
BIL694-Lecture 2: Matchings and Covers

Lecturer: Lale Özkahya

Resources for the presentation:
http://www.inf.ed.ac.uk/teaching/courses/dmmr/

http://www.cs.princeton.edu/courses/archive/spr11/cos423/Lectures/GraphMatching.pdf

http://www.cs.princeton.edu/courses/archive/spr11/cos423/Lectures/NonbipartiteMatching.pdf

Outline

1 Matchings and Covers

2 Algorithms for Finding Maximum Matchings

3 Matchings in General Graphs

Outline

1 Matchings and Covers

2 Algorithms for Finding Maximum Matchings

3 Matchings in General Graphs

Bipartite Graphs and Matchings
Bipartite graphs used extensively in app’s
involving matching elements of two sets:
Job assignments - vertices represent the jobs
and the employees, edges link employees with
jobs they are qualified for. Maximize # of
employees matched to jobs.

Marriage/dating - vertices represent men &
women and edges link a man & woman if they
are acceptable to each other as partners.

Bipartite graphs

A bipartite graph is a (undirected) graph G = (V , E) whose
vertices can be partitioned into two disjoint sets (V1, V2), with
V1 ∩ V2 = ∅ and V1 ∪ V2 = V , such that for every edge e ∈ E ,
e = {u, v} such that u ∈ V1 and v ∈ V2. In other words, every
edge connects a vertex in V1 with a vertex in V2.

Equivalently, a graph is bipartite if and only if it is possible to
color each vertex red or blue such that no two adjacent vertices
are the same color.

Kousha Etessami (U. of Edinburgh, UK) Discrete Mathematics (Chapter 6) 1 / 9

Example of a Bipartite Graph

V1 V2

Kousha Etessami (U. of Edinburgh, UK) Discrete Mathematics (Chapter 6) 2 / 9

Matchings in Bipartite Graphs

A matching, M, in a graph, G = (V , E), is a subset of edges,
M ⊆ E , such that there does not exist two distinct edges in M
that are incident on the same vertex. In other words, if
{u, v}, {w , z} ∈ M, then either {u, v} = {w , z} or
{u, v} ∩ {w , z} = ∅.
A maximum matching in graph G is a matching in G with the
maximum possible number of edges.

Kousha Etessami (U. of Edinburgh, UK) Discrete Mathematics (Chapter 6) 3 / 9

Perfect/complete matchings

For a graph G = (V , E), we say that a subset of edges, W ⊆ E ,
covers a subset of vertices, A ⊆ V , if for all vertices u ∈ A,
there exists an edge e ∈W , such that e is incident on u, i.e.,
such that e = {u, v}, for some vertex v .

In a bipartite graph G = (V , E) with bipartition (V1, V2), a
complete matching with respect to V1, is a matching M ′ ⊆ E
that covers V1, and a perfect matching is a matching, M∗ ⊆ E ,
that covers V .

Question: When does a bipartite graph have a perfect
matching?

Kousha Etessami (U. of Edinburgh, UK) Discrete Mathematics (Chapter 6) 4 / 9

A bipartite graph

Solid edges are a matching

(maximal but not maximum)

A B C

A maximal matching is one to which no
additional edge can be added

FED

Another matching, perfect hence maximum

A B C

FED

A nonbipartite graph

Does this graph have a perfect matching?

A B C

FED

G H

No: Each of A, G, H must be matched to D or E

A B C

FED

G H

Alternating Path and Augmenting Path in Bipartite
(A,B)-graph

A path in G which starts in A at an unmatched vertex and then contains,
alternately, edges from E \M and from M, is an alternating path with
respect to M.

An alternating path P that ends in an unmatched vertex of B is called an
augmenting path, because we use it to turn M into a larger matching.

Figure: Augmenting the matching M by the alternating path P

Alternating Path and Augmenting Path in Bipartite
(A,B)-graph

A path in G which starts in A at an unmatched vertex and then contains,
alternately, edges from E \M and from M, is an alternating path with
respect to M.

An alternating path P that ends in an unmatched vertex of B is called an
augmenting path, because we use it to turn M into a larger matching.

Figure: Augmenting the matching M by the alternating path P

Alternating Path and Augmenting Path in Bipartite
(A,B)-graph

A path in G which starts in A at an unmatched vertex and then contains,
alternately, edges from E \M and from M, is an alternating path with
respect to M.

An alternating path P that ends in an unmatched vertex of B is called an
augmenting path, because we use it to turn M into a larger matching.

Figure: Augmenting the matching M by the alternating path P

Matchings in Bipartite Graphs: Hall's Condition

A matching M in a bipartite (A,B)-graph is said to saturate A if each
vertex in A is contained in some edge of M.

Hall's Condition: The condition that |N(S)| ≥ |S | for all S ⊂ A is called
the Hall's condition for �nding a matching that saturates A.

Theorem (Hall, 1935): G contains a matching that saturates A if and
only if |N(S)| ≥ |S | for all S ⊂ A.

Matchings in Bipartite Graphs: Hall's Condition

A matching M in a bipartite (A,B)-graph is said to saturate A if each
vertex in A is contained in some edge of M.

Hall's Condition: The condition that |N(S)| ≥ |S | for all S ⊂ A is called
the Hall's condition for �nding a matching that saturates A.

Theorem (Hall, 1935): G contains a matching that saturates A if and
only if |N(S)| ≥ |S | for all S ⊂ A.

