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“Introduction to Graph Theory” by Douglas B. West



Hamilton Paths and Circuits

Beijing

Hong Kong

Taipei
Moscow

Manila
Frankfurt

Melbourne

London  johannesburg

* The above is a regular dodecahedron (12-faced)
with each vertex labeled with the name of a city

18



Hamilton Paths and Circuits

Beijing

Hong Kong

Taipei
Moscow

Manila
Frankfurt

Melbourne

London  johannesburg

* Can we find a circuit (travelling along the edges)
so that each city is visited exactly once ?
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Hamilton Paths and Circuits

Frankfurt

* The right graph is isomorphic to the dodecahedron,
and it shows a possible way (in red) to travel
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Hamilton Paths and Circuits

Definition : A Hamilton path in a graph is a path
that visits each vertex exactly once. If such a path
is also a circuit, it is called a Hamilton circuit.

Ex :

Hamilton path Hamilton circuit
21




Hamilton Paths and Circuits

* Which of the following have a Hamilton circuit or,
if not, a Hamilton path ?
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Hamilton Paths and Circuits

* Show that the n-dimensional cube Q, has a
Hamilton circuit, whenever n > 2

_______
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Hamilton Paths and Circuits

* Unlike Euler circuit or Euler path, there is no
efficient way to determine if a graph contains a
Hamilton circuit or a Hamilton path

=>» The best algorithm so far requires exponential
time in the worst case

* However, it is shown that when the degree of the
vertices are sufficiently large, the graph will
always contain a Hamilton circuit

=» We shall discuss two theorems in this form



Hamilton Paths and Circuits

Before we give the two theorems, we show an
interesting theorem by Bondy and Chvatal (1976)

=» The two theorems will then become
corollaries of Bondy-Chvatal theorem

Let G be a graph with n vertices

Definition : The Hamilton closure of G is a simple
graph obtained by recursively adding an edge
between two vertices u and v, whenever

deg(u) + deg(v) > n
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Hamilton closure

Hamilton closure



Hamilton Paths and Circuits

BrB-f
A

@ﬁ

&

Hamilton closure



Hamilton Paths and Circuits

Theorem [Bondy and Chvatal (1976)] :

A graph G contains a Hamilton circuit <
its Hamilton closure contains a Hamilton circuit

e The “only if” case is trivial

* For the “if” case, we can prove it by contradiction

* However, we shall give the proof a bit later, as we
are now ready to talk about the two corollaries




Hamilton Paths and Circuits

* Let G be a simple graph with n > 3 vertices

Corollary [Dirac (1952)] :

If the degree of each vertex in G is at least n/2,
then G contains a Hamilton circuit

Corollary [Ore (1960)] :

If for any pair of non-adjacent vertices u and v,
deg(u) + deg(v) > n,

then G contains a Hamilton circuit
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Hamilton Paths and Circuits

* Proof of Dirac’s and Ore’s Theorems :
It is easy to verify that
(i) if the degree of each vertex is at least n/2, or
(i) if for any pair of non-adjacent vertices u and v,
deg(u) + deg(v) > n,
=» G’s Hamilton closure is a complete graph K.
=» When n >3, K has a Hamilton circuit

=» Bondy-Chvatal implies that there will be a
Hamilton circuit in G



Hamilton Paths and Circuits
* Next, we shall give the proof of the “if case” of
Bondy-Chvatal’s Theorem
* Proof (“if case”):
Suppose on the contrary that
(i) G does not have a Hamilton circuit, but
(ii) G’s Hamilton closure has a Hamilton circuit.

Then, consider the sequence of graphs obtained
by adding one edge each time when we produce
the Hamilton closure from G



Hamilton Paths and Circuits

* Proof (“if case” continued):

addledge addledge addledge addledge add1edge

aYaWaYa¥a

G Hamilton Closure
(no circuit) (has a circuit)
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* Proof (“if case” continued):

Let G’ be the first graph in the sequence that
contains a Hamilton circuit

Let { u, v } be the edge added to produce G’

G

GI

Hamilton Closure

A

no circuits

»
>

has a circuit
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Hamilton Paths and Circuits

* Proof (“if case” continued):

Now, we show that the graph before G’ must also
contain a Hamilton circuit, which immediately will
cause a contradiction.

