians selection algorithm

MOM-SELECT(A, k)

n<IAl.

IF (n < 50)

RETURN kth smallest of element of A via mergesort.

Group A into |n / 5] groups of 5 elements each (ignore leftovers).
B <— median of each group of 3.

p < MOM-SELECT(B, |_n/ IOJ) <«—— median of medians

50

Analysis of median-of-medians selection algorithm

* At least half of 5-element medians < p.

DE00 0
S
R @y
0O6E

F

0606

3
™
o
Y
S
wn

Analysis of median-of-medians selection algorithm

* At least half of 5-element medians < p.
* Atleast||[n/5]/2|=|n/10] medians < p.

R () (=) () (2
DO E

0606

Analysis of median-of-medians selection algorithm

* At least half of 5-element medians < p.
* Atleast||n/5]/2|=|n/10] medians < p.
* At least 3|n/ 10| elements < p.

medians <p

median of
medians p

53

Analysis of median-of-medians selection algorithm

* At least half of 5-element medians > p.

DE00 0
S
®POE
0O6E

F

0606

3
™
o
Y
S
wn

Analysis of median-of-medians selection algorithm

* At least half of 5-element medians > p.
* Atleast||n/5]/2|=|n/10] medians = p.

median of
medians p @

medians = p

55

Analysis of median-of-medians selection algorithm

« At
* At
* At

median of
medians p

east half of 5-element medians > p.
east ||[n/5]/2|=|n/10] medians = p.
east 3 |n/ 10| elements = p.

medians = p

56

Median-of-medians selection algorithm recurrence

Median-of-medians selection algorithm recurrence.
 Select called recursively with |n /5] elements to compute MOM p.
* At least 3|n/ 10| elements < p.
* At least 3 |n/10] elements = p.
 Select called recursively with at most n —3 |n/ 10| elements.

Def. C(n) = max # compares on any array of n elements.

C(n) < C(|n/5]) + C(n—3[n/10]) + £n

median of recursive computing median of 5
medians select (< 6 compares per group)
partitioning

(< n compares)

Intuition.
* C(n) is going to be at least linear in n = C(n) is super-additive.
* Ignoring floors, this implies that C(n) < C(n/5+n-3n/10)+ 11/5n
= COn/10)+ 11/5n
= C(n) < 22n.

57

Median-of-medians selection algorithm recurrence

Median-of-medians selection algorithm recurrence.

 Select called recursively with |n /5] elements to compute MOM p.

* At least 3|n/ 10| elements < p.
* At least 3 |n/10] elements = p.
 Select called recursively with at most n —3 |n/ 10| elements.

Def. C(n) = max # compares on any array of n elements.

C(n) < C(|n/5]) + C(n—3[n/10]) + £n

median of recursive computing median of 5
medians select (< 6 compares per group)
partitioning

(< n compares)

Now, let’s solve given recurrence.
* Assume n is both a power of 5 and a power of 10 ?
* Prove that C(n) is monotone non-decreasing.

58

Divide-and-conquer: quiz 4

Consider the following recurrence

(0
C(n) = 1

L C(In/5]) + C(n —3|n/10]) + Ln

Is C(n) monotone non-decreasing?

o N w »

Yes, obviously.
Yes, but proof is tedious.
Yes, but proof is hard.

No.

itn <1

itn >1

59

Median-of-medians selection algorithm recurrence

Analysis of selection algorithm recurrence.

* T(n) = max # compares on any array of < n elements.
* T(n) is monotone non-decreasing, but C(n) is not!

[6n if n < 50
T(n) < <

| max{ T'(n — 1), T(|n/5]) + T(n — 3|n/10]) + £+n) } ifn>50

Claim. T(n) < 44n.
Pf. [by strong induction]
* Base case: T(n) < 6n for n < 50 (mergesort).
* Inductive hypothesis: assume true for 1,2, ...,n— 1.

* Induction step: for n = 50, we have either T(n) < T(n—-1) < 44n or

T(n) < T(n/5])) + Tn-=3|n/10))+ 11/5n

inductive

hypothesis —> =< 44 ([n/5]) + 44 (n—-3 [n/10))+ 11/5n

IA

44 (n/S5) + 44n-44(n/4)+ 11/5n «<—— for n=50, 3|n/10| = n/4
4 n. =

60

Divide-and-conquer: quiz 5 >

Suppose that we divide n elements into |n/r| groups of r elements each,
and use the median-of-medians of these |n/r| groups as the pivot.
For which r is the worst-case running time of select O(n) ?

