CMP694-The Probabilistic Method

Lecturer: Lale Özkahya

Resources for the presentation:
https://imada.sdu.dk/ jbj/DM839/

The Probabilistic Method

(1) If $E[X]=C$, then there are values $c_{1} \leq C$ and $c_{2} \geq C$ such that $\operatorname{Pr}\left(X=c_{1}\right)>0$ and $\operatorname{Pr}\left(X=c_{2}\right)>0$.
(2) If a random object in a set satisfies some property with positive probability then there is an object in that set that satisfies that property.

Theorem

Given any graph $G=(V, E)$ with n vertices and m edges, there is a partition of V into two disjoint sets A and B such that at least $\mathrm{m} / 2$ edges connect vertex in A to a vertex in B.

Proof.

Construct sets A and B by randomly assign each vertex to one of the two sets.
The probability that a given edge connect A to B is $1 / 2$, thus the expected number of such edges is $m / 2$.
Thus, there exists such a partition.

Monochromatic Complete Subgraphs

Given a complete graph on 1000 vertices, can you color the edges in two colors such that no clique of 20 vertices is monochromatic?

Theorem

If $n \leq 2^{k / 2}$ then it is possible to edge color the edges of a complete graph on n points $\left(K_{n}\right)$, such that is has no monochromatic K_{k} subgraph.

Proof:

Consider a random coloring.
For a given set of k vertices, the probability that the clique defined by that set is monochromatic is bounded by

$$
2 \times 2^{-\binom{k}{2}}
$$

There are $\binom{n}{k}$ such cliques, thus the probability that any clique is monochromatic is bounded by

$$
\begin{gathered}
\binom{n}{k} 2 \times 2^{-\binom{k}{2}} \leq \frac{n^{k}}{k!} 2 \times 2^{-\binom{k}{2}} \\
\leq 2^{(k)^{2} / 2-k(k-1) / 2+1} \frac{1}{k!}<1 \\
=2^{k / 2}+1 / k!<1
\end{gathered}
$$

Thus, there is a coloring with the required property. When $n=1000 \leq 2^{10}=2^{k / 2}$ we get that there exists a 2-colouring of K_{1000} with no monochromatics K_{20}.

Sample and Modify

An independent set in a graph G is a set of vertices with no edges between them.
Finding the largest independent set in a graph is an NP-hard problem.

Theorem

Let $G=(V, E)$ be a graph on n vertices with dn/2 edges. Then G has an independent set with at least $n / 2 d$ vertices.

Algorithm:

(1) Delete each vertex of G (together with its incident edges) independently with probability $1-1 / d$.
(2) For each remaining edge, remove it and one of its adjacent vertices.
$X=$ number of vertices that survive the first step of the algorithm.

$$
E[X]=\frac{n}{d} .
$$

$Y=$ number of edges that survive the first step.
An edge survives if and only if its two adjacent vertices survive.

$$
E[Y]=\frac{n d}{2}\left(\frac{1}{d}\right)^{2}=\frac{n}{2 d} .
$$

The second step of the algorithm removes all the remaining edges, and at most Y vertices.
Size of output independent set:

$$
E[X-Y]=\frac{n}{d}-\frac{n}{2 d}=\frac{n}{2 d} .
$$

Dense graphs with no short cycles

Theorem

For every integer $k \geq 3$ there exists a graph G with n vertices, at least $\frac{1}{4} n^{1+\frac{1}{k}}$ edges and no cycle of length less than k.

Proof: Consider a random graph $G \in \mathcal{G}_{n, p}$ with $p=n^{\frac{1}{k}-1}$ and let the random variable X denote the number of edges in the graph. Then

$$
\begin{aligned}
\mathrm{E}[X] & =p\binom{n}{2} \\
& =n^{\frac{1}{k}-1} \frac{1}{2} n(n-1) \\
& =\frac{1}{2}\left(1-\frac{1}{n}\right) n^{\frac{1}{k}+1}
\end{aligned}
$$

Dense graphs with no short cycles

Let Y be the random variable whose value (for the given graph G) is number of cycles of length at most $k-1$ in G. Each i-cycle occurs with probability p^{i} and there are $\binom{n}{i} \frac{(i-1)!}{2}$ possible cycles of length i. Thus

$$
\begin{aligned}
\mathrm{E}[Y]=\sum_{i=1}^{k-1}\binom{n}{i} \frac{(i-1)!}{2} p^{i} & \leq \sum_{i=1}^{k-1} n^{i} p^{i} \\
& =\sum_{i=1}^{k-1} n^{\frac{i}{k}} \\
& <k n^{\frac{k-1}{k}}
\end{aligned}
$$

Dense graphs with no short cycles

Hence

$$
\begin{aligned}
\mathbf{E}[X-Y] & \geq \frac{1}{2}\left(1-\frac{1}{n}\right) n^{\frac{1}{k}+1}-k n^{\frac{k-1}{k}} \\
& \geq \frac{1}{4} n^{\frac{1}{k}+1}
\end{aligned}
$$

So, if we delete one edge from every cycle of length at most $k-1$ in G the expected number of edges in the resulting graph G^{\prime} is at least $\frac{1}{4} n^{\frac{1}{k}+1}$. This means that there exists a graph that has at least $\frac{1}{4} n^{\frac{1}{k}+1}$ and no cycles with less than k vertices.