Consider the graph before adding {u, v } to G'.
It must contain a Hamilton path from u to v (why?)
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* Proof (“if case” continued):
Also, since we are connecting u and vin G/,
deg(u) + deg(v) > n

Consider all the nodes connected by u, and we
mark their ‘left” neighbors in red
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* Proof (“if case” continued):
Since
(i) v does not connect to u nor itself, and
(ii) deg(u) + deg(v) = n
=» v must connect to some red node (why?)
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* Proof (“if case” continued):

=» We get a Hamilton circuit, even without
connecting uand v !

=» This contradicts with the choice of G, and the
theorem is thus correct



Hamiltonian Cycles

The problem on deciding whether a graph is hamiltonian or not is an
NP-complete problem (no algorithm exists that runs in polynomial time).

So, there are known necessary conditions needed for a graph to be
hamiltonian. Also, we know some sufficient conditions.

But, no “necessary and sufficient (if and only if)" is known.



Hamiltonian Cycles

The problem on deciding whether a graph is hamiltonian or not is an
NP-complete problem (no algorithm exists that runs in polynomial time).

So, there are known necessary conditions needed for a graph to be
hamiltonian. Also, we know some sufficient conditions.

But, no “necessary and sufficient (if and only if)" is known.

Proposition (A necessary condition)

If G has a Hamilton cycle, then for each nonempty set S C V/, the graph
G — S has at most |S| components.

See Example 7.2.5 in West.



Sufficient Conditions for being Hamiltonian

Example: Two cliques or order [(n+1)/2] and |(n + 1)/2] merged at
one vertex. This graph has a very high minimum degree, but it is not
hamiltonian.
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Example: Two cliques or order [(n+1)/2] and |(n + 1)/2] merged at
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Sufficient Conditions for being Hamiltonian

Example: Two cliques or order [(n+1)/2] and |(n + 1)/2] merged at
one vertex. This graph has a very high minimum degree, but it is not
hamiltonian.

Theorem (Dirac, 1952)

If G is a simple graph with at least three vertices and 5(G) > n(G)/2,
then G is Hamiltonian.

@ Assume on the contrary that G is a maximal non-Hamiltonian graph
that satisfies the minimum degree condition.

@ By the maximality of G, adding any other edge to G would create a
Hamiltonian cycle. So, let uv ¢ E(G). There is a Ham. path
Vi,Vo,...,V, with ends v = vy and v = v,,.

e Fact: If v; € N(v) and v;41 € N(u) for some 1 < i < n—1, done.

o We claim that there is such an i, let S = {i : v;11 € N(u)} and
T={i:vie N(v)}.

[SUT|+|SNT|=|S|4+|T| =deg(u) + deg(v) > n.
Sincen¢ SUT, |SUT| <n-—1, done.



Sufficient Conditions for being Hamiltonian

Theorem (Ore, 1960)

Let G be a simple graph. If u and v are distinct non-adjacent vertices

such that deg(u) + deg(v) > n(G), then G is Hamiltonian iff G + uv is
Hamiltonian.
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Chvatal's Condition

Theorem (Chvatal’s condition, 1972)

Let G be a simple graph with vertex degrees d; < ...d,, where n > 3. If
for each i < n/2, d; > i or d,—; > n— i, then G is Hamiltonian.

e By using Bondy-Chvatal condition (BCC), we will show that C(G)
is Hamiltonian under these assumptions and thus G is Ham.

e Claim: C(G) = K,.
To prove this, again assume on the contrary that C(G) # K,. We
will show that there is an i/ for which BCC does not hold, i.e.
for some i, at least / vertices have degree at most i and at least
n — i vertices have degree less than n — .

@ Details left for reading.

Example: The graph K; v (K; + Ky—2;) is an example where Chvatal's
condition is not satisfied, but still the degrees are high.



