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Vertex-connectivity

A non-empty graph G is called connected if any two of its vertices are
connected by a path. Instead of saying a graph is not connected, we say
a graph is disconnnected.
A vertex-set whose removal makes a connected G disconnected, is called
a cut-set (or separating set or vertex cut) of G .

For a set S ⊂ V (G ), the subgraph G [S ] is the subgraph of G induced by
S . In other words, the vertex set of the subgraph G [S ] is S and each
edge in G [S ] has both of its endvertices in S .



Finding a connected subgraph of a certain order (number of
vertices)

Proposition: The vertices of a connected graph G can always be
enumerated, say v1, . . . , vn so that Gi := G [v1, . . . , vi ] is connected for
every i ≤ n.
Proof:

Every connected graph G has a spanning tree T .

Pick a root in T and call it v1. Label the remaining vertices
v2, . . . , vn starting from the �rst level of T and continuing to the
consecutive level once all vertices in a level are labelled.

This enumeration of the vertices satisfy the condition we want.



Vertex-connectivity

A maximal connected subgraph of a graph G is called a component of G .
A graph G is k-connected if G − X is connected for every set X ⊂ V (G )
with |X | < k .
The greatest integer k such that G is k-connected is called the
connectivity of G , denoted by κ(G ).

Remark: κ(G ) = 0 if and only if G is disconnected or a K1.
κ(Kn) = n − 1 for all n ≥ 1.

Proposition: If G is nontrivial (not Kn or K1) connected graph, then
κ(G ) ≤ δ(G ).
Proof:

The neighborhood of any vertex is a cut-set of G .

Since there is a vertex v with δ(G ) neighbors, N(v) is a cut-set of G .



Example: The hypercube, Qk

Proposition: For any k ≥ 1, κ(Qk) = k .
Proof:

The neighborhood of every vertex is a cut-set. Therefore,
κ(Qk) ≤ k .

To show κ(Qk) ≥ k , use induction on k .
Base step: For k = 1, Q1 = K2, thus κ(Q1) = 1, true for k = 1.

inductive step: By the induction hypothesis (I.H.), κ(Qk−1) = k − 1.
Let Q and Q ′ be two vertex-disjoint �mirror� copies of Qk−1 and S
be a vertex cut of Qk .

We see that either Q − S or Q ′ − S should be disconnected,
otherwise S must contain 2k−1 vertices (a vertex cover of the
matching between Q and Q ′.

So, assume Q − S is disconnected. Thus S contains at least k − 1
vertices in Q.

S must contain also a vertex in Q ′, otherwise all vertices in Q and
Q ′ are connected to each other. Thus S contains at least k vertices.
Done.



Edge-connectivity

An edge-set whose removal makes a connected G disconnected, is called
an edge cut (or a disconnecting set of edges) of G .

A graph G with edge-set E is called `-edge-connected if G − F is
connected for every set F ⊂ E with fewer than ` edges.
Edge-connectivity of a graph G , denoted by κ′(G ) or λ(G ), is the
greatest integer ` such that G is `-connected.
Note: If G is disconnected, then κ′(G ) = 0.

Proposition: If G is not empty, then κ(G ) ≤ κ′(G ) ≤ δ(G ).
Proof:

The second inequality holds because removing all edges incident to a
vertex disconnects a connected graph.

To prove the �rst inequality, assume that F is a minimal subset of
the edge-set E such that G − F is disconnected. We will show that
κ(G ) ≤ |F |.
Let T be a vertex set that contains exactly one endpoint of each
edge in F . This set is a vertex-cut of G .



Example for κ(G ) = κ′(G ) : 3-regular graphs

Proposition: If G is a 3-regular graph, then κ(G ) = κ′(G ).
Proof:

Let S be a minimum vertex-cut. We only need to show that
κ(G ) ≥ κ′(G ), since the other direction of this inequality is known.

Let H1 and H2 be two components of G − S . By the minimality of
S , each vertex v in S , has neighbors in H1 and H2.

