
CMP694-Lovász Local Lemma

Lecturer: Lale Özkahya

Resources for the presentation:

https://imada.sdu.dk/ jbj/DM839/



The Lovasz Local Lemma

Let A1, ....,An be a set of “bad” events. We want to show that

Pr(∩ni=1Āi ) > 0.

1 If
∑n

i=1 Pr(Ai ) < 1 then Pr(∩ni=1Āi ) > 0.

2 If all the Ai ’s are mutually independent and for all i
Pr(Ai ) < 1 then Pr(∩ni=1Āi ) = Πn

i=1Pr(Āi ) > 0..

3 If each Ai depends only on a few other events: The Lovasz
Local Lemma.



Definition

An event E is mutually independent of the events E1, ...,En, if for
any T ⊂ [1, ..., n],

Pr(E | ∩j∈T Ej) = Pr(E ).

Definition

A dependency graph for a set of events E1, ...,En has n vertices
1, ..., n. Events Ei is mutually independent of any set of events
{Ej | j ∈ T} iff there is no edge in the graph connecting i to any
j ∈ T .



Theorem

Let E1, ...,En be a set of events. Assume that

1 For all i , Pr(Ei ) ≤ p;

2 The degree of the dependency graph is bounded by d.

3 4dp ≤ 1

then
Pr(∩ni=1Ēi ) > 0.



Let S ⊂ {1, ..., n}. We prove by induction on s = 0, ..., n − 1 that
if |S | ≤ s, for all k

Pr(Ek | ∩j∈S Ēj) ≤ 2p.

For s = 0, S = ∅ obvious.
W.l.o.g. renumber the events so that S = {1, ..., s}, and (k, j) is
not and edge of the dependency graph for j > d .
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Using the induction hypothesis we prove:
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proving the induction hypothesis.



Now we can complete the proof:
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Application: Edge-Disjoint Paths

Assume that n pairs of users need to communicate using
edge-disjoint paths on a given network.
Each pair i = 1, . . . , n can choose a path from a collection Fi of m
paths.

Theorem

If for each i 6= j , any path in Fi shares edges with no more than k
paths in Fj , where 8nk

m ≤ 1, then there is a way to choose n
edge-disjoint paths connecting the n pairs.



Proof
Consider the probability space defined by each pair choosing a path
independently uniformly at random from its set of m paths.
Ei ,j = the paths chosen by pairs i and j share at least one edge.
A path in Fi shares edges with no more than k paths in Fj ,

p = Pr(Ei ,j) ≤
k

m
.

Let d be the degree of the dependency graph.
Since event Ei ,j is independent of all events Ei ′,j ′ when i ′ 6∈ {i , j}
and j ′ 6∈ {i , j}, we have d < 2n.

4dp <
8nk

m
≤ 1

Pr(∩i 6=j Ēi ,j) > 0.



Lemma

Let G ′ be the dependency graph on the surviving clauses. With
high probability all connected components in G ′ have size
O(log m).

Part Two:
Using exhaustive search assign values to the deferred variable to
complete the truth assignment for the formula.
If a connected component has O(log m) clauses it has O(k log m)
variables. Assuming k = O(1) we can check all assignments in
polynomial in m number of steps.



Lemma

There is an assignment of values to the deferred variables such that
all the surviving clauses are satisfied (thus the formula is satisfied).

At the end of the first phase we have m′ “surviving clauses’ (all the
rest are satisfied), each surviving clause has at least k/2 deferred
variables.
Consider a random assignment of the deferred variables.
Let Ei be the event clause i (of the surviving clauses) is not
satisfied.

p = Pr(Ei ) ≤ 2−k/2.



The degree of the dependency graph is bounded by

d = kT < k2αk .

Since
4dp ≤ 4k2αk2−k/2 ≤ 1

there is a satisfying assignment of the deferred variables that
(together with the assignment of the other variables) satisfies the
formula.



Lemma

Let G ′ be the dependency graph on the surviving clauses. With
high probability all connected components in G ′ have size
O(log m).

Assume that there is a connected component R of size r = |R|.
Since the degree of a vertex in R is bounded by d , there must be a
set R ′ of |R ′| = r/d3 vertices in R which are at distance at least 4
from each other.
A clause “survives” the first part if it is at distance at most 1 from
a dangerous clause. Thus, for each clause in R ′ there is a distinct
dangerous clause, and these dangerous clauses are at distance 2
from each other.



The probability that a given clause is dangerous is at most 2−k/2.
The probability that a given clause C survives is at most
(d + 1)2−k/2 (C must be unsatisfied after the first phase and
either C is dangerous or at least one of its neighbours must be
dangerous).
These events are independent for vertices in R ′. Thus the
probability of a particular connected component of r vertices is
bounded by (

(d + 1)2−k/2
)r/d3



How many possible connected components of size r are in a graph
of m nodes and maximum degree d?

Lemma

There are no more than md2r possible connected components of
size r in a graph of m vertices and maximum degree d.

Proof.

A connected component of size r has a spanning tree of r − 1
edges.
We can choose a “root” for the tree in m ways.
A tree can be defined by an Euler tour that starts and ends at the
root and traverses each edge twice.
At each node the tour can continue in up to d ways. Thus, for a
given root there are no more than d2r different Euler tours.



Thus, the probability that at the end of the first phase there is a
connected component of size r = Ω(log m) is bounded by

md2r
(
(d + 1)2−k/2

)r/d3

= o(1)

for d = k2αk , α > 0 sufficiently small.



Each deferred variable appears in only one component. A
component of size O(log m) has only O(log m) variables. Thus, we
can enumerate (try) all possibilities in time polynomial in m.

Theorem

Given a CNF formula of m clauses, each clause has k = O(1)
literals, each variables appears in up to 2αk clauses. For a
sufficiently small α > 0 there is an algorithm that finds a satisfying
assignment to the formula in time polynomial in m.