A. r=3
B. r=7
C. Both A and B.

D. Neither A nor B.

61

Lineartime selection retrospective

Proposition. [Blum-Floyd-Pratt-Rivest-Tarjan 1973] There exists a
compare-based selection algorithm whose worst-case running time is O(n).

Time Bounds for Selection*®

ManveL Brum, RoBerT W. FLOoYD, VAUGHAN PraTT,
RonaLDp L. Rivest, AND RoBERT E. TARjAN

Department of Computer Science, Stanford University, Stanford, California 94305
Received November 14, 1972

The number of comparisons required to select the i-th smallest of # numbers is shown
to be at most a linear function of #» by analysis of a new selection algorithm—PICK.
Specifically, no more than 54305 n comparisons are ever required. This bound is
improved for extreme values of 7, and a new lower bound on the requisite number
of comparisons is also proved.

Theory.
* Optimized version of BFPRT: < 54305 n compares.

* Upper bound: [Dor—Zwick 1995] =< 2.95n compares.
* Lower bound: [Dor—Zwick 1999] = (2 + 2-80) n compares.

Practice. Constants too large to be useful.

62

5. DIVIDE AND CONQUER

\ /\' r { g » closest pair of points

r\ JON KlEINBERG EVA TARDOS
\

SECTION 5.4

Closest pair of points

Closest pair problem. Given n points in the plane, find a pair of points
with the smallest Euclidean distance between them.

Fundamental geometric primitive.
- Graphics, computer vision, geographic information systems,
molecular modeling, air traffic control.

« Special case of nearest neighbor, Euclidean MST, Voronoi.

N _
—

fast closest pair inspired fast algorithms for these problems

64

Closest pair of points

Closest pair problem. Given n points in the plane, find a pair of points
with the smallest Euclidean distance between them.

Brute force. Check all pairs with ®(n2) distance calculations.
1D version. Easy O(nlog n) algorithm if points are on a line.

Non-degeneracy assumption. No two points have the same x-coordinate.

Closest pair of points: first attempt

Sorting solution.
* Sort by x-coordinate and consider nearby points.
* Sort by y-coordinate and consider nearby points.

66

Closest pair of points: first attempt

Sorting solution.
* Sort by x-coordinate and consider nearby points.
* Sort by y-coordinate and consider nearby points.

67

Closest pair of points: second attempt

Divide. Subdivide region into 4 quadrants.

68

Closest pair of points: second attempt

Divide. Subdivide region into 4 quadrants.
Obstacle. Impossible to ensure n/4 points in each piece.

69

Closest pair of points: divide-and-conquer algorithm

Divide: draw vertical line L so that n/2 points on each side.

Conquer: find closest pair in each side recursively.
Combine: find closest pair with one point in each side.

Return best of 3 solutions.

AN

seems like O(n?)

70

How to find closest pair with one point in each side?

Find closest pair with one point in each side, assuming that distance < 6.

* Observation: suffices to consider only those points within & of line L.

71

How to find closest pair with one point in each side?

Find closest pair with one point in each side, assuming that distance < 6.

* Observation: suffices to consider only those points within & of line L.

* Sort points in 26-strip by their y-coordinate.

« Check distances of only those points within 7 positions in sorted list!

why?
® o ®
®
® ®
O —
0 =min(12, 21)
e . """""""""
®

72

How to find closest pair with one point in each side?

Def. Let s; be the point in the 2 -strip, with the i» smallest y-coordinate.

Claim. If |j—i| > 7, then the distance between

s; and s; is at least o. L
Pf.
* Consider the 28-by-& rectangle R in strip if
whose min y-coordinate is y-coordinate of s..
- Distance between s; and any point s, D . |
. R | 1568
above R is = 0. | | | | | :
o _ diameter is o) N N |
* Subdivide R into 8 squares. 5/V2 <6 : : 1S
.+ At most 1 point per square. oo EEE SE EEEEE - - |
Si
* At most 7 other points can be in R. =
constant can be improved with more
refined geometric packing argument

20

73

Closest pair of points: divide-and-conquer algorithm

CLOSEST-PAIR(p1, p2, ..., Pn)

Compute vertical line L such that half the points «—

are on each side of the line.

01 <= CLOSEST-PAIR(points in left half). —

02 <— CLOSEST-PAIR(points in right half). —

0 emin{él,éz}.

Delete all points further than 0 from line L. «—

Sort remaining points by y-coordinate. —

Scan points in y-order and compare distance between

each point and next 7 neighbors. If any of these —

distances is less than 0, update 0.

RETURN 0.

O(n)

T(n/2)

T(n/?2)

O(n)

O(n log n)

O(n)

74

Divide-and-conquer: quiz 6

What is the solution to the following recurrence?

