
CMP694-Lecture: Planar Graphs

Lecturer: Lale Özkahya

Resources for the presentation:
http://www.cs.nthu.edu.tw/ wkhon/math16.html

http://cgm.cs.mcgill.ca/ athens/cs507/Projects/2003/MatthewWahab/5color.html

�Introduction to Graph Theory� by Douglas B. West



Outline 

• What is a Planar Graph ? 

• Euler Planar Formula 

– Platonic Solids 

– Five Color Theorem 

• Kuratowski’s Theorem 

 

2 



What is a Planar Graph ? 

 Definition : A planar graph is an undirected graph 
that can be drawn on a plane without any edges 
crossing.  Such a drawing is called a planar 
representation of the graph in the plane. 

 

• Ex :  K4 is a planar graph 
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Examples of Planar Graphs 
  

• Ex :  Other planar representations of K4 
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Examples of Planar Graphs 
  

• Ex :  Q3 is a planar graph 
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Examples of Planar Graphs 
  

• Ex : K1,n and K2,n are planar graphs for all n 
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Euler’s Planar Formula 

 Definition :  A planar representation of a graph 
splits the plane into regions, where one of them 
has infinite area and is called the infinite region. 

 

• Ex : 

7 

R3 

R2 

R1 

R4 

4 regions 
(R4 = infinite region) 

2 regions 
(R2 = infinite region) 

R1 

R2 



Euler’s Planar Formula 

• Let G be a connected planar graph, and consider  
a planar representation of G. Let 

V = # vertices, E = # edges, F = # regions. 
    

 Theorem : V + F = E + 2. 
 

• Ex : 
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V = 4,  F = 4,  E = 6 V = 8,  F = 6,  E = 12 



Euler’s Planar Formula 

• Proof Idea : 

• Add edges one by one, so that in each step, 
the subgraph is always connected 

• Use induction to show that the formula is 
always satisfied for each subgraph 

• For the new edge that is added, it either joins : 

        (1)  two existing vertices                     V, F 

        (2)  one existing + one new vertex    V, F  
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Euler’s Planar Formula 

V + F = E + 2 V , F  V , F  

V , F  V , F  V , F  

Case 2 Case 1 

Case 2 Case 1 Case 1 
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Euler’s Planar Formula 

• Let G be a connected simple planar graph with 

   V = # vertices, E = # edges. 
    

 Corollary :   If  V  3,  then  E  3V – 6. 
 

• Proof :  Each region is surrounded by at least 3     
         edges (how about the infinite region?) 

              3F    total edges  =  2E 

               E + 2  =  V + F    V + 2E/3 

                E    3V – 6 
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Euler’s Planar Formula 

 Theorem :   K5 and K3,3 are non-planar. 
 

• Proof :   

 (1)  For K5, V = 5 and E = 10 

             E  3V – 6    non-planar 

 (2)  For K3,3,  V = 6 and E = 9. 

     If it is planar, each region is surrounded     
         by at least 4 edges (why?) 

      F    2E/4   =  4    

               V + F   10    E + 2     non-planar 
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Platonic Solids 

 Definition :  A Platonic solid is a convex 3D shape 
that all faces are the same, and each face is a 
regular polygon 
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Platonic Solids 

 Theorem:  There are exactly 5 Platonic solids 
 

• Proof:   

 Let  n = # vertices of each polygon 

   m = degree of each vertex 

 For a platonic solid, we must have 

n F = 2E and   V m = 2E 
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Platonic Solids 

• Proof (continued):   

 By Euler’s planar formula,  

   2E/m + 2E/n = V + F = E + 2 

     1/m + 1/n = 1/2 + 1/E     …… (*) 
  

 Also, we need to have 

             n  3   and   m  3    [from 3D shape] 

   but one of them must be  3 [from (*)] 
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Platonic Solids 

• Proof (continued):   

  Either 

  (i)   n = 3 (with m = 3, 4, or 5) 

 

   

   (ii)  m = 3 (with n = 3, 4, or 5) 
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 Observation:  A proper color of M  

          A proper vertex color the dual graph 

Proper coloring : Adjacent regions (or vertices) have to be colored in different colors 
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Five Color Theorem 

• Appel and Haken (1976) showed that every 
planar graph can be 4 colored 

 (Proof is tedious, has 1955 cases and many subcases) 
 

• Here, we shall show that : 
 

  Theorem : Every planar graph can be 5 colored. 
 