Matchings in Bipartite Graphs: Hall's Condition

A matching M in a bipartite (A,B)-graph is said to saturate A if each
vertex in A is contained in some edge of M.

Hall's Condition: The condition that |N(S)| ≥ |S | for all S ⊂ A is called
the Hall's condition for �nding a matching that saturates A.

Theorem (Hall, 1935): G contains a matching that saturates A if and
only if |N(S)| ≥ |S | for all S ⊂ A.

A proof of Hall's Theorem

Proof by induction:

Apply induction on |A|. For |A| = 1, clearly the theorem holds.
Let |A| ≥ 2 and assume that Hall's condition is su�cient of a
mathing that saturates A when |A| is smaller.

Case 1: |N(S)| ≥ |S |+ 1 for every non-empty proper S ⊂ A.

pick an edge ab, let G ′ := G − {a, b} with a ∈ A, b ∈ B. Then

|NG ′(S)| ≥ |NG (S)| − 1 ≥ |S |

for every S ⊂ A \ {a}.
G ′ contains a matching that saturates A \ {a} by inductive
hypothesis, this matching together with ab is a matching of G .

A proof of Hall's Theorem

Proof by induction:

Apply induction on |A|. For |A| = 1, clearly the theorem holds.
Let |A| ≥ 2 and assume that Hall's condition is su�cient of a
mathing that saturates A when |A| is smaller.

Case 1: |N(S)| ≥ |S |+ 1 for every non-empty proper S ⊂ A.

pick an edge ab, let G ′ := G − {a, b} with a ∈ A, b ∈ B. Then

|NG ′(S)| ≥ |NG (S)| − 1 ≥ |S |

for every S ⊂ A \ {a}.
G ′ contains a matching that saturates A \ {a} by inductive
hypothesis, this matching together with ab is a matching of G .

A proof of Hall's Theorem

Proof by induction:

Apply induction on |A|. For |A| = 1, clearly the theorem holds.
Let |A| ≥ 2 and assume that Hall's condition is su�cient of a
mathing that saturates A when |A| is smaller.

Case 1: |N(S)| ≥ |S |+ 1 for every non-empty proper S ⊂ A.

pick an edge ab, let G ′ := G − {a, b} with a ∈ A, b ∈ B. Then

|NG ′(S)| ≥ |NG (S)| − 1 ≥ |S |

for every S ⊂ A \ {a}.

G ′ contains a matching that saturates A \ {a} by inductive
hypothesis, this matching together with ab is a matching of G .

A proof of Hall's Theorem

Proof by induction:

Apply induction on |A|. For |A| = 1, clearly the theorem holds.
Let |A| ≥ 2 and assume that Hall's condition is su�cient of a
mathing that saturates A when |A| is smaller.

Case 1: |N(S)| ≥ |S |+ 1 for every non-empty proper S ⊂ A.

pick an edge ab, let G ′ := G − {a, b} with a ∈ A, b ∈ B. Then

|NG ′(S)| ≥ |NG (S)| − 1 ≥ |S |

for every S ⊂ A \ {a}.
G ′ contains a matching that saturates A \ {a} by inductive
hypothesis, this matching together with ab is a matching of G .

A proof of Hall's Theorem

Proof by induction (continues):

Case 2: There exists a proper subset A′ (A with |N(A′)| = |A′|, let
B ′ = N(A′).

G ′ := G [A′ ∪ B ′] contains a matching saturating A′ (Ind. Hypo.)

G − G ′ also satis�es Hall's condition. Why?
(Consider NG (S ∪ A′) if S ⊂ A− A′ does not satisfy Hall's
condition). G − G ′ contains a matching saturating A \ A′. Done.

A proof of Hall's Theorem

Proof by induction (continues):

Case 2: There exists a proper subset A′ (A with |N(A′)| = |A′|, let
B ′ = N(A′).

G ′ := G [A′ ∪ B ′] contains a matching saturating A′ (Ind. Hypo.)

G − G ′ also satis�es Hall's condition. Why?
(Consider NG (S ∪ A′) if S ⊂ A− A′ does not satisfy Hall's
condition). G − G ′ contains a matching saturating A \ A′. Done.

A proof of Hall's Theorem

Proof by induction (continues):

Case 2: There exists a proper subset A′ (A with |N(A′)| = |A′|, let
B ′ = N(A′).

G ′ := G [A′ ∪ B ′] contains a matching saturating A′ (Ind. Hypo.)

G − G ′ also satis�es Hall's condition. Why?
(Consider NG (S ∪ A′) if S ⊂ A− A′ does not satisfy Hall's
condition).

G − G ′ contains a matching saturating A \ A′. Done.

A proof of Hall's Theorem

Proof by induction (continues):

Case 2: There exists a proper subset A′ (A with |N(A′)| = |A′|, let
B ′ = N(A′).

G ′ := G [A′ ∪ B ′] contains a matching saturating A′ (Ind. Hypo.)

G − G ′ also satis�es Hall's condition. Why?
(Consider NG (S ∪ A′) if S ⊂ A− A′ does not satisfy Hall's
condition). G − G ′ contains a matching saturating A \ A′. Done.

Matchings in Bipartite Graphs: König-Egerváry Theorem

A subset U ⊂ V in a graph G = (V ,E) is called a vertex cover if every
edge of G is incident with a vertex in U.