O(1)
T(n) = <

 T([n/2]) + T([n/2]) + O(nlogn)

T(n) = O(n).
T(n) = O(nlog n).

T(n) = O(nlog2n).

o N w »

T(n) = On?).

itn=1

itn >1

75

Refined version of closest-pair algorithm

Q. How to improve to O(nlog n) ?
A. Don’t sort points in strip from scratch each time.
* Each recursive call returns two lists: all points sorted by x-coordinate,
and all points sorted by y-coordinate.
« Sort by merging two pre-sorted lists.

Theorem. [Shamos 1975] The divide-and-conquer algorithm for finding a
closest pair of points in the plane can be implemented in O(n log n) time.

© if n =
Pt. T'(n) = « v 1

 T([n/2]) + T([n/2]) + O(n) ifn>1

THE NEW
Texts [LLUSTRATED ENCYCLOPEDIA OF

comow. BILLIARDS
COMPLETELY REVISED AND UPDATED

AN INTRODUCTION

Wichoel an Sharmos

Divide-and-conquer: quiz 7

What is the complexity of the 2D closest pair problem?

A. O(n).

B. O(nlog”n).

C. O(nloglog n).

D. O(nlog n).

E. Not even Tarjan knows.

77

Computational complexity of closest-pair problem

Theorem. [Ben-Or 1983, Yao 1989] In quadratic decision tree model, any
algorithm for closest pair (even in 1D) requires Q(n log n) quadratic tests.

(x1 — x2)2 + (y1 — y2)?

Lower Bounds for Algebraic Computation Trees

with Integer Inputs”

Andrew Chi-Chih Yao
Department of Computer Science
Princeton Universily

Princeton, New Jersey 08544

Theorem. [Rabin 1976] There exists an algorithm to find the closest pair of
points in the plane whose expected running time is O().

\

A NOTE ON RABIN’S NEAREST-NEIGHBOR ALGORITHM * not subject to Q2(n log n) lower bound

because it uses the floor function
Steve FORTUNE and John HOPCROFT

Department of Computer Science, Cornell University, Ithaca, NY, U.S.A.

Received 20 July 1978, revised version received 21 August 1978

Probabilistic algorithms, nearest neighbor, hashing

78

Digression: computational geometry

Ingenious divide-and-conquer algorithms for core geometric problems.

closest pair O(n?) O(n log n) G
farthest pair O(n?) O(n log n)
convex hull O(n2) O(n log n) .
Delaunay/Voronoi O(n*) O(n log n) =
Euclidean MST O(n?) O(n log n) | Josemi ORowe

running time to solve a 2D problem with n points

Note. 3D and higher dimensions test limits of our ingenuity.

Convex hull

The convex hull of a set of n points is the smallest perimeter fence
enclosing the points.

o-.
7
e
e
e
bd
'
o o |
1
1
I
1
1
1
|
1
o o |
1
1
|
o o '
] |
1
|
o o |
[® |
° |
|
® I
\ 1
\ 1
\ o

\ o L
® '
- 1
1

Equivalent definitions.
- Smallest area convex polygon enclosing the points.
 |Intersection of all convex set containing all the points.

80

Farthest pair

Given n points in the plane, find a pair of points with the largest Euclidean
distance between them.

.-
//
//

;) o :
' I
/ 1

1

l

1

o o |
1

1

1

] o o I
1

1

o ® !

o o® |

o :

\ 1
\ 1
\\.- ®) |

Fact. Points in farthest pair are extreme points on convex hull.

81

Delaunay triangulation

The Delaunay triangulation is a triangulation of n points in the plane
such that no point is inside the circumcircle of any triangle.

no point in the set is
inside the circumcircle

point inside circumcircle
of 3 points

Delaunay triangulation of 19 points

Some useful properties.
* No edges cross.
- Among all triangulations, it maximizes the minimum angle.

- Contains an edge between each point and its nearest neighbor. .

Euclidean MST

Given n points in the plane, find MST connecting them.
[distances between point pairs are Euclidean distances]

Fact. Euclidean MST is subgraph of Delaunay triangulation.

Implication. Can compute Euclidean MST in O(n log n) time.

« Compute Delaunay triangulation.

it’s planar

» Compute MST of Delaunay triangulation. <—— _5 "4 .

83

Computational geometry applications

Applications.
- Robotics.
« VLSI design.
« Data mining.
- Medical imaging.
« Computer vision.
 Scientific computing.

airflow around an aircraft wing

 Finite-element meshing.

« Astronomical simulation.

« Models of physical world.

« Geographic information systems.

« Computer graphics (movies, games, virtual reality).

http:/ /www.ics.uci.edu/~eppstein/geom.html

84

