BIL694-Lecture 4: Vertex Coloring and Edge Coloring

Lecturer: Lale Özkahya

Resources for the presentation:
"Introduction to Graph Theory" by Douglas B. West

Outline

(1) Vertex Coloring and Upper Bounds
(2) Edge Coloring

Outline

(1) Vertex Coloring and Upper Bounds

(2) Edge Coloring

Definitions

k-coloring of a graph G : A labeling $f: V(G) \Longrightarrow S$, where $|S|=k$. The vertices of the same color form a color class.
k-coloring of a graph G : A labeling $f: V(G) \Longrightarrow S$, where $|S|=k$. The vertices of the same color form a color class.
proper coloring: A coloring, where any two neighboring vertices have different colors
k-coloring of a graph G : A labeling $f: V(G) \Longrightarrow S$, where $|S|=k$. The vertices of the same color form a color class.
proper coloring: A coloring, where any two neighboring vertices have different colors
k-colorable: A graph is k-colorable if it has a proper k-coloring.
k-coloring of a graph G : A labeling $f: V(G) \Longrightarrow S$, where $|S|=k$. The vertices of the same color form a color class.
proper coloring: A coloring, where any two neighboring vertices have different colors k-colorable: A graph is k-colorable if it has a proper k-coloring. chromatic number of a graph $G, \chi(G)$: The least k such that G is k-colorable.
k-coloring of a graph G : A labeling $f: V(G) \Longrightarrow S$, where $|S|=k$. The vertices of the same color form a color class.
proper coloring: A coloring, where any two neighboring vertices have different colors k-colorable: A graph is k-colorable if it has a proper k-coloring.
chromatic number of a graph $G, \chi(G)$: The least k such that G is k-colorable.
Examples: bipartite graphs have chromatic number 2, odd cycles, Petersen graph have chromatic number 3. Why? What is the chromatic number of Q_{n} ?

Relation of $\chi(G)$ to other graph parameters

Clique number, $\omega(G)$: maximum order of a clique (complete subgraph) in G.

Relation of $\chi(G)$ to other graph parameters

Clique number, $\omega(G)$: maximum order of a clique (complete subgraph) in G.

Proposition

For every graph $G, \chi(G) \geq \omega(G)$ and $\chi(G) \geq \frac{n(G)}{\alpha(G)}$.

Relation of $\chi(G)$ to other graph parameters

Clique number, $\omega(G)$: maximum order of a clique (complete subgraph) in G.

Proposition

For every graph $G, \chi(G) \geq \omega(G)$ and $\chi(G) \geq \frac{n(G)}{\alpha(G)}$.
Remark: Can you find examples, for which equalities do not hold in the above inequalities?

Relation of $\chi(G)$ to other graph parameters

Clique number, $\omega(G)$: maximum order of a clique (complete subgraph) in G.

Proposition

For every graph $G, \chi(G) \geq \omega(G)$ and $\chi(G) \geq \frac{n(G)}{\alpha(G)}$.
Remark: Can you find examples, for which equalities do not hold in the above inequalities? When $G=C_{2 r+1} \vee K_{s} . \omega(G)=s+2$ and $\chi(G) \geq s+3$.

Relation of $\chi(G)$ to other graph parameters

Clique number, $\omega(G)$: maximum order of a clique (complete subgraph) in G.

Proposition

For every graph $G, \chi(G) \geq \omega(G)$ and $\chi(G) \geq \frac{n(G)}{\alpha(G)}$.
Remark: Can you find examples, for which equalities do not hold in the above inequalities? When $G=C_{2 r+1} \vee K_{s} . \omega(G)=s+2$ and $\chi(G) \geq s+3$.

The chromatic number of the disjoint union of two graphs:

$$
\chi(G+H)=\max (\chi(G), \chi(H)\}
$$

Relation of $\chi(G)$ to other graph parameters

Clique number, $\omega(G)$: maximum order of a clique (complete subgraph) in G.