Theorem (König, 1931), Egerváry (1931): The maximum size of a
matching in a bipartite (X ,Y)-graph is equal to the minimum order of a
vertex cover of its edges.

Proof: Let Q be a minimum vertex cover. Trivially, a vertex cover
di�erent vertex to cover each edge in M. Therefore, |Q| ≥ |M|.
Next: Show that a minimum vertex cover Q has also at most |M|
vertices.

Matchings in Bipartite Graphs: König-Egerváry Theorem

A subset U ⊂ V in a graph G = (V ,E) is called a vertex cover if every
edge of G is incident with a vertex in U.

Theorem (König, 1931), Egerváry (1931): The maximum size of a
matching in a bipartite (X ,Y)-graph is equal to the minimum order of a
vertex cover of its edges.

Proof: Let Q be a minimum vertex cover. Trivially, a vertex cover
di�erent vertex to cover each edge in M. Therefore, |Q| ≥ |M|.
Next: Show that a minimum vertex cover Q has also at most |M|
vertices.

Matchings in Bipartite Graphs: König-Egerváry Theorem

A subset U ⊂ V in a graph G = (V ,E) is called a vertex cover if every
edge of G is incident with a vertex in U.

Theorem (König, 1931), Egerváry (1931): The maximum size of a
matching in a bipartite (X ,Y)-graph is equal to the minimum order of a
vertex cover of its edges.

Proof: Let Q be a minimum vertex cover. Trivially, a vertex cover
di�erent vertex to cover each edge in M. Therefore, |Q| ≥ |M|.

Next: Show that a minimum vertex cover Q has also at most |M|
vertices.

Matchings in Bipartite Graphs: König-Egerváry Theorem

A subset U ⊂ V in a graph G = (V ,E) is called a vertex cover if every
edge of G is incident with a vertex in U.

Theorem (König, 1931), Egerváry (1931): The maximum size of a
matching in a bipartite (X ,Y)-graph is equal to the minimum order of a
vertex cover of its edges.

Proof: Let Q be a minimum vertex cover. Trivially, a vertex cover
di�erent vertex to cover each edge in M. Therefore, |Q| ≥ |M|.
Next: Show that a minimum vertex cover Q has also at most |M|
vertices.

Matchings in Bipartite Graphs: König-Egerváry Theorem

Partition Q into the sets R and T , where R = Q ∩ X and
T = Q ∩ Y .

Let H = G [R ∪ (Y − T)] and H ′ = G [T ∪ (X − R)].
Use Hall's theorem to show that H has a matching saturating R and
H ′ has a matching saturating T .

To do that, we need to show that Hall's condition holds for these
graphs. (Observe that there is no edge between the sets Y − T and
X −R. If Hall's condition does not hold for some S , we could obtain
a smaller vertex cover, contradiction.)

Since H and H ′ are vertex-disjoint, these the union of these two
mathings is a matching of G . Done.

Matchings in Bipartite Graphs: König-Egerváry Theorem

Partition Q into the sets R and T , where R = Q ∩ X and
T = Q ∩ Y .

Let H = G [R ∪ (Y − T)] and H ′ = G [T ∪ (X − R)].
Use Hall's theorem to show that H has a matching saturating R and
H ′ has a matching saturating T .

To do that, we need to show that Hall's condition holds for these
graphs. (Observe that there is no edge between the sets Y − T and
X −R. If Hall's condition does not hold for some S , we could obtain
a smaller vertex cover, contradiction.)

Since H and H ′ are vertex-disjoint, these the union of these two
mathings is a matching of G . Done.

Matchings in Bipartite Graphs: König-Egerváry Theorem

Partition Q into the sets R and T , where R = Q ∩ X and
T = Q ∩ Y .

Let H = G [R ∪ (Y − T)] and H ′ = G [T ∪ (X − R)].
Use Hall's theorem to show that H has a matching saturating R and
H ′ has a matching saturating T .

To do that, we need to show that Hall's condition holds for these
graphs. (Observe that there is no edge between the sets Y − T and
X −R. If Hall's condition does not hold for some S , we could obtain
a smaller vertex cover, contradiction.)

Since H and H ′ are vertex-disjoint, these the union of these two
mathings is a matching of G . Done.

Matchings in Bipartite Graphs: König-Egerváry Theorem

Partition Q into the sets R and T , where R = Q ∩ X and
T = Q ∩ Y .

Let H = G [R ∪ (Y − T)] and H ′ = G [T ∪ (X − R)].
Use Hall's theorem to show that H has a matching saturating R and
H ′ has a matching saturating T .

To do that, we need to show that Hall's condition holds for these
graphs. (Observe that there is no edge between the sets Y − T and
X −R. If Hall's condition does not hold for some S , we could obtain
a smaller vertex cover, contradiction.)

Since H and H ′ are vertex-disjoint, these the union of these two
mathings is a matching of G . Done.

Outline

1 Matchings and Covers

2 Algorithms for Finding Maximum Matchings

3 Matchings in General Graphs

Efficient matching algorithm?

Iterative improvement: Start with any matching.

Find a way to improve it by making local

changes. Repeat until no improvement is changes. Repeat until no improvement is

possible. Hope: Any local maximum is a global

maximum

Alternating path: a path whose edges are

alternately in and out of the matching

Augmenting path: an alternating path between

two free vertices

Augmentation: given an augmenting path, Augmentation: given an augmenting path,

change its unmatched edges to matched and

vice-versa, increasing the size of the matching

by one

A, F free

A B C D E F

A, F matched

A B C D E F

Augmenting path algorithm

Start with the empty matching. While there is
an augmenting path, do an augmentation.

