CMP694-Lecture: Hamiltonian Graphs

Lecturer: Lale Özkahya

Resources for the presentation:
http://www.cs.nthu.edu.tw/ wkhon/math16.html
"Introduction to Graph Theory" by Douglas B. West

Hamilton Paths and Circuits

- The above is a regular dodecahedron (12-faced) with each vertex labeled with the name of a city

Hamilton Paths and Circuits

- Can we find a circuit (travelling along the edges) so that each city is visited exactly once ?

Hamilton Paths and Circuits

- The right graph is isomorphic to the dodecahedron, and it shows a possible way (in red) to travel

Hamilton Paths and Circuits

Definition : A Hamilton path in a graph is a path that visits each vertex exactly once. If such a path is also a circuit, it is called a Hamilton circuit.

- Ex:

Hamilton path

Hamilton circuit

Hamilton Paths and Circuits

- Which of the following have a Hamilton circuit or, if not, a Hamilton path ?

Hamilton Paths and Circuits

- Show that the n-dimensional cube Q_{n} has a Hamilton circuit, whenever $n \geq 2$
- Ex:

Q_{3}

Hamilton Paths and Circuits

- Unlike Euler circuit or Euler path, there is no efficient way to determine if a graph contains a Hamilton circuit or a Hamilton path
\rightarrow The best algorithm so far requires exponential time in the worst case
- However, it is shown that when the degree of the vertices are sufficiently large, the graph will always contain a Hamilton circuit
\rightarrow We shall discuss two theorems in this form

Hamilton Paths and Circuits

- Before we give the two theorems, we show an interesting theorem by Bondy and Chvátal (1976)
\rightarrow The two theorems will then become corollaries of Bondy-Chvátal theorem
- Let G be a graph with n vertices

Definition : The Hamilton closure of G is a simple graph obtained by recursively adding an edge between two vertices u and v, whenever

$$
\operatorname{deg}(u)+\operatorname{deg}(v) \geq n
$$

Hamilton Paths and Circuits

- Ex:

G
Hamilton closure

- Ex:

Hamilton Paths and Circuits

- Ex:

G

Hamilton closure

Hamilton Paths and Circuits

Theorem [Bondy and Chvátal (1976)] :
A graph G contains a Hamilton circuit \Leftrightarrow its Hamilton closure contains a Hamilton circuit

- The "only if" case is trivial
- For the "if" case, we can prove it by contradiction
- However, we shall give the proof a bit later, as we are now ready to talk about the two corollaries

Hamilton Paths and Circuits

- Let G be a simple graph with $\mathrm{n} \geq 3$ vertices

Corollary [Dirac (1952)] :
If the degree of each vertex in G is at least $n / 2$, then G contains a Hamilton circuit

Corollary [Ore (1960)] :
If for any pair of non-adjacent vertices u and v,

$$
\operatorname{deg}(u)+\operatorname{deg}(v) \geq n
$$

then G contains a Hamilton circuit

Hamilton Paths and Circuits

- Proof of Dirac's and Ore's Theorems :

It is easy to verify that
(i) if the degree of each vertex is at least $n / 2$, or
(ii) if for any pair of non-adjacent vertices u and v,

$$
\operatorname{deg}(u)+\operatorname{deg}(v) \geq n,
$$

\rightarrow G's Hamilton closure is a complete graph K_{n}
\rightarrow When $n \geq 3, K_{n}$ has a Hamilton circuit
\rightarrow Bondy-Chvátal implies that there will be a Hamilton circuit in G

Hamilton Paths and Circuits

- Next, we shall give the proof of the "if case" of Bondy-Chvátal's Theorem
- Proof ("if case"):

Suppose on the contrary that
(i) G does not have a Hamilton circuit, but
(ii) G's Hamilton closure has a Hamilton circuit.

Then, consider the sequence of graphs obtained by adding one edge each time when we produce the Hamilton closure from G

Hamilton Paths and Circuits

- Proof ("if case" continued):

$$
\begin{aligned}
& \text { add } 1 \text { edge add } 1 \text { edge } \\
& \text { Hamilton Closure } 1 \text { edge } \\
& \text { (has a circuit) }
\end{aligned}
$$

Hamilton Paths and Circuits

- Proof ("if case" continued):

Let G^{\prime} be the first graph in the sequence that contains a Hamilton circuit Let $\{u, v\}$ be the edge added to produce G^{\prime}

G

G'

Hamilton Closure

Hamilton Paths and Circuits

- Proof ("if case" continued):

Now, we show that the graph before G^{\prime} must also contain a Hamilton circuit, which immediately will cause a contradiction.