Proposition

For every graph $G, \chi(G) \geq \omega(G)$ and $\chi(G) \geq \frac{n(G)}{\alpha(G)}$.
Remark: Can you find examples, for which equalities do not hold in the above inequalities? When $G=C_{2 r+1} \vee K_{s} . \omega(G)=s+2$ and $\chi(G) \geq s+3$.

The chromatic number of the disjoint union of two graphs:

$$
\chi(G+H)=\max (\chi(G), \chi(H)\} .
$$

The chromatic number of the join of two graphs:

$$
\chi(G \vee H)=\chi(G)+\chi(H) .
$$

Another Product of Graphs: Cartesian product

The cartesian product of G and $H, G \square H$, is the graph with vertex set $V(G) \times V(H)$ specified by putting an edge between the vertices $u v$ and $u^{\prime} v^{\prime}$ iff
(1) $u=u^{\prime}$ and $v v^{\prime} \in E(H)$, or
(2) $v=v^{\prime}$ and $u u^{\prime} \in E(G)$.

Another Product of Graphs: Cartesian product

The cartesian product of G and $H, G \square H$, is the graph with vertex set $V(G) \times V(H)$ specified by putting an edge between the vertices $u v$ and $u^{\prime} v^{\prime}$ iff
(1) $u=u^{\prime}$ and $v v^{\prime} \in E(H)$, or
(2) $v=v^{\prime}$ and $u u^{\prime} \in E(G)$.

Can you draw the cartesian product of two paths, say $P_{3} \square P_{4}$?

Another Product of Graphs: Cartesian product

The cartesian product of G and $H, G \square H$, is the graph with vertex set $V(G) \times V(H)$ specified by putting an edge between the vertices $u v$ and $u^{\prime} v^{\prime}$ iff
(1) $u=u^{\prime}$ and $v v^{\prime} \in E(H)$, or
(2) $v=v^{\prime}$ and $u u^{\prime} \in E(G)$.

Can you draw the cartesian product of two paths, say $P_{3} \square P_{4}$?
The chromatic number of the cartesian product of two graphs (Vizing, 1963, Aberth, 1964):

$$
\chi(G \square H)=\max \{\chi(G), \chi(H)\} .
$$

Upper Bounds

Proposition
$\chi(G) \leq \Delta(G)+1$.

Upper Bounds

Proposition

$\chi(G) \leq \Delta(G)+1$.

Proposition (Welsh-Powell, 1967)
If a graph G has a degree sequence $d_{1} \geq d_{2} \geq \cdots \geq d_{n}$, then

$$
\chi(G) \leq 1+\max _{i} \min \left\{d_{i}, i-1\right\}
$$

Proof idea: Apply greedy coloring to the vertices ordered with nonincreasing degrees.

Upper Bounds

Proposition

$\chi(G) \leq \Delta(G)+1$.

Proposition (Welsh-Powell, 1967)

If a graph G has a degree sequence $d_{1} \geq d_{2} \geq \cdots \geq d_{n}$, then

$$
\chi(G) \leq 1+\max _{i} \min \left\{d_{i}, i-1\right\} .
$$

Proof idea: Apply greedy coloring to the vertices ordered with nonincreasing degrees.

Note: Every graph has some vertex ordering for which greedy coloring uses exactly $\chi(G)$ colors. (Exercise 33)

Color-critical (or k-critical) graphs

If $\chi(H)<\chi(G)=k$ for every proper subgraph $H \subset G$, then G is called k-critical (or color-critical).
Example: Every odd cycle is a 2 -critical graph, any K_{n} is n-critical.

Lemma

If H is a k-critical graph, then $\delta(H) \geq k-1$.

Color-critical (or k-critical) graphs

If $\chi(H)<\chi(G)=k$ for every proper subgraph $H \subset G$, then G is called k-critical (or color-critical).
Example: Every odd cycle is a 2 -critical graph, any K_{n} is n-critical.