Theorem: A matching has maximum size iff
there is no augmenting paththere is no augmenting path

Proof: to follow

How to find augmenting paths?

How to choose augmenting paths?

augmenting path after augmentation

C, E, B, F

A B C A B C

FED FED

Matching Theorem: Let M be any matching, let

M’ be a maximum-size matching, and let k =

|M’| – |M|. Then M has k vertex-disjoint

augmenting paths

Proof: Let M’ ⊕ M be the symmetric difference

of M’ and M, the set of edges in M’ or M but of M’ and M, the set of edges in M’ or M but

not both. Each vertex is incident to at most

two edges in M’ ⊕ M. The connected

components of the subgraph induced by the

edges in M’ ⊕ M are thus simple paths and

simple cycles.

Proof (cont.): On each such path or cycle, edges

of M’ and M alternate. Each cycle contains

the same number of edges in M’ as in M.

Each path contains the same number of edges

in M’ as in M to within one. A path that

contains one more edge of M’ than M is an

augmenting path for M. In M’ ⊕ M there are augmenting path for M. In M’ ⊕ M there are

exactly k more edges in M’ than edges in M.

Thus the subgraph induced by the edges in M’

⊕ M contains k vertex-disjoint augmenting

paths for M (and no augmenting paths for M’).

Corollary: If M is a matching whose size is k less

than maximum, then M has an augmenting

path of at most n/k vertices.

Both the theorem and its corollary are true for

all graphs, not just bipartite ones

Augmenting Path Algorithm (West, Algorithm 3.2.1)

Input: An X ,Y -bigraph G , a matching M in G , and the set U of
M-unsaturated vertices.

Idea: Explore M-alternating paths from U, letting S ⊆ X and T ⊆ Y be
the sets of vertices reached.

Mark vertices of S that have been explored for path extensions. As a
vertex is reached, record the vertex from which it is reached.
Initialization: S = U and T = ∅.

Augmenting Path Algorithm (West, Algorithm 3.2.1)

Iteration:

If S has no unmarked vertex, stop and report T ∪ (X − S) as a
minimum cover and M as a maximum matching.

Otherwise, select
an unmarked x ∈ S . To explore x , consider each y ∈ N(x) such that
xy /∈ M.
If y is unsaturated, terminate and report an M-augmenting path
from U to y .
Otherwise, y is matched to some w ∈ X by M. In this case, include
y in T (reached from x) and include w in S (reached from y).
After exploring all such edges incident to x , mark x and iterate.

Thm. The A.P. algorithm produces an M-augmenting path or a vertex
cover of size |M|, which is R = T ∪ (X − S).

Augmenting Path Algorithm (West, Algorithm 3.2.1)

Iteration:

If S has no unmarked vertex, stop and report T ∪ (X − S) as a
minimum cover and M as a maximum matching. Otherwise, select
an unmarked x ∈ S . To explore x , consider each y ∈ N(x) such that
xy /∈ M.

If y is unsaturated, terminate and report an M-augmenting path
from U to y .
Otherwise, y is matched to some w ∈ X by M. In this case, include
y in T (reached from x) and include w in S (reached from y).
After exploring all such edges incident to x , mark x and iterate.

Thm. The A.P. algorithm produces an M-augmenting path or a vertex
cover of size |M|, which is R = T ∪ (X − S).

Augmenting Path Algorithm (West, Algorithm 3.2.1)

Iteration:

If S has no unmarked vertex, stop and report T ∪ (X − S) as a
minimum cover and M as a maximum matching. Otherwise, select
an unmarked x ∈ S . To explore x , consider each y ∈ N(x) such that
xy /∈ M.
If y is unsaturated, terminate and report an M-augmenting path
from U to y .

Otherwise, y is matched to some w ∈ X by M. In this case, include
y in T (reached from x) and include w in S (reached from y).
After exploring all such edges incident to x , mark x and iterate.

Thm. The A.P. algorithm produces an M-augmenting path or a vertex
cover of size |M|, which is R = T ∪ (X − S).

Augmenting Path Algorithm (West, Algorithm 3.2.1)

Iteration:

If S has no unmarked vertex, stop and report T ∪ (X − S) as a
minimum cover and M as a maximum matching. Otherwise, select
an unmarked x ∈ S . To explore x , consider each y ∈ N(x) such that
xy /∈ M.
If y is unsaturated, terminate and report an M-augmenting path
from U to y .
Otherwise, y is matched to some w ∈ X by M. In this case, include
y in T (reached from x) and include w in S (reached from y).

After exploring all such edges incident to x , mark x and iterate.

Thm. The A.P. algorithm produces an M-augmenting path or a vertex
cover of size |M|, which is R = T ∪ (X − S).

Augmenting Path Algorithm (West, Algorithm 3.2.1)

Iteration:

If S has no unmarked vertex, stop and report T ∪ (X − S) as a
minimum cover and M as a maximum matching. Otherwise, select
an unmarked x ∈ S . To explore x , consider each y ∈ N(x) such that
xy /∈ M.
If y is unsaturated, terminate and report an M-augmenting path
from U to y .
Otherwise, y is matched to some w ∈ X by M. In this case, include
y in T (reached from x) and include w in S (reached from y).
After exploring all such edges incident to x , mark x and iterate.

