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• The above is a regular dodecahedron (12-faced) 
with each vertex labeled with the name of a city 
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• Can we find a circuit (travelling along the edges) 
so that each city is visited exactly once ?  
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• The right graph is isomorphic to the dodecahedron, 
and it shows a possible way (in red) to travel 
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Hamilton Paths and Circuits 
  

 Definition :  A Hamilton path in a graph is a path 
that visits each vertex exactly once. If such a path 
is also a circuit, it is called a Hamilton circuit. 

 

 

• Ex : 
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• Which of the following have a Hamilton circuit or, 
if not, a Hamilton path ? 
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Hamilton Paths and Circuits 

• Show that the n-dimensional cube Qn has a 
Hamilton circuit, whenever n  2 
 

• Ex :  
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Hamilton Paths and Circuits 

• Unlike Euler circuit or Euler path, there is no 
efficient way to determine if a graph contains a 
Hamilton circuit or a Hamilton path 

    The best algorithm so far requires exponential 
 time in the worst case 

 

• However, it is shown that when the degree of the 
vertices are sufficiently large, the graph will 
always contain a Hamilton circuit 

   We shall discuss two theorems in this form 
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Hamilton Paths and Circuits 

• Before we give the two theorems, we show an 
interesting theorem by Bondy and Chvátal (1976) 

   The two theorems will then become  
 corollaries of Bondy-Chvátal theorem 

• Let G be a graph with n vertices 
 

 Definition : The Hamilton closure of G is a simple 
graph obtained by recursively adding an edge 
between two vertices u and v, whenever 

 deg(u) + deg(v)    n 
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• Ex : 

 

 

 

• Ex : 
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G Hamilton closure 
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• Ex : 
 

27 

G 
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Hamilton Paths and Circuits 
  

 

 Theorem [Bondy and Chvátal (1976)] :   

 A graph G contains a Hamilton circuit         
its Hamilton closure contains a Hamilton circuit 

 

• The “only if” case is trivial 

• For the “if” case, we can prove it by contradiction 

• However, we shall give the proof a bit later, as we 
are now ready to talk about the two corollaries 
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Hamilton Paths and Circuits 
• Let G be a simple graph with n  3 vertices 
 

  Corollary [Dirac (1952)] :   

 If the degree of each vertex in G is at least n/2, 
then G contains a Hamilton circuit 

 

 Corollary [Ore (1960)] : 

 If for any pair of non-adjacent vertices u and v,  

deg(u) + deg(v)    n,  

 then G contains a Hamilton circuit 
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Hamilton Paths and Circuits 
• Proof of Dirac’s and Ore’s Theorems : 

  It is easy to verify that  

     (i)  if the degree of each vertex is at least n/2,  or 

     (ii) if for any pair of non-adjacent vertices u and v,  

deg(u) + deg(v)    n,  

  G’s Hamilton closure is a complete graph Kn 

  When n  3,  Kn has a Hamilton circuit 

  Bondy-Chvátal implies that there will be a 
 Hamilton circuit in G 
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Hamilton Paths and Circuits 
• Next, we shall give the proof of the “if case” of    

Bondy-Chvátal’s Theorem  

• Proof  (“if case”): 

 Suppose on the contrary that 

 (i)  G does not have a Hamilton circuit, but 

 (ii) G’s Hamilton closure has a Hamilton circuit. 
 

 Then, consider the sequence of graphs obtained 
by adding one edge each time when we produce 
the Hamilton closure from G 
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Hamilton Paths and Circuits 
• Proof  (“if case” continued): 
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Hamilton Paths and Circuits 
• Proof  (“if case” continued): 

 Let G’ be the first graph in the sequence that 
contains a Hamilton circuit   

 Let { u, v } be the edge added to produce G’ 
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Hamilton Paths and Circuits 
• Proof  (“if case” continued): 

 Now, we show that the graph before G’ must also 
contain a Hamilton circuit, which immediately will 
cause a contradiction. 

 

 Consider the graph before adding { u, v } to G’. 

