CMP694-Lecture: Planar Graphs

Lecturer: Lale Özkahya

Resources for the presentation:
http://www.cs.nthu.edu.tw/ wkhon/math16.html http://cgm.cs.mcgill.ca/ athens/cs507/Projects/2003/MatthewWahab/5color.html
"Introduction to Graph Theory" by Douglas B. West

Outline

- What is a Planar Graph ?
- Euler Planar Formula
- Platonic Solids
- Five Color Theorem
- Kuratowski's Theorem

What is a Planar Graph ?

Definition : A planar graph is an undirected graph that can be drawn on a plane without any edges crossing. Such a drawing is called a planar representation of the graph in the plane.

- Ex: K_{4} is a planar graph

Examples of Planar Graphs

- Ex : Other planar representations of K_{4}

Examples of Planar Graphs

- Ex: Q_{3} is a planar graph

Examples of Planar Graphs

- Ex: $K_{1, n}$ and $K_{2, n}$ are planar graphs for all n

$\mathrm{K}_{1,5}$

$K_{2,4}$

Euler's Planar Formula

Definition: A planar representation of a graph splits the plane into regions, where one of them has infinite area and is called the infinite region.

- Ex:

4 regions
($\mathrm{R}_{4}=$ infinite region)

2 regions
($\mathrm{R}_{2}=$ infinite region)

Euler's Planar Formula

- Let G be a connected planar graph, and consider a planar representation of G. Let
V = \# vertices, E = \# edges, F = \# regions.

Theorem: $\quad V+F=E+2$.

- Ex:

$$
V=4, F=4, E=6
$$

$V=8, F=6, E=12$

Euler's Planar Formula

- Proof Idea :
- Add edges one by one, so that in each step, the subgraph is always connected
- Use induction to show that the formula is always satisfied for each subgraph
- For the new edge that is added, it either joins :
(1) two existing vertices
(2) one existing + one new vertex $\quad \rightarrow \mathrm{V} \sim, \mathrm{F} \uparrow$

Euler's Planar Formula

Case 2

$V \uparrow, F \sim$

Case 1

$\mathrm{V} \sim, \mathrm{F} \uparrow$

Case 1

$$
V \sim, F \uparrow
$$

$$
\sqrt[n]{n}
$$

Case 2

$\mathrm{V} \uparrow, \mathrm{F} \sim$

Euler's Planar Formula

- Let G be a connected simple planar graph with V = \# vertices, E = \# edges.

Corollary: If $\mathrm{V} \geq 3$, then $\mathrm{E} \leq 3 \mathrm{~V}-6$.

- Proof : Each region is surrounded by at least 3 edges (how about the infinite region?)
$\rightarrow 3 \mathrm{~F} \leq$ total edges $=2 \mathrm{E}$
$\rightarrow E+2=V+F \leq V+2 E / 3$
$\rightarrow E \leq 3 V-6$

Euler's Planar Formula

Theorem : K_{5} and $\mathrm{K}_{3,3}$ are non-planar.

- Proof :
(1) For $K_{5}, V=5$ and $E=10$
$\rightarrow \mathrm{E}>3 \mathrm{~V}-6 \rightarrow$ non-planar
(2) For $\mathrm{K}_{3,3}, \mathrm{~V}=6$ and $\mathrm{E}=9$.
\rightarrow If it is planar, each region is surrounded by at least 4 edges (why?)
$\Rightarrow F \leq\lfloor 2 E / 4\rfloor=4$
$\rightarrow \mathrm{V}+\mathrm{F} \leq 10<\mathrm{E}+2 \rightarrow$ non-planar

Platonic Solids

Definition: A Platonic solid is a convex 3D shape that all faces are the same, and each face is a regular polygon

Platonic Solids

Theorem: There are exactly 5 Platonic solids

- Proof:

Let $n=$ \# vertices of each polygon
m = degree of each vertex

For a platonic solid, we must have

$$
n \mathrm{~F}=2 \mathrm{E} \quad \text { and } \quad \mathrm{Vm}=2 \mathrm{E}
$$

Platonic Solids

- Proof (continued):

By Euler's planar formula,

$$
\begin{aligned}
& 2 E / m+2 E / n=V+F=E+2 \\
\Rightarrow \quad & 1 / m+1 / n=1 / 2+1 / E
\end{aligned}
$$

Also, we need to have

$$
\mathrm{n} \geq 3 \text { and } \mathrm{m} \geq 3 \quad \text { [from 3D shape] }
$$

but one of them must be $=3$
[from (*)]

Platonic Solids

- Proof (continued):
\rightarrow Either
(i) $\mathrm{n}=3$ (with $\mathrm{m}=3,4$, or 5)

(ii) $m=3$ (with $n=3,4$, or 5)

Map Coloring and Dual Graph

A Map M
Dual Graph of M

Map Coloring and Dual Graph

Observation: A proper color of M

\Leftrightarrow A proper vertex color the dual graph

G

Proper coloring : Adjacent regions (or vertices) have to be colored in different colors

Five Color Theorem

- Appel and Haken (1976) showed that every planar graph can be 4 colored
(Proof is tedious, has 1955 cases and many subcases)
- Here, we shall show that :

Theorem : Every planar graph can be 5 colored.