Thm. The A.P. algorithm produces an M-augmenting path or a vertex
cover of size |M|, which is R = T ∪ (X − S).

Augmenting Path Algorithm (West, Algorithm 3.2.1)

Iteration:

If S has no unmarked vertex, stop and report T ∪ (X − S) as a
minimum cover and M as a maximum matching. Otherwise, select
an unmarked x ∈ S . To explore x , consider each y ∈ N(x) such that
xy /∈ M.
If y is unsaturated, terminate and report an M-augmenting path
from U to y .
Otherwise, y is matched to some w ∈ X by M. In this case, include
y in T (reached from x) and include w in S (reached from y).
After exploring all such edges incident to x , mark x and iterate.

Thm. The A.P. algorithm produces an M-augmenting path or a vertex
cover of size |M|, which is R = T ∪ (X − S).

Stable Matchings

Problem: To establish n "stable" marriages given n men and n women.

unstable pair: If man x and woman a are paired with other partners, but
x prefers a to his current partner and a prefers x to her current partner,
then they might leave their current partners and switch to each other. In
this case, we say that the unmatched pair (x , a) is an unstable pair.

stable matching: A perfect matching is a stable matching if it yields no
unstable unmatched pair.

Stable Matchings

Problem: To establish n "stable" marriages given n men and n women.

unstable pair: If man x and woman a are paired with other partners, but
x prefers a to his current partner and a prefers x to her current partner,
then they might leave their current partners and switch to each other. In
this case, we say that the unmatched pair (x , a) is an unstable pair.

stable matching: A perfect matching is a stable matching if it yields no
unstable unmatched pair.

Gale-Shapley Proposal Algorithm

Idea: Produces a stable matching using proposals by maintaining
information who has proposed to whom and who has rejected whom.
Iteration:

Each man proposes to the highest woman on his preference list who
has not previously rejected him.

If each woman receives exactly one proposal, stop and use the
resulting matching.

Otherwise, every woman receiving more than one proposal rejects all
of them except the one that is highest on her preference list.

Every woman receiving a proposal says "maybe" to the most
attractive proposal received.

Why does this algorithm produce a stable matching?

Gale-Shapley Proposal Algorithm

Idea: Produces a stable matching using proposals by maintaining
information who has proposed to whom and who has rejected whom.
Iteration:

Each man proposes to the highest woman on his preference list who
has not previously rejected him.

If each woman receives exactly one proposal, stop and use the
resulting matching.

Otherwise, every woman receiving more than one proposal rejects all
of them except the one that is highest on her preference list.

Every woman receiving a proposal says "maybe" to the most
attractive proposal received.

Why does this algorithm produce a stable matching?

Gale-Shapley Proposal Algorithm

Idea: Produces a stable matching using proposals by maintaining
information who has proposed to whom and who has rejected whom.
Iteration:

Each man proposes to the highest woman on his preference list who
has not previously rejected him.

If each woman receives exactly one proposal, stop and use the
resulting matching.

Otherwise, every woman receiving more than one proposal rejects all
of them except the one that is highest on her preference list.

Every woman receiving a proposal says "maybe" to the most
attractive proposal received.

Why does this algorithm produce a stable matching?

Gale-Shapley Proposal Algorithm

Idea: Produces a stable matching using proposals by maintaining
information who has proposed to whom and who has rejected whom.
Iteration:

Each man proposes to the highest woman on his preference list who
has not previously rejected him.

If each woman receives exactly one proposal, stop and use the
resulting matching.

Otherwise, every woman receiving more than one proposal rejects all
of them except the one that is highest on her preference list.

Every woman receiving a proposal says "maybe" to the most
attractive proposal received.

Why does this algorithm produce a stable matching?

Outline

1 Matchings and Covers

2 Algorithms for Finding Maximum Matchings

3 Matchings in General Graphs

Matching and r -factor

A set M of independent edges in a graph G = (V ,E) is called
a matching.

A subgraph of a graph G that contains all vertices of G is
called a spanning subgraph of G .
A k-regular spanning subgraph is called a k-factor.
(A 1-factor is a matching.)

A matching that contains all vertices of a graph G is called a
perfect matching (or a 1-factor) of G .

Matching and r -factor

A set M of independent edges in a graph G = (V ,E) is called
a matching.

A subgraph of a graph G that contains all vertices of G is
called a spanning subgraph of G .

A k-regular spanning subgraph is called a k-factor.
(A 1-factor is a matching.)

A matching that contains all vertices of a graph G is called a
perfect matching (or a 1-factor) of G .

Matching and r -factor

A set M of independent edges in a graph G = (V ,E) is called
a matching.

A subgraph of a graph G that contains all vertices of G is
called a spanning subgraph of G .
A k-regular spanning subgraph is called a k-factor.
(A 1-factor is a matching.)

A matching that contains all vertices of a graph G is called a
perfect matching (or a 1-factor) of G .

Matching and r -factor

A set M of independent edges in a graph G = (V ,E) is called
a matching.

A subgraph of a graph G that contains all vertices of G is
called a spanning subgraph of G .
A k-regular spanning subgraph is called a k-factor.
(A 1-factor is a matching.)

A matching that contains all vertices of a graph G is called a
perfect matching (or a 1-factor) of G .