Lemma

If H is a k-critical graph, then $\delta(H) \geq k-1$.
Proof idea: Assume, there is a vertex with degree $k-2$ or less, find a contradiction.

Color-critical (or k-critical) graphs

If $\chi(H)<\chi(G)=k$ for every proper subgraph $H \subset G$, then G is called k-critical (or color-critical).
Example: Every odd cycle is a 2 -critical graph, any K_{n} is n-critical.

Lemma

If H is a k-critical graph, then $\delta(H) \geq k-1$.
Proof idea: Assume, there is a vertex with degree $k-2$ or less, find a contradiction.

Theorem (Szekeres-Wilf, 1968)

For any graph G,

$$
\chi(G) \leq 1+\max _{H \subseteq G} \delta(H) .
$$

Color-critical (or k-critical) graphs

If $\chi(H)<\chi(G)=k$ for every proper subgraph $H \subset G$, then G is called k-critical (or color-critical).
Example: Every odd cycle is a 2 -critical graph, any K_{n} is n-critical.

Lemma

If H is a k-critical graph, then $\delta(H) \geq k-1$.
Proof idea: Assume, there is a vertex with degree $k-2$ or less, find a contradiction.

Theorem (Szekeres-Wilf, 1968)

For any graph G,

$$
\chi(G) \leq 1+\max _{H \subseteq G} \delta(H) .
$$

Proof idea: Let H^{\prime} be a k-critical subgraph of G.

$$
\chi(G)-1=\chi\left(H^{\prime}\right)-1 \leq \delta\left(H^{\prime}\right) \leq \max _{H \subseteq G} \delta(H) .
$$

Theorem (Brooks, 1941)

If G is a connected graph other than a complete graph or an odd cycle, then $\chi(G) \leq \Delta(G)$.

Sketch of the proof: Let $k=\Delta(G)$. For $k \geq 3$, trivial for $k=1,2$.

- Case 1: G is not k-regular. Let $\operatorname{deg}\left(v_{n}\right)<k$, construct a spanning tree of G using BFS starting at v_{n}, label the vertices v_{i} with decreasing index i as they are added to the tree. Greedy algorithm uses at most k colors.

Theorem (Brooks, 1941)

If G is a connected graph other than a complete graph or an odd cycle, then $\chi(G) \leq \Delta(G)$.

Sketch of the proof: Let $k=\Delta(G)$. For $k \geq 3$, trivial for $k=1,2$.

- Case 1: G is not k-regular. Let $\operatorname{deg}\left(v_{n}\right)<k$, construct a spanning tree of G using BFS starting at v_{n}, label the vertices v_{i} with decreasing index i as they are added to the tree. Greedy algorithm uses at most k colors.
- Case 2: G is k-regular and has a cut-vertex: Say x is a cut-vertex and H_{1} is a component of $G-x$ and $H_{2}=G-\{x\}-H_{1}$. Color $H_{1} \cup\{x\}$ and $H_{2} \operatorname{cup}\{x\}$ separately. Permute colors in both colorings such that x has the same color in both. Done.
- Case 3: G is k-regular and 2-connected: Assume some vertex v_{n} has neighbors v_{1} and v_{2}, that are not adjacent, and $G-\left\{v_{1}, v_{2}\right\}$ is connected. (We show later, that this is always true.)
- Case 3: G is k-regular and 2-connected: Assume some vertex v_{n} has neighbors v_{1} and v_{2}, that are not adjacent, and $G-\left\{v_{1}, v_{2}\right\}$ is connected. (We show later, that this is always true.)
- Use either BFS or DFS to find a spanning tree of $G-\left\{v_{1}, v_{2}\right\}$ rooted at v_{n} such that vertex indices increase along the paths to the root.
- Case 3: G is k-regular and 2-connected: Assume some vertex v_{n} has neighbors v_{1} and v_{2}, that are not adjacent, and $G-\left\{v_{1}, v_{2}\right\}$ is connected. (We show later, that this is always true.)
- Use either BFS or DFS to find a spanning tree of $G-\left\{v_{1}, v_{2}\right\}$ rooted at v_{n} such that vertex indices increase along the paths to the root.
- Color greedily $v_{1}, v_{2}, \ldots, v_{n}$ by coloring v_{1} and v_{2} the same. Done.
- Case 3: G is k-regular and 2-connected: Assume some vertex v_{n} has neighbors v_{1} and v_{2}, that are not adjacent, and $G-\left\{v_{1}, v_{2}\right\}$ is connected. (We show later, that this is always true.)
- Use either BFS or DFS to find a spanning tree of $G-\left\{v_{1}, v_{2}\right\}$ rooted at v_{n} such that vertex indices increase along the paths to the root.
- Color greedily $v_{1}, v_{2}, \ldots, v_{n}$ by coloring v_{1} and v_{2} the same. Done.