• The above theorem implies that every map can 
be 5 colored (as its dual is planar) 
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Five Color Theorem 

• Proof :    

 We assume the graph has at least 5 vertices.   
Else, the theorem will immediately follow. 

  

 Next, in a planar graph, we see that there must 
be a vertex with degree at most 5.   

 Else,  

 2E = total degree  3V 

 which contradicts with the fact  E  3V – 6.    
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Five Color Theorem 

• Proof (continued) :    

 Let v be a vertex whose degree is at most 5. 
  

 Now, assume inductively that all planar graphs 
with n – 1 vertices can be colored in 5 colors 

   Thus if v is removed, we can color the 
 graph properly in 5 colors 

  

 What if we add back v to the graph now ?? 
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Five Color Theorem 

• Proof (continued) :    

 Case 1 :  Neighbors of v uses at most 4 colors 

v v 

there is a 5th color for v 
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Five Color Theorem 

• Proof (continued) :    

 Case 2 :  Neighbors of v uses up all 5 colors 

v Can we save 1 color,     
by coloring the yellow 

neighbor in blue ? 
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Five Color Theorem 

• Proof (“Case 2” continued):   

Can we color the yellow neighbor in blue ? 

First, we check if the yellow 
neighbor can connect to the 
blue neighbor by a “switching” 
yellow-blue path 

v 
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Five Color Theorem 

• Proof (“Case 2” continued):   

Can we color the yellow neighbor in blue ? 

If not, we perform “switching” 
and thus save one color for v 

v 

v 
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Five Color Theorem 

• Proof (“Case 2” continued):   

Can we color the yellow neighbor in blue ? 

Else, they are connected  
 orange and green cannot be 

connected by “switching path v 

v 
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Five Color Theorem 

• Proof (“Case 2” continued):   

We color the orange neighbor in green ! 

 we can perform “switching” 
(orange and green) to save 
one color for v v 

v 
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Kuratowski’s Theorem 

 Definition :  A subdivision operation on an edge 
{ u, v } is to create a new vertex w, and replace  
the edge by two new edges { u, w } and { w, v }. 

 

• Ex : 
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subdivision 
on { u, v } 

u v u v w 



Kuratowski’s Theorem 

 Definition :  Graphs G and H are homeomorphic   
if both can be obtained from the same graph by   
a sequence of subdivision operations. 

 

• Ex : The following graphs are all homeomorphic : 
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Kuratowski’s Theorem 

• In 1930, the Polish mathematician Kuratowski 
proved the following theorem : 

 

  Theorem :  

       Graph G is non-planar  

  G has a subgraph homeomorphic to K5 or K3,3 
 

• The “if” case is easy to show  (how?) 

• The “only if” case is hard (I don’t know either …) 
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Kuratowski’s Theorem 

• Ex :   Show that the Petersen graph is non-planar. 
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Kuratowski’s Theorem 

• Proof :   

Petersen Graph Subgraph homeomorphic to K3,3 
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Kuratowski’s Theorem 

• Ex :  Is the following graph planar or non-planar ? 
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Kuratowski’s Theorem 

• Ans :  Planar  
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5-Color Theorem
5-color theorem – Every planar graph is 5-colorable. 

 

Proof:

Proof by contradiction. 

Let G be the smallest planar graph (in terms of number of vertices) that cannot be colored with five colors. 

Let v be a vertex in G that has the maximum degree.  We know that deg(v) < 6 (from the corollary to Euler’s formula).

 

Case #1: deg(v) ≤ 4.  G-v can be colored with five colors. 

There are at most 4 colors that have been used on the neighbors of v.  There is at least one color then available for v. 

So G can be colored with five colors, a contradiction.

Case #2: deg(v) = 5.  G-v can be colored with 5 colors. 

If two of the neighbors of v are colored with the same color, then there is a color available for v. 