- The above theorem implies that every map can be 5 colored (as its dual is planar)

Five Color Theorem

- Proof :

We assume the graph has at least 5 vertices. Else, the theorem will immediately follow.

Next, in a planar graph, we see that there must be a vertex with degree at most 5 .
Else,

$$
2 \mathrm{E}=\text { total degree } \geq 3 \mathrm{~V}
$$

which contradicts with the fact $\mathrm{E} \leq 3 \mathrm{~V}-6$.

Five Color Theorem

- Proof (continued) :

Let v be a vertex whose degree is at most 5 .
Now, assume inductively that all planar graphs with $n-1$ vertices can be colored in 5 colors
\rightarrow Thus if v is removed, we can color the graph properly in 5 colors

What if we add back v to the graph now ??

Five Color Theorem

- Proof (continued) :

Case 1 : Neighbors of v uses at most 4 colors

there is a $5^{\text {th }}$ color for v

Five Color Theorem

- Proof (continued) :

Case 2 : Neighbors of v uses up all 5 colors

Can we save 1 color, by coloring the yellow neighbor in blue ?

Five Color Theorem

- Proof ("Case 2" continued):

Can we color the yellow neighbor in blue ?

First, we check if the yellow neighbor can connect to the blue neighbor by a "switching" yellow-blue path

Five Color Theorem

- Proof ("Case 2" continued):

Can we color the yellow neighbor in blue ?

If not, we perform "switching" and thus save one color for v

Five Color Theorem

- Proof ("Case 2" continued):

Can we color the yellow neighbor in blue ?

Else, they are connected
\rightarrow orange and green cannot be connected by "switching path

Five Color Theorem

- Proof ("Case 2" continued):

We color the orange neighbor in green!

\rightarrow we can perform "switching" (orange and green) to save one color for v

Kuratowski's Theorem

Definition : A subdivision operation on an edge $\{u, v\}$ is to create a new vertex w, and replace the edge by two new edges $\{u, w\}$ and $\{w, v\}$.

- Ex:

subdivision
on $\{u, v\}$

Kuratowski's Theorem

Definition: Graphs G and H are homeomorphic if both can be obtained from the same graph by a sequence of subdivision operations.

- Ex : The following graphs are all homeomorphic :

Kuratowski's Theorem

- In 1930, the Polish mathematician Kuratowski proved the following theorem :

Theorem :

Graph G is non-planar
$\Leftrightarrow G$ has a subgraph homeomorphic to K_{5} or $K_{3,3}$

- The "if" case is easy to show (how?)
- The "only if" case is hard (I don't know either ...)

Kuratowski's Theorem

- Ex: Show that the Petersen graph is non-planar.

Kuratowski's Theorem

- Proof :

Petersen Graph

Subgraph homeomorphic to $\mathrm{K}_{3,3}$

Kuratowski's Theorem

- Ex: Is the following graph planar or non-planar?

Kuratowski's Theorem

- Ans : Planar

5-color theorem-Every planar graph is 5 -colorable.

Proof:

Proof by contradiction
Let G be the smallest planar graph (in terms of number of vertices) that cannot be colored with five colors.
Let v be a vertex in G that has the maximum degree. We know that $\operatorname{deg}(v)$ < 6 (from the corollary to Euler's formula).

Case \#1: $\operatorname{deg}(\mathrm{v}) \leq 4 . \mathrm{G}$-v can be colored with five colors.

There are at most 4 colors that have been used on the neighbors of v. There is at least one color then available for v. So G can be colored with five colors, a contradiction.

Case \#2: $\operatorname{deg}(v)=5 . G-\mathrm{v}$ can be colored with 5 colors
If two of the neighbors of v are colored with the same color, then there is a color available for v .
So we may assume that all the vertices that are adjacent to v are colored with colors $1,2,3,4,5$ in the clockwise order. Consider all the vertices being colored with colors 1 and 3 (and all the edges among them).