Example

In the example, M contains only the bold edges.
If we search for a shortest M-augmenting path, we observe that u

reaches x via a unsaturated edge ax .
If we do not consider a longer path reaching x via a saturated edge, then

we miss the augmenting path u, v , a, b, c , d , x , y .

Edmonds Blossom Algorithm

De�nition Let M be a matching in a graph G and let u be an
M-unsaturated vertex. A �ower is the union of two M-alternating paths
from u that reach a vertex x on steps of opposite parity.

The stem of the �ower is the maximal common initial path. The blossom
of the �ower is the odd cycle obtained by deleting the stem. In the
example, the path u, v , a is the stem and the blossom is the 5-cycle.

We continue our search along any unsaturated edge from the blossom to
a vertex not yet reached (y in the example)
Since each vertex of a blossom is saturated by an edge of M, no
saturated edge emerges from a blossom (except the stem).

Edmonds Blossom Algorithm

De�nition Let M be a matching in a graph G and let u be an
M-unsaturated vertex. A �ower is the union of two M-alternating paths
from u that reach a vertex x on steps of opposite parity.

The stem of the �ower is the maximal common initial path. The blossom
of the �ower is the odd cycle obtained by deleting the stem. In the
example, the path u, v , a is the stem and the blossom is the 5-cycle.

We continue our search along any unsaturated edge from the blossom to
a vertex not yet reached (y in the example)
Since each vertex of a blossom is saturated by an edge of M, no
saturated edge emerges from a blossom (except the stem).

Edmonds Blossom Algorithm

De�nition Let M be a matching in a graph G and let u be an
M-unsaturated vertex. A �ower is the union of two M-alternating paths
from u that reach a vertex x on steps of opposite parity.

The stem of the �ower is the maximal common initial path. The blossom
of the �ower is the odd cycle obtained by deleting the stem. In the
example, the path u, v , a is the stem and the blossom is the 5-cycle.

We continue our search along any unsaturated edge from the blossom to
a vertex not yet reached (y in the example)
Since each vertex of a blossom is saturated by an edge of M, no
saturated edge emerges from a blossom (except the stem).

Edmonds Blossom Algorithm: Example 3.3.16

Consider the blossom as a single "supervertex" and search from all
vertices of the supervertex blossom simultaneously along unsaturated
edges.

By contracting the edges of a blossom B, we obtain a new saturated
vertex b incident to the last saturated edge of the stem. Its other
incident edges are the unsaturated edges joining vertices of B to the
vertices outside B.

Edmonds Blossom Algorithm: Example 3.3.16

Consider the blossom as a single "supervertex" and search from all
vertices of the supervertex blossom simultaneously along unsaturated
edges.

By contracting the edges of a blossom B, we obtain a new saturated
vertex b incident to the last saturated edge of the stem. Its other
incident edges are the unsaturated edges joining vertices of B to the
vertices outside B.

Edmonds Blossom Algorithm: Example 3.3.16

By contracting all blossoms like that, we �nd an M-alternating path in
the �nal graph from u to an unsaturated vertex x , then we can undo the
contractions to obtain an M-augmenting path to x .

Edmonds Blossom Algorithm: Example 3.3.16

By contracting all blossoms like that, we �nd an M-alternating path in
the �nal graph from u to an unsaturated vertex x , then we can undo the
contractions to obtain an M-augmenting path to x .

Corollary: If G is a k-regular bipartite graph with k ≥ 1, then G has a
perfect matching.
Proof: Exercise.

Corollary (Petersen, 1891): Every regular graph of positive even degree
has a 2-factor.

Figure: Splitting vertices in the proof.

Say G is 2k-regular. Then G contains an Euler Tour v0e0 . . . e`−1v`,
with v` = v0.

Replace every vertex v by a pair (v−, v+)
and every edge ei = vivi+1 by the edge v+

i v−i+1
to obtain a new

graph G ′.

Since G ′ is a k-regular bipartite graph, by the previous corollary, G ′

has a perfect matching (1-factor).

Corollary: If G is a k-regular bipartite graph with k ≥ 1, then G has a
perfect matching.
Proof: Exercise.
Corollary (Petersen, 1891): Every regular graph of positive even degree
has a 2-factor.

Figure: Splitting vertices in the proof.

Say G is 2k-regular. Then G contains an Euler Tour v0e0 . . . e`−1v`,
with v` = v0.

Replace every vertex v by a pair (v−, v+)
and every edge ei = vivi+1 by the edge v+

i v−i+1
to obtain a new

graph G ′.

Since G ′ is a k-regular bipartite graph, by the previous corollary, G ′

has a perfect matching (1-factor).

Corollary: If G is a k-regular bipartite graph with k ≥ 1, then G has a
perfect matching.
Proof: Exercise.
Corollary (Petersen, 1891): Every regular graph of positive even degree
has a 2-factor.

Figure: Splitting vertices in the proof.

Say G is 2k-regular. Then G contains an Euler Tour v0e0 . . . e`−1v`,
with v` = v0.

Replace every vertex v by a pair (v−, v+)
and every edge ei = vivi+1 by the edge v+

i v−i+1
to obtain a new

graph G ′.

Since G ′ is a k-regular bipartite graph, by the previous corollary, G ′

has a perfect matching (1-factor).

Corollary: If G is a k-regular bipartite graph with k ≥ 1, then G has a
perfect matching.
Proof: Exercise.
Corollary (Petersen, 1891): Every regular graph of positive even degree
has a 2-factor.