Claim

Every k-regular 2-connected graph has a triple as v_{1}, v_{2}, v_{n}.

- Case 3: G is k-regular and 2-connected: Assume some vertex v_{n} has neighbors v_{1} and v_{2}, that are not adjacent, and $G-\left\{v_{1}, v_{2}\right\}$ is connected. (We show later, that this is always true.)
- Use either BFS or DFS to find a spanning tree of $G-\left\{v_{1}, v_{2}\right\}$ rooted at v_{n} such that vertex indices increase along the paths to the root.
- Color greedily $v_{1}, v_{2}, \ldots, v_{n}$ by coloring v_{1} and v_{2} the same. Done.

Claim

Every k-regular 2-connected graph has a triple as v_{1}, v_{2}, v_{n}.
Proof: Since G is not complete, there are two vertices of distance 2 , say v_{1} and v_{2}. We let the common neighbor of them be v_{n}.

Graphs with large chromatic number

Construction (Mycielski's construction)
For an input graph G with vertices $\left\{v_{1}, \ldots, v_{n}\right\}$, a new graph G^{\prime} is obtained by adding vertices $U=\left\{u_{1}, \ldots, u_{n}\right\}$ and another vertex w. The edge set og G^{\prime} contains $E(G)$, the edges between u_{i} and $N_{G}\left(v_{i}\right)$ for all i. Moreover, let $N(w)=U$.

Graphs with large chromatic number

Construction (Mycielski's construction)

For an input graph G with vertices $\left\{v_{1}, \ldots, v_{n}\right\}$, a new graph G^{\prime} is obtained by adding vertices $U=\left\{u_{1}, \ldots, u_{n}\right\}$ and another vertex w. The edge set og G^{\prime} contains $E(G)$, the edges between u_{i} and $N_{G}\left(v_{i}\right)$ for all i. Moreover, let $N(w)=U$.

Remark: This construction obtains a $k+1$-chromatic graph, when the input graph is k-chromatic. Examples: $G=K_{2}$ and $G=C_{5}$.

Graphs with large chromatic number

Construction (Mycielski's construction)

For an input graph G with vertices $\left\{v_{1}, \ldots, v_{n}\right\}$, a new graph G^{\prime} is obtained by adding vertices $U=\left\{u_{1}, \ldots, u_{n}\right\}$ and another vertex w. The edge set og G^{\prime} contains $E(G)$, the edges between u_{i} and $N_{G}\left(v_{i}\right)$ for all i. Moreover, let $N(w)=U$.

Remark: This construction obtains a $k+1$-chromatic graph, when the input graph is k-chromatic. Examples: $G=K_{2}$ and $G=C_{5}$.

Theorem (Mycielski, 1955)

From a k-chromatic triangle-free graph G, Mycielski's construction produces a $k+1$-chromatic triangle-free graph.

- U is an independent set. So, triangles could be induced by some u_{i} and neighbors in $N\left(v_{i}\right)$, contradiction, because G has no triangle.