If this subgraph G is disconnected and v_{1} and v_{3} are in different components, then we can switch the colors 1 and 3 in the component with v_{1}.

This will still be a 5 -coloring of $G-v$. Furthermore, v_{1} is colored with color 3 in this new 5 -coloring and v_{3} is still colored with color 3 . Color 1 would be available for v , a contradiction.

Therefore v_{1} and v_{3} must be in the same component in that subgraph, i.e. there is a path from v_{1} to v_{3} such that every vertex on this path is colored with either color 1 or color 3.

Now, consider all the vertices being colored with colors 2 and 4 (and all the edges among them). If v_{2} and v_{4} don' \dagger lie of the same connected component then we can interchange the colors in the chain starting at v_{2} and use left over color for v .

If they do lie on the same connected component then there is a path from v_{2} to v_{4} such that every vertex on that path has either color 2 or color 4 .

This means that there must be two edges that cross each other. This contradicts the planarity of the graph and hence concludes the proof. -

PREVIOUS: Theorems NEXT: Algorithm
faces of a planar graph: The maximal regions of the plane that contain no point used in the embedding.
faces of a planar graph: The maximal regions of the plane that contain no point used in the embedding.
Consider a planar embedding of a planar graph G.
The dual graph of a planar graph G, denoted by G^{*}, is a graph, where $V\left(G^{*}\right)$ consist of the faces of G and $E\left(G^{*}\right)$ defined as follows.

Dual Graph of G

faces of a planar graph: The maximal regions of the plane that contain no point used in the embedding.
Consider a planar embedding of a planar graph G.
The dual graph of a planar graph G, denoted by G^{*}, is a graph, where $V\left(G^{*}\right)$ consist of the faces of G and $E\left(G^{*}\right)$ defined as follows.

If e is an edge of G with the faces X and Y in the planar embedding of G, then the dual graph has an edge between the vertices X and Y.

Dual Graph of G

faces of a planar graph: The maximal regions of the plane that contain no point used in the embedding.
Consider a planar embedding of a planar graph G.
The dual graph of a planar graph G, denoted by G^{*}, is a graph, where $V\left(G^{*}\right)$ consist of the faces of G and $E\left(G^{*}\right)$ defined as follows.

If e is an edge of G with the faces X and Y in the planar embedding of G, then the dual graph has an edge between the vertices X and Y.

Proposition

Let $\ell\left(F_{i}\right)$ denote the length of face F_{i} in a planar graph G. Then $2 e(G)=\sum \ell\left(F_{i}\right)$. (implied by the degree-sum formula for the dual graph of G)

More information obtained from dual of G

Theorem

The following are equivalent for a planar graph G.
(1) G is bipartite.
(2) Every face of G has even length.
(3) The dual graph G^{*} is Eulerian.

More information obtained from dual of G

Theorem

The following are equivalent for a planar graph G.
(1) G is bipartite.
(2) Every face of G has even length.
(3) The dual graph G^{*} is Eulerian.
$\mathbf{(1)} \Longrightarrow \mathbf{(2)}$: Trivial, since bipartite graps have no odd cycle.

Theorem

The following are equivalent for a planar graph G.
(1) G is bipartite.
(2) Every face of G has even length.
(3) The dual graph G^{*} is Eulerian.
$\mathbf{(1)} \Longrightarrow \mathbf{(2)}$: Trivial, since bipartite graps have no odd cycle.
$\mathbf{(2)} \Longrightarrow \mathbf{(1) :}$: Every cycle C is consist of the edges of one face or of a collection of faces \mathcal{F} in the region surrounded by C. Thus, C has even length (the sum of the face-lengths in \mathcal{F} minus twice the edges not in C).

Theorem

The following are equivalent for a planar graph G.
(1) G is bipartite.
(2) Every face of G has even length.
(3) The dual graph G^{*} is Eulerian.
$\mathbf{(1)} \Longrightarrow \mathbf{(2)}$: Trivial, since bipartite graps have no odd cycle.
$\mathbf{(2)} \Longrightarrow \mathbf{(1) :}$: Every cycle C is consist of the edges of one face or of a collection of faces \mathcal{F} in the region surrounded by C. Thus, C has even length (the sum of the face-lengths in \mathcal{F} minus twice the edges not in C).
(2) \Longleftrightarrow (3): Having all degrees in G^{*} is equivalent to being Eulerian.

Outerplanar Graphs

A planar graph is called outerplanar if it has a planar embedding with every vertex on the boundary of the unbounded face.