 It must contain a Hamilton path from u to v (why?)
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Hamilton Paths and Circuits 
• Proof  (“if case” continued): 

 Also, since we are connecting u and v in G’, 

 deg(u) + deg(v)    n 

 Consider all the nodes connected by u, and we 
mark their ‘left’ neighbors in red 
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Hamilton Paths and Circuits 
• Proof  (“if case” continued): 

 Since  

 (i)   v does not connect to u nor itself, and  

 (ii)  deg(u) + deg(v)    n 

  v must connect to some red node (why?)  
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Hamilton Paths and Circuits 
• Proof  (“if case” continued): 

  We get a Hamilton circuit, even without 
 connecting u and v ! 

 

 

 

 

  This contradicts with the choice of G’, and the 
 theorem is thus correct 
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Hamiltonian Cycles

The problem on deciding whether a graph is hamiltonian or not is an
NP-complete problem (no algorithm exists that runs in polynomial time).

So, there are known necessary conditions needed for a graph to be
hamiltonian. Also, we know some su�cient conditions.

But, no �necessary and su�cient (if and only if)� is known.

Proposition (A necessary condition)

If G has a Hamilton cycle, then for each nonempty set S ⊂ V , the graph

G − S has at most |S | components.

See Example 7.2.5 in West.



Su�cient Conditions for being Hamiltonian

Example: Two cliques or order d(n + 1)/2e and b(n + 1)/2c merged at
one vertex. This graph has a very high minimum degree, but it is not
hamiltonian.

Theorem (Dirac, 1952)

If G is a simple graph with at least three vertices and δ(G ) ≥ n(G )/2,
then G is Hamiltonian.

Assume on the contrary that G is a maximal non-Hamiltonian graph
that satis�es the minimum degree condition.

By the maximality of G , adding any other edge to G would create a
Hamiltonian cycle. So, let uv /∈ E (G ). There is a Ham. path
v1, v2, . . . , vn with ends u = v1 and v = vn.

Fact: If vi ∈ N(v) and vi+1 ∈ N(u) for some 1 < i < n − 1, done.

We claim that there is such an i , let S = {i : vi+1 ∈ N(u)} and
T = {i : vi ∈ N(v)}.

|S ∪ T |+ |S ∩ T | = |S |+ |T | = deg(u) + deg(v) ≥ n.

Since n /∈ S ∪ T , |S ∪ T | ≤ n − 1, done.



Su�cient Conditions for being Hamiltonian

Theorem (Ore, 1960)

Let G be a simple graph. If u and v are distinct non-adjacent vertices

such that deg(u) + deg(v) ≥ n(G ), then G is Hamiltonian i� G + uv is

Hamiltonian.

The closure fo a graph G , denoted by C (G ), is the graph with the same
vertex set as G that is obtained by iteratively adding the edges to G
whose endvertices are a non-adjacent pair with degree sum at least n.

Theorem (Bondy-Chvátal, 1976)

A simple graph on n vertices is Hamiltonian i� its closure is Hamiltonian.

Theorem (Chvatal's condition, 1972)

Let G be a simple graph with vertex degrees d1 ≤ . . . dn, where n ≥ 3. If

for each i < n/2, di > i or dn−i ≥ n − i , then G is Hamiltonian.



Chvátal's Condition

Theorem (Chvatal's condition, 1972)

Let G be a simple graph with vertex degrees d1 ≤ . . . dn, where n ≥ 3. If

for each i < n/2, di > i or dn−i ≥ n − i , then G is Hamiltonian.

By using Bondy-Chvátal condition (BCC), we will show that C (G )
is Hamiltonian under these assumptions and thus G is Ham.

Claim: C (G ) = Kn.
To prove this, again assume on the contrary that C (G ) 6= Kn. We
will show that there is an i for which BCC does not hold, i.e.
for some i, at least i vertices have degree at most i and at least
n − i vertices have degree less than n − i .

Details left for reading.

Example: The graph Ki ∨ (K̄i + Kn−2i ) is an example where Chvátal's
condition is not satis�ed, but still the degrees are high.