So we may assume that all the vertices that are adjacent to v are colored with colors 1,2,3,4,5 in the clockwise order. 

Consider all the vertices being colored with colors 1 and 3 (and all the edges among them). 



5/27/2020 5

cgm.cs.mcgill.ca/~athens/cs507/Projects/2003/MatthewWahab/5color.html 2/4

If this subgraph G is disconnected and v1 and v3 are in different components, then we can switch the colors 1 and 3 in
the component with v1. 

This will still be a 5-coloring of G-v.  Furthermore, v1 is colored with color 3 in this new 5-coloring and v3 is still colored
with color 3.  Color 1 would be available for v, a contradiction. 

Therefore v1 and v3 must be in the same component in that subgraph, i.e. there is a path from v1 to v3 such that every
vertex on this path is colored with either color 1 or color 3.
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Now, consider all the vertices being colored with colors 2 and 4 (and all the edges among them).   If v2 and v4 don't lie of
the same connected component then we can interchange the colors in the chain starting at v2 and use left over color for
v. 

If they do lie on the same connected component then there is a path from v2 to v4 such that every vertex on that path
has either color 2 or color 4. 
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This means that there must be two edges that cross each other.  This contradicts the planarity of the graph and hence
concludes the proof. ڤ

 

PREVIOUS: Theorems    NEXT: Algorithm

 

 

 

 

 



Dual Graph of G

faces of a planar graph: The maximal regions of the plane that contain
no point used in the embedding.

Consider a planar embedding of a planar graph G .
The dual graph of a planar graph G , denoted by G∗, is a graph, where
V (G∗) consist of the faces of G and E (G∗) de�ned as follows.

If e is an edge of G with the faces X and Y in the planar embedding of
G , then the dual graph has an edge between the vertices X and Y .

Proposition

Let `(Fi ) denote the length of face Fi in a planar graph G . Then
2e(G ) =

∑
`(Fi ). (implied by the degree-sum formula for the dual graph

of G )
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More information obtained from dual of G

Theorem

The following are equivalent for a planar graph G .

1 G is bipartite.

2 Every face of G has even length.

3 The dual graph G∗ is Eulerian.

(1) =⇒ (2): Trivial, since bipartite graps have no odd cycle.

(2) =⇒ (1): Every cycle C is consist of the edges of one face or of a
collection of faces F in the region surrounded by C . Thus, C has even
length (the sum of the face-lengths in F minus twice the edges not in C ).

(2)⇐⇒ (3): Having all degrees in G∗ is equivalent to being Eulerian.
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Outerplanar Graphs

A planar graph is called outerplanar if it has a planar embedding with
every vertex on the boundary of the unbounded face.

Examples: K4 and K2,3 are planar but not outerplanar. To show that,
observe that the boundary of the outer face of a 2-connected outerplanar
graph is a spanning cycle.

Proposition

Every simple outerplanar graph has a vertex of degree at most 2.
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Euler's Formula

Theorem (Euler, 1758)

If a connected planar graph G has exactly n vertices, e edges and f faces,
then n − e + f = 2.

Let P(i) be the proposition that the Euler formula holds for every
planar graph on i vertices.

Use induction on n to show that P(n) is true for all n ≥ 1.
Base step (n=1): G is a �bouquet� of loops, P(1) is true. (If e = 0,
then f = 1, the statement is true.)

Induction step (n > 1): Because G is connected, there is an edge
that is not a loop, call it e. Contract the edge e. Let n′, e′, f ′ be the
parameters of this new graph G ′.

By inductive hypothesis, P(n′) is true, thus n′ − e′ + f ′ = 2.

Substituting n′ = n − 1, e′ = e − 1, f ′ = f shows P(n) is also true.
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Corollaries of Euler's Theorem

Corollary

If G is a simple planar graph with at least three vertices, then
e(G ) ≤ 3n(G )− 6. If G is also triangle-free, then e(G ) ≤ 2n(G )− 4.

Proposition

For a simple planar graph on n vertices, TFAE.

G has 3n − 6 edges.

G is a triangulation.

G is a maximal planar graph (no more edges can be added without
making G non-planar or non-simple).
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