Graphs with large chromatic number

Construction (Mycielski's construction)

For an input graph G with vertices $\left\{v_{1}, \ldots, v_{n}\right\}$, a new graph G^{\prime} is obtained by adding vertices $U=\left\{u_{1}, \ldots, u_{n}\right\}$ and another vertex w. The edge set og G^{\prime} contains $E(G)$, the edges between u_{i} and $N_{G}\left(v_{i}\right)$ for all i. Moreover, let $N(w)=U$.

Remark: This construction obtains a $k+1$-chromatic graph, when the input graph is k-chromatic. Examples: $G=K_{2}$ and $G=C_{5}$.

Theorem (Mycielski, 1955)

From a k-chromatic triangle-free graph G, Mycielski's construction produces a $k+1$-chromatic triangle-free graph.

- U is an independent set. So, triangles could be induced by some u_{i} and neighbors in $N\left(v_{i}\right)$, contradiction, because G has no triangle.
- We can easily extend a k-coloring of G to color U. Then, color w with an extra color. So, at most $k+1$ colors are sufficient.

Graphs with large chromatic number

Construction (Mycielski's construction)

For an input graph G with vertices $\left\{v_{1}, \ldots, v_{n}\right\}$, a new graph G^{\prime} is obtained by adding vertices $U=\left\{u_{1}, \ldots, u_{n}\right\}$ and another vertex w. The edge set og G^{\prime} contains $E(G)$, the edges between u_{i} and $N_{G}\left(v_{i}\right)$ for all i. Moreover, let $N(w)=U$.

Remark: This construction obtains a $k+1$-chromatic graph, when the input graph is k-chromatic. Examples: $G=K_{2}$ and $G=C_{5}$.

Theorem (Mycielski, 1955)

From a k-chromatic triangle-free graph G, Mycielski's construction produces a $k+1$-chromatic triangle-free graph.

- U is an independent set. So, triangles could be induced by some u_{i} and neighbors in $N\left(v_{i}\right)$, contradiction, because G has no triangle.
- We can easily extend a k-coloring of G to color U. Then, color w with an extra color. So, at most $k+1$ colors are sufficient.
- Also, at least $k+1$ colors are needed. To show that start with a proper coloring of G^{\prime} and obtain a proper coloring of G using less colors.

Outline

(1) Vertex Coloring and Upper Bounds

(2) Edge Coloring

Definitions

A k-edge coloring of a graph G is a coloring (labeling) of the edges of G using k colors.

A k-edge coloring of a graph G is a coloring (labeling) of the edges of G using k colors.
A coloring is called proper if incident edges have different colors.

A k-edge coloring of a graph G is a coloring (labeling) of the edges of G using k colors.
A coloring is called proper if incident edges have different colors.
A graph is k-edge-colorable if it has a proper k-edge coloring.

A k-edge coloring of a graph G is a coloring (labeling) of the edges of G using k colors.
A coloring is called proper if incident edges have different colors.
A graph is k-edge-colorable if it has a proper k-edge coloring. The edge chromatic number of $G, \chi^{\prime}(G)$, is the least k such that G is k-edge-colorable.

A k-edge coloring of a graph G is a coloring (labeling) of the edges of G using k colors.
A coloring is called proper if incident edges have different colors.
A graph is k-edge-colorable if it has a proper k-edge coloring. The edge chromatic number of $G, \chi^{\prime}(G)$, is the least k such that G is k-edge-colorable.

Observation: $\chi^{\prime}(G) \geq \Delta(G)$ for all graphs.

A k-edge coloring of a graph G is a coloring (labeling) of the edges of G using k colors.
A coloring is called proper if incident edges have different colors.
A graph is k-edge-colorable if it has a proper k-edge coloring. The edge chromatic number of $G, \chi^{\prime}(G)$, is the least k such that G is k-edge-colorable.

Observation: $\chi^{\prime}(G) \geq \Delta(G)$ for all graphs.
Example: Edge-coloring of $K_{2 n}$ is a modeling of scheduling problem.