Figure: Splitting vertices in the proof.

Say G is 2k-regular. Then G contains an Euler Tour v0e0 . . . e`−1v`,
with v` = v0.

Replace every vertex v by a pair (v−, v+)
and every edge ei = vivi+1 by the edge v+

i v−i+1
to obtain a new

graph G ′.

Since G ′ is a k-regular bipartite graph, by the previous corollary, G ′

has a perfect matching (1-factor).

Corollary: If G is a k-regular bipartite graph with k ≥ 1, then G has a
perfect matching.
Proof: Exercise.
Corollary (Petersen, 1891): Every regular graph of positive even degree
has a 2-factor.

Figure: Splitting vertices in the proof.

Say G is 2k-regular. Then G contains an Euler Tour v0e0 . . . e`−1v`,
with v` = v0.

Replace every vertex v by a pair (v−, v+)
and every edge ei = vivi+1 by the edge v+

i v−i+1
to obtain a new

graph G ′.

Since G ′ is a k-regular bipartite graph, by the previous corollary, G ′

has a perfect matching (1-factor).

Corollary: If G is a k-regular bipartite graph with k ≥ 1, then G has a
perfect matching.
Proof: Exercise.
Corollary (Petersen, 1891): Every regular graph of positive even degree
has a 2-factor.

Figure: Splitting vertices in the proof.

Say G is 2k-regular. Then G contains an Euler Tour v0e0 . . . e`−1v`,
with v` = v0.

Replace every vertex v by a pair (v−, v+)
and every edge ei = vivi+1 by the edge v+

i v−i+1
to obtain a new

graph G ′.

Since G ′ is a k-regular bipartite graph, by the previous corollary, G ′

has a perfect matching (1-factor).

Given a graph G , let us denote by CG the set of its components, and by
o(G) the number of its odd components, those of odd order.

Tutte's Condition: If G has a 1-factor, then

o(G − S) ≤ |S | for all S ⊂ V (G)

since every odd component of G − S will have a factor edge between S
and itself.

Surprisingly, this necessary condition is also su�cient as stated in the
theorem below.
Theorem (Tutte, 1947): A graph has a 1-factor if and only if Tutte's
condition holds.

Given a graph G , let us denote by CG the set of its components, and by
o(G) the number of its odd components, those of odd order.

Tutte's Condition: If G has a 1-factor, then

o(G − S) ≤ |S | for all S ⊂ V (G)

since every odd component of G − S will have a factor edge between S
and itself.

Surprisingly, this necessary condition is also su�cient as stated in the
theorem below.
Theorem (Tutte, 1947): A graph has a 1-factor if and only if Tutte's
condition holds.

Given a graph G , let us denote by CG the set of its components, and by
o(G) the number of its odd components, those of odd order.

Tutte's Condition: If G has a 1-factor, then

o(G − S) ≤ |S | for all S ⊂ V (G)

since every odd component of G − S will have a factor edge between S
and itself.

Surprisingly, this necessary condition is also su�cient as stated in the
theorem below.
Theorem (Tutte, 1947): A graph has a 1-factor if and only if Tutte's
condition holds.

Corollary (Berge-Tutte Formula, 1958)

The largest number of vertices saturated by a matching in G is

min
S⊆V (G)

{n(G)− d(S)},

where d(S) = o(G − S)− |S |.

Proof:

For every S , at most |S | edges can match vertices of S to the
o(G − S) odd components. Thus every matching has at least
o(G − S)− |S | unsaturated vertices.

d := max{o(G − S)− |S | : S ⊆ V (G)}.

and let G ′ = G ∨ Kd .

Note that d(S) has the same parity as n(G) for each S . Thus,
n(G ′) is even.

Corollary (Berge-Tutte Formula, 1958)

The largest number of vertices saturated by a matching in G is

min
S⊆V (G)

{n(G)− d(S)},

where d(S) = o(G − S)− |S |.

Proof:

For every S , at most |S | edges can match vertices of S to the
o(G − S) odd components. Thus every matching has at least
o(G − S)− |S | unsaturated vertices.

d := max{o(G − S)− |S | : S ⊆ V (G)}.

and let G ′ = G ∨ Kd .

Note that d(S) has the same parity as n(G) for each S . Thus,
n(G ′) is even.

Corollary (Berge-Tutte Formula, 1958)

The largest number of vertices saturated by a matching in G is

min
S⊆V (G)

{n(G)− d(S)},

where d(S) = o(G − S)− |S |.

Proof:

For every S , at most |S | edges can match vertices of S to the
o(G − S) odd components. Thus every matching has at least
o(G − S)− |S | unsaturated vertices.

d := max{o(G − S)− |S | : S ⊆ V (G)}.

and let G ′ = G ∨ Kd .

Note that d(S) has the same parity as n(G) for each S . Thus,
n(G ′) is even.

Corollary (Berge-Tutte Formula, 1958)

The largest number of vertices saturated by a matching in G is

min
S⊆V (G)

{n(G)− d(S)},

where d(S) = o(G − S)− |S |.

Proof:

For every S , at most |S | edges can match vertices of S to the
o(G − S) odd components. Thus every matching has at least
o(G − S)− |S | unsaturated vertices.

d := max{o(G − S)− |S | : S ⊆ V (G)}.

and let G ′ = G ∨ Kd .

Note that d(S) has the same parity as n(G) for each S . Thus,
n(G ′) is even.