Consider the graph before adding $\{u, v\}$ to G^{\prime}. It must contain a Hamilton path from u to v (why?)

Hamilton Paths and Circuits

- Proof ("if case" continued):

Also, since we are connecting u and v in G^{\prime},

$$
\operatorname{deg}(u)+\operatorname{deg}(v) \geq n
$$

Consider all the nodes connected by u, and we mark their 'left' neighbors in red

Hamilton Paths and Circuits

- Proof ("if case" continued):

Since
(i) v does not connect to u nor itself, and (ii) $\operatorname{deg}(u)+\operatorname{deg}(v) \geq n$
\rightarrow v must connect to some red node (why?)

Hamilton Paths and Circuits

- Proof ("if case" continued):
\rightarrow We get a Hamilton circuit, even without connecting u and v !

\rightarrow This contradicts with the choice of G^{\prime}, and the theorem is thus correct

Hamiltonian Cycles

The problem on deciding whether a graph is hamiltonian or not is an NP-complete problem (no algorithm exists that runs in polynomial time).

So, there are known necessary conditions needed for a graph to be hamiltonian. Also, we know some sufficient conditions.

But, no "necessary and sufficient (if and only if)" is known.

Proposition (A necessary condition)

If G has a Hamilton cycle, then for each nonempty set $S \subset V$, the graph $G-S$ has at most $|S|$ components.

See Example 7.2.5 in West.

Sufficient Conditions for being Hamiltonian

Example: Two cliques or order $\lceil(n+1) / 2\rceil$ and $\lfloor(n+1) / 2\rfloor$ merged at one vertex. This graph has a very high minimum degree, but it is not hamiltonian.

Theorem (Dirac, 1952)

If G is a simple graph with at least three vertices and $\delta(G) \geq n(G) / 2$, then G is Hamiltonian.

- Assume on the contrary that G is a maximal non-Hamiltonian graph that satisfies the minimum degree condition.
- By the maximality of G, adding any other edge to G would create a Hamiltonian cycle. So, let $u v \notin E(G)$. There is a Ham. path $v_{1}, v_{2}, \ldots, v_{n}$ with ends $u=v_{1}$ and $v=v_{n}$.
- Fact: If $v_{i} \in N(v)$ and $v_{i+1} \in N(u)$ for some $1<i<n-1$, done.
- We claim that there is such an i, let $S=\left\{i: v_{i+1} \in N(u)\right\}$ and $T=\left\{i: v_{i} \in N(v)\right\}$.

$$
|S \cup T|+|S \cap T|=|S|+|T|=\operatorname{deg}(u)+\operatorname{deg}(v) \geq n
$$

Since $n \notin S \cup T,|S \cup T| \leq n-1$, done.

Theorem (Ore, 1960)

Let G be a simple graph. If u and v are distinct non-adjacent vertices such that $\operatorname{deg}(u)+\operatorname{deg}(v) \geq n(G)$, then G is Hamiltonian iff $G+u v$ is Hamiltonian.

The closure fo a graph G, denoted by $C(G)$, is the graph with the same vertex set as G that is obtained by iteratively adding the edges to G whose endvertices are a non-adjacent pair with degree sum at least n.

Theorem (Bondy-Chvátal, 1976)

A simple graph on n vertices is Hamiltonian iff its closure is Hamiltonian.

Theorem (Chvatal's condition, 1972)

Let G be a simple graph with vertex degrees $d_{1} \leq \ldots d_{n}$, where $n \geq 3$. If for each $i<n / 2, d_{i}>i$ or $d_{n-i} \geq n-i$, then G is Hamiltonian.

Chvátal's Condition

Theorem (Chvatal's condition, 1972)

Let G be a simple graph with vertex degrees $d_{1} \leq \ldots d_{n}$, where $n \geq 3$. If for each $i<n / 2, d_{i}>i$ or $d_{n-i} \geq n-i$, then G is Hamiltonian.

- By using Bondy-Chvátal condition (BCC), we will show that $C(G)$ is Hamiltonian under these assumptions and thus G is Ham.
- Claim: $C(G)=K_{n}$.

To prove this, again assume on the contrary that $C(G) \neq K_{n}$. We will show that there is an i for which BCC does not hold, i.e. for some i , at least i vertices have degree at most i and at least $n-i$ vertices have degree less than $n-i$.

- Details left for reading.

Example: The graph $K_{i} \vee\left(\bar{K}_{i}+K_{n-2 i}\right)$ is an example where Chvátal's condition is not satisfied, but still the degrees are high.