Outerplanar Graphs

A planar graph is called outerplanar if it has a planar embedding with every vertex on the boundary of the unbounded face. Examples: K_{4} and $K_{2,3}$ are planar but not outerplanar. To show that, observe that the boundary of the outer face of a 2-connected outerplanar graph is a spanning cycle.

Outerplanar Graphs

A planar graph is called outerplanar if it has a planar embedding with every vertex on the boundary of the unbounded face. Examples: K_{4} and $K_{2,3}$ are planar but not outerplanar. To show that, observe that the boundary of the outer face of a 2-connected outerplanar graph is a spanning cycle.

Proposition

Every simple outerplanar graph has a vertex of degree at most 2.

Theorem (Euler, 1758)

If a connected planar graph G has exactly n vertices, e edges and f faces, then $n-e+f=2$.

Theorem (Euler, 1758)

If a connected planar graph G has exactly n vertices, e edges and f faces, then $n-e+f=2$.

- Let $P(i)$ be the proposition that the Euler formula holds for every planar graph on i vertices.
- Use induction on n to show that $P(n)$ is true for all $n \geq 1$.

Theorem (Euler, 1758)

If a connected planar graph G has exactly n vertices, e edges and f faces, then $n-e+f=2$.

- Let $P(i)$ be the proposition that the Euler formula holds for every planar graph on i vertices.
- Use induction on n to show that $P(n)$ is true for all $n \geq 1$. Base step ($n=1$): G is a "bouquet" of loops, $P(1)$ is true. (If $e=0$, then $f=1$, the statement is true.)

Theorem (Euler, 1758)

If a connected planar graph G has exactly n vertices, e edges and f faces, then $n-e+f=2$.

- Let $P(i)$ be the proposition that the Euler formula holds for every planar graph on i vertices.
- Use induction on n to show that $P(n)$ is true for all $n \geq 1$. Base step ($n=1$): G is a "bouquet" of loops, $P(1)$ is true. (If $e=0$, then $f=1$, the statement is true.)
- Induction step $(n>1)$: Because G is connected, there is an edge that is not a loop, call it e. Contract the edge e. Let $n^{\prime}, e^{\prime}, f^{\prime}$ be the parameters of this new graph G^{\prime}.

Theorem (Euler, 1758)

If a connected planar graph G has exactly n vertices, e edges and f faces, then $n-e+f=2$.

- Let $P(i)$ be the proposition that the Euler formula holds for every planar graph on i vertices.
- Use induction on n to show that $P(n)$ is true for all $n \geq 1$. Base step ($n=1$): G is a "bouquet" of loops, $P(1)$ is true. (If $e=0$, then $f=1$, the statement is true.)
- Induction step $(n>1)$: Because G is connected, there is an edge that is not a loop, call it e. Contract the edge e. Let $n^{\prime}, e^{\prime}, f^{\prime}$ be the parameters of this new graph G^{\prime}.
- By inductive hypothesis, $P\left(n^{\prime}\right)$ is true, thus $n^{\prime}-e^{\prime}+f^{\prime}=2$.

Theorem (Euler, 1758)

If a connected planar graph G has exactly n vertices, e edges and f faces, then $n-e+f=2$.

- Let $P(i)$ be the proposition that the Euler formula holds for every planar graph on i vertices.
- Use induction on n to show that $P(n)$ is true for all $n \geq 1$. Base step ($n=1$): G is a "bouquet" of loops, $P(1)$ is true. (If $e=0$, then $f=1$, the statement is true.)
- Induction step $(n>1)$: Because G is connected, there is an edge that is not a loop, call it e. Contract the edge e. Let $n^{\prime}, e^{\prime}, f^{\prime}$ be the parameters of this new graph G^{\prime}.
- By inductive hypothesis, $P\left(n^{\prime}\right)$ is true, thus $n^{\prime}-e^{\prime}+f^{\prime}=2$.
- Substituting $n^{\prime}=n-1, e^{\prime}=e-1, f^{\prime}=f$ shows $P(n)$ is also true.

Corollary

If G is a simple planar graph with at least three vertices, then $e(G) \leq 3 n(G)-6$. If G is also triangle-free, then $e(G) \leq 2 n(G)-4$.

Corollaries of Euler's Theorem

Corollary

If G is a simple planar graph with at least three vertices, then $e(G) \leq 3 n(G)-6$. If G is also triangle-free, then $e(G) \leq 2 n(G)-4$.

Proposition

For a simple planar graph on n vertices, TFAE.

- G has $3 n-6$ edges.
- G is a triangulation.
- G is a maximal planar graph (no more edges can be added without making G non-planar or non-simple).