Proof (continued):

If G ′ satis�es Tutte's condition o(G ′ − S ′) ≤ |S ′| for all S ′, then we
obtain a matching of the desired size in G contained in a matching
of G ′.

If S ′ = ∅, Tutte's condn. holds.
If S ′ is nonempty, but does not contain all of Kd , then
o(G ′ − S ′) ≤ 1, since G ′ − S ′ is connected.

Otherwise, S ′ contains all of Kd . Let S = S ′ ∩ V (G). Then,
o(G ′ − S ′) = o(G − S) ≤ |S |+ d = |S ′|, because Tutte's condn.
holds for G . Done, G ′ has a perfect matching.

Thus, G has a matching with n(G)− d vertices.

Proof (continued):

If G ′ satis�es Tutte's condition o(G ′ − S ′) ≤ |S ′| for all S ′, then we
obtain a matching of the desired size in G contained in a matching
of G ′.

If S ′ = ∅, Tutte's condn. holds.
If S ′ is nonempty, but does not contain all of Kd , then
o(G ′ − S ′) ≤ 1, since G ′ − S ′ is connected.

Otherwise, S ′ contains all of Kd . Let S = S ′ ∩ V (G). Then,
o(G ′ − S ′) = o(G − S) ≤ |S |+ d = |S ′|, because Tutte's condn.
holds for G . Done, G ′ has a perfect matching.

Thus, G has a matching with n(G)− d vertices.

Proof (continued):

If G ′ satis�es Tutte's condition o(G ′ − S ′) ≤ |S ′| for all S ′, then we
obtain a matching of the desired size in G contained in a matching
of G ′.

If S ′ = ∅, Tutte's condn. holds.
If S ′ is nonempty, but does not contain all of Kd , then
o(G ′ − S ′) ≤ 1, since G ′ − S ′ is connected.

Otherwise, S ′ contains all of Kd . Let S = S ′ ∩ V (G). Then,
o(G ′ − S ′) = o(G − S) ≤ |S |+ d = |S ′|, because Tutte's condn.
holds for G . Done, G ′ has a perfect matching.

Thus, G has a matching with n(G)− d vertices.

Corollary (Petersen, 1981)

Every bridgeless cubic graph has a 1-factor.

Proof:

Prove that any bridgeless, cubic graph satis�es Tutte's condition.
Given any S ⊂ V (G), count the edges between S and the odd
components of G − S .

Observation: Let m be the number of edges from S to H, where H
is an odd component in G − S . Since the degree sum of the vertex
degrees in H is 3n(H)−m and even, m must be odd.

Because G has no bridge (cut-edge), m 6= 1. So, m ≥ 3 and there
are at least 3 edges between each odd component of G − S and S .

Thus, 3o(G − S) ≤ 3|S |.

Corollary (Petersen, 1981)

Every bridgeless cubic graph has a 1-factor.

Proof:

Prove that any bridgeless, cubic graph satis�es Tutte's condition.
Given any S ⊂ V (G), count the edges between S and the odd
components of G − S .

Observation: Let m be the number of edges from S to H, where H
is an odd component in G − S . Since the degree sum of the vertex
degrees in H is 3n(H)−m and even, m must be odd.

Because G has no bridge (cut-edge), m 6= 1. So, m ≥ 3 and there
are at least 3 edges between each odd component of G − S and S .

Thus, 3o(G − S) ≤ 3|S |.

Corollary (Petersen, 1981)

Every bridgeless cubic graph has a 1-factor.

Proof:

Prove that any bridgeless, cubic graph satis�es Tutte's condition.
Given any S ⊂ V (G), count the edges between S and the odd
components of G − S .

Observation: Let m be the number of edges from S to H, where H
is an odd component in G − S . Since the degree sum of the vertex
degrees in H is 3n(H)−m and even, m must be odd.

Because G has no bridge (cut-edge), m 6= 1. So, m ≥ 3 and there
are at least 3 edges between each odd component of G − S and S .

Thus, 3o(G − S) ≤ 3|S |.

Corollary (Petersen, 1981)

Every bridgeless cubic graph has a 1-factor.

Proof:

Prove that any bridgeless, cubic graph satis�es Tutte's condition.
Given any S ⊂ V (G), count the edges between S and the odd
components of G − S .

Observation: Let m be the number of edges from S to H, where H
is an odd component in G − S . Since the degree sum of the vertex
degrees in H is 3n(H)−m and even, m must be odd.

Because G has no bridge (cut-edge), m 6= 1. So, m ≥ 3 and there
are at least 3 edges between each odd component of G − S and S .

Thus, 3o(G − S) ≤ 3|S |.

Corollary (Petersen, 1981)

Every bridgeless cubic graph has a 1-factor.

Proof:

Prove that any bridgeless, cubic graph satis�es Tutte's condition.
Given any S ⊂ V (G), count the edges between S and the odd
components of G − S .

Observation: Let m be the number of edges from S to H, where H
is an odd component in G − S . Since the degree sum of the vertex
degrees in H is 3n(H)−m and even, m must be odd.

Because G has no bridge (cut-edge), m 6= 1. So, m ≥ 3 and there
are at least 3 edges between each odd component of G − S and S .

Thus, 3o(G − S) ≤ 3|S |.

	Matchings and Covers
	Algorithms for Finding Maximum Matchings
	Matchings in General Graphs