High chromatic number and no triangles

The Chromatic number, $\chi(G)$ of a graph $G=(V, E)$ is the minimum integer k so that we can partition V into disjoint sets $V_{1}, V_{2}, \ldots, V_{k}$ with the property that no edge is inside any V_{i}.

Theorem

For every $k \geq 1$ there exists a graph with no clique of size 3 (triangle-free) and chromatic number at least k.

High chromatic number and no triangles

Proof Let $G \in \mathcal{G}_{n, p}$ where $p=n^{-\frac{2}{3}}$
To prove that $\chi(G)>k$ it suffices to show that G has no independent set of size $\left\lceil\frac{n}{k}\right\rceil$. In fact we prove that with high probability G no has independent set of suze $\left\lceil\frac{n}{2 k}\right\rceil$.
Let the random variable / count the number of independent sets of size $\left\lceil\frac{n}{2 k}\right\rceil$ in G. Let \mathcal{S} be the set of all $S \subseteq V$ of size $\left\lceil\frac{n}{2 k}\right\rceil$. Let the indicator variable I_{S} be one if S is an independent set and 0 otherwise. So $I=\sum_{\{S \in \mathcal{S}\}} / S$.
Then we have $E\left[I_{s}\right]=(1-p){ }^{\left(\left[\begin{array}{l}\left.\frac{n}{2 k}\right] \\ 2\end{array}\right)\right.}$

High chromatic number and no triangles

$$
\begin{aligned}
\mathbf{E}[/] & =\sum_{\{S \in \mathcal{S}\}} \mathbf{E}\left[/_{s}\right] \\
& =\binom{n}{\left\lceil\frac{n}{2 k}\right\rceil}(1-p)^{\left.()^{\left(\frac{n}{2 k}\right\rceil}\right)} \\
& <\binom{n}{\left\lceil\frac{n}{2 k}\right\rceil}(1-p)^{\left(\frac{n}{2 k}\right)}
\end{aligned}
$$

Using that $\binom{n}{r} \leq 2^{n}$ for all $0 \leq r \leq n$ and $1-x<e^{-x}$ when $x>0$, we get

$$
\begin{aligned}
\mathbf{E}[I] & <2^{n} e^{-\frac{p n(n-2 k)}{8 k^{2}}} \\
& <2^{n} e^{-\frac{n^{\frac{3}{3}}}{16 k^{2}}} \\
& <\frac{1}{2}
\end{aligned}
$$

when $n>2^{12} k^{6}$

High chromatic number and no triangles

When $n \geq 2^{12} k^{6}$ we have $E[I]<\frac{1}{2}$.
By Markov's inequality $\operatorname{Pr}(I>0)<\frac{1}{2}$ when $n \geq 2^{12} k^{6}$.
Let T be the number of triangles in G. Now we need to show that $E[T]$ is also much less than one, BUT that is not true!

$$
\begin{equation*}
\mathrm{E}[T]=\binom{n}{3} p^{3}<\frac{n^{3}}{3!}\left(n^{-\frac{2}{3}}\right)^{3}=\frac{n}{6} \tag{1}
\end{equation*}
$$

High chromatic number and no triangles

We found that $E[T]=\frac{n}{6}$.
By Markov's inequality, $\operatorname{Pr}\left(T \geq \frac{n}{2}\right) \leq \frac{\frac{n}{6}}{\frac{\pi}{2}}=\frac{1}{3}$ for large n
Now we have $\operatorname{Pr}(I \geq 1)+\operatorname{Pr}\left(T \geq \frac{n}{2}\right)<\frac{1}{2}+\frac{1}{3}<1$ so there exists a graph G with $I=0$ and $T \leq \frac{n}{2}$.

High chromatic number and no triangles

Choose a set M of at most $\frac{n}{2}$ vertices which meets all triangles in g and let $G^{\prime}=G-M$.
Then G^{\prime} is triangle-free and has at least $\frac{n}{2}$ vertices. Also G^{\prime} has no independent set of size $\left\lceil\frac{n}{2 k}\right\rceil$ (because G has no such set) so
$\chi\left(G^{\prime}\right)>\frac{\frac{n}{2}}{\frac{2}{2 k}}=k$.