Bipartite Graphs, Petersen Graph

Theorem (König, 1916)
If G is bipartite, then $\chi^{\prime}(G)=\Delta(G)$.

- Note that every bipartite graph is contained in a $\Delta(G)$-regular bipartite graph, call this larger graph G^{\prime}.

Bipartite Graphs, Petersen Graph

Theorem (König, 1916)
If G is bipartite, then $\chi^{\prime}(G)=\Delta(G)$.

- Note that every bipartite graph is contained in a $\Delta(G)$-regular bipartite graph, call this larger graph G^{\prime}.
- Every regular bipartite graph has a 1-factor.

Bipartite Graphs, Petersen Graph

Theorem (König, 1916)

If G is bipartite, then $\chi^{\prime}(G)=\Delta(G)$.

- Note that every bipartite graph is contained in a $\Delta(G)$-regular bipartite graph, call this larger graph G^{\prime}.
- Every regular bipartite graph has a 1-factor.
- Remove 1 -factors of G^{\prime} one by one and let every one factor be the edges of one color class.

Bipartite Graphs, Petersen Graph

Theorem (König, 1916)

If G is bipartite, then $\chi^{\prime}(G)=\Delta(G)$.

- Note that every bipartite graph is contained in a $\Delta(G)$-regular bipartite graph, call this larger graph G^{\prime}.
- Every regular bipartite graph has a 1-factor.
- Remove 1-factors of G^{\prime} one by one and let every one factor be the edges of one color class.
- This yields a proper $\Delta(G)$-coloring of G^{\prime} and G.

Bipartite Graphs, Petersen Graph

Theorem (König, 1916)

If G is bipartite, then $\chi^{\prime}(G)=\Delta(G)$.

- Note that every bipartite graph is contained in a $\Delta(G)$-regular bipartite graph, call this larger graph G^{\prime}.
- Every regular bipartite graph has a 1-factor.
- Remove 1 -factors of G^{\prime} one by one and let every one factor be the edges of one color class.
- This yields a proper $\Delta(G)$-coloring of G^{\prime} and G.

Observation:

The chromatic number of Petersen graph is 4 . (Note that if 3 colors were enough, then every color class would contain exactly five edges. Remove one matching and discuss the remaining graph.)

Bipartite Graphs, Petersen Graph

Theorem (König, 1916)

If G is bipartite, then $\chi^{\prime}(G)=\Delta(G)$.

- Note that every bipartite graph is contained in a $\Delta(G)$-regular bipartite graph, call this larger graph G^{\prime}.
- Every regular bipartite graph has a 1-factor.
- Remove 1 -factors of G^{\prime} one by one and let every one factor be the edges of one color class.
- This yields a proper $\Delta(G)$-coloring of G^{\prime} and G.

Observation:

The chromatic number of Petersen graph is 4 . (Note that if 3 colors were enough, then every color class would contain exactly five edges. Remove one matching and discuss the remaining graph.)

Theorem (Vizing, 1964)

If G is a simple graph, then $\chi^{\prime}(G) \leq \Delta(G)+1$.

Bipartite Graphs, Petersen Graph

Theorem (König, 1916)

If G is bipartite, then $\chi^{\prime}(G)=\Delta(G)$.

- Note that every bipartite graph is contained in a $\Delta(G)$-regular bipartite graph, call this larger graph G^{\prime}.
- Every regular bipartite graph has a 1 -factor.
- Remove 1 -factors of G^{\prime} one by one and let every one factor be the edges of one color class.
- This yields a proper $\Delta(G)$-coloring of G^{\prime} and G.

Observation:

The chromatic number of Petersen graph is 4 . (Note that if 3 colors were enough, then every color class would contain exactly five edges. Remove one matching and discuss the remaining graph.)

Theorem (Vizing, 1964)

If G is a simple graph, then $\chi^{\prime}(G) \leq \Delta(G)+1$.
Thus, there are two types of graphs: the ones that have edge-chromatic number $\Delta(G)$ or $\Delta(G)+1$.