So, v has exactly one neighbor in one of H1 or H2, say that single
neighbor is u ∈ H1. Add uv to the edge-cut. Do that for all v ∈ S .

The set of the edges uv is an edge-cut. (if some vertex v ′ in S has a
neighbor in S , then add the edge from v ′ to H1 for all such v ′.

Corollary

For any vertex set S ⊂ V (G ), |[S , S̄ ]| = [
∑

v∈S deg(v)]− 2e(G [S ]).

Moreover, for simple G , if |[S , S̄ ]| < δ(G ) for nonempty S , then
|S | > δ(G ).
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2-connected Graphs

Two paths between vertices u and v are said to be internally disjoint if
they only have the endvertices u and v in common.

Theorem (Whitney, 1932)

A graph G having at least three vertices is 2-connected if and only if for
each pair u, v ∈ V (G ), there exist internally disjoint u, v -paths in G .

Lemma (Expansion Lemma)

If G is a k-connected graph, and G ′ is obtained from G by adding a new
vertex y with at least k neighbors in G , then G ′ is k-connected.

Proof:

To prove this, one needs to show that any vertex cut S in G ′ has at
least k vertices.

If y is in S , then |S − y | ≥ k and |S | ≥ k + 1, done.

If y /∈ S and N(y) ⊂ S , again |S | ≥ k .

Otherwise, in G ′ − S , y and some vertices in N(y) must be in the
same component. This implies, S also is a vertex-cut in G and
|S | ≥ k .



2-connected Graphs

Theorem

For a graph G with at least three vertices, TFAE (�the following are
equivalent�) and characterize 2-connected graphs: A) G is connected and
has no cut-vertex.
B) For all x , y ∈ V (G ), there are internally disjoint x , y -paths.
C) For all x , y ∈ V (G ), there is a cycle through x and y .
D) δ(G ) ≥ 1, and every pair of edges in G lies on a common cycle.

Proof:

A ⇐⇒ B is shown in the theorem in the previous slide. Also,
B ⇐⇒ C is trivial.
So , we need X =⇒ D and D =⇒ Y for some X ,Y ∈ {A,B,C}.
D =⇒ C : Since δ(G ) ≥ 1, no isolated vertex.
Pick any two edges ux and vy , there is a cycle containing these
edges, done. If only one edge, xy , then pick any other edge and
apply to them.



2-connected Graphs

Theorem

For a graph G with at least three vertices, TFAE (�the following are
equivalent�) and characterize 2-connected graphs: A) G is connected and
has no cut-vertex.
B) For all x , y ∈ V (G ), there are internally disjoint x , y -paths.
C) For all x , y ∈ V (G ), there is a cycle through x and y .
D) δ(G ) ≥ 1, and every pair of edges in G lies on a common cycle.

A =⇒ D: Since G is connected, δ(G ) ≥ 1.

Consider any two edges uv and xy . Add to G a new vertex w with
neighbors u and v . Add another vertex z to G with neighbors x and
y . Call this new graph G ′.

By expansion lemma, G ′ is 2-connected. Since A ⇐⇒ C , w and z
lie on a cycle. Remove w and z from C and add the edges uv and
xy , done.



2-connected Graphs

subdividing an edge: An edge uv is subdivided by replacing uv with two
edges uw and wv , where w is a new vertex.

Corollary

If G is 2-connected, then the graph G ′ obtained by sibdividing an edge is
2-connected.

Ear decomposition: An ear of a graph G is a maximal path whose
internal vertices have degree 2 in G . An ear decomposition of G is a
decomposition P0, . . . ,Pk such that P0 is a cycle and Pi for i ≥ 1 is an
ear of P0 ∪ · · · ∪ Pi .

Theorem (Whitney, 1932)

A graph is 2-connnected i� it has an ear decomposition. Moreover, every
cycle in a 2-connected graph is the initial cycle in some ear
decomposition.

A similar decomposition exists also for 2-edge-connected graphs (see the
book).



Some de�nitions on k-connectedness

Given x , y ∈ V (G ), a set S ⊆ V (G )− {x , y} is an x , y -separator or
x , y -cut if G − S has no x , y -path.

κ(x , y) (or κ(x , y)): the minimum size of an x , y -cut in a graph G .
λ(x , y) (or λG (x , y)): the maximum size of a set of pairwise internally
disjoint x , y -paths in G .

For X ,Y ⊆ V (G ), an X ,Y -path is a path having �rst vertex in X , last
vertex in Y , and no other vertex in X ∪ Y .

Remark: Always, κ(x , y) ≥ λ(x , y). Why? See example on page 166.



Connectivity and Menger's Theorem

Theorem (Menger's Theorem)

If x and y are vertices of a graph G and xy /∈ E (G ), then
κ(x , y) = λ(x , y).

Proof:

Clearly, κ(x , y) ≥ λ(x , y). Induction on n(G ) to show that
κ(x , y) ≤ λ(x , y).

Base step: n(G ) = 2 Only x , y and xy /∈ E (G ). Then,
κ(x , y) = λ(x , y) = 0, done.

Inductive step: Reading exercise.

Theorem (Menger's Theorem)

A graph G is k-connected if and only if every two vertices are connected
by at least k independent paths.



Appplications of Menger's Theorem

U-fan: Given a vertex x and a set U of vertices, an x ,U-fan is a set of
x ,U-paths such that any two of these paths have only x in common.

Theorem (Fan Lemma, Dirac, 1960)

A graph G is k-connected if and only if it has at least k + 1 vertices and,
for every choice of x ,U ⊂ V (G ) with |U| ≥ k , it has an x ,U-fan of size
k .

Proof:
Necessity: G , k-connected. Pick a vertex x and a set U with at least k
vertices, show an x ,U-fan exists.
Use Expansion Lemma: Add a new vertex y by connecting y to each
vertex of U with an edge, call this new graph G ′. By Exp. Lem., G ′ is
also k-connected.
Menger's thm. implies k internally disjoint x , y -paths exist in G ′.
Remove y . These paths show an x ,U-fan exists.



Fan Lemma (continued)

Su�ciency:

Assume G satis�es the fan condition, show that G is k-connnected.

First, note that δ(G ) ≥ k (consider an x ,U-fan with U = N(x).

For any two vertices w and z , we �nd k internally disjoint
w , z-paths. Thus Menger's Thm. implies k-connectedness of G .

Let U = N(z). There is a w ,U-fan. By extending each of the k
w ,U-paths to z , we are done.



Appplications of Menger's Theorem

Theorem (Dirac, 1960)

If G is a k-connnected graph (with k ≥ 2), and S is a set of k vertices in
G , then G has a cycle that contains all vertices in S .

Proof Idea: Induction on k

Base step: k=2 If G is 2-connected, there are 2 internally disjoint
x , y -paths between any two vertices x and y , whose union is a cycle
containing x and y .

Inductive step: k > 2 Given any set S in a k-connected graph G ,
we �nd a cycle containing every vertex in S .

Clearly, G is also (k − 1)-connected. So, for any vertex x ∈ S , there
is a cycle C containing S − {x}.
Case: |V (C )| = k − 1 Because there is an x ,V (C )-fan, x can be
added to C to obtain a larger cycle.



Proof continued

Theorem (Dirac, 1960)

If G is a k-connnected graph (with k ≥ 2), and S is a set of k vertices in
G , then G has a cycle that contains all vertices in S .

Case: |V (C )| ≥ k There is an x ,V (C )-fan of size k . Let
v1, v2, . . . , vk−1 be the vertices of this fan in V (C ).
Vi be the segment of C from vi to vi+1 but not containing it.
(assuming cyclic order)

By pigeonhole principle (k − 1 segments=pigeonholes and k vertices
(that are not x) of the fan = pigeons) , one segment Vj contains at
least two vertices.

Say u, u′ from the fan are in Vj . Replace u, u′-segment of C with
the x , u-path and x , u′-path of the fan to obtain a cycle containing
all of S .
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