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Abstract
It is shown that the size of a subgraph of Qn without a cycle of length 14 is of

order o(|E(Qn)|).

1 Subgraphs of the hypercube with no C4 or C6

For given two graphs, Q and P , let ex(Q,P ) denote the generalized Turán number, i.e., the
maximum number of edges in a P -free subgraph of Q. The n-dimensional hypercube, Qn,
is the graph with vertex-set {0, 1}n and edges assigned between pairs di�ering in exactly
one coordinate. Let e(G) = |E(G)| be the size of the graph G. We use N(G,P ) for the
number of subgraphs of G that are isomorphic to P .

Erd®s [9] conjectured that ex(Qn, C4) = (1
2 + o(1))e(Qn). The best upper bound,

(0.6226 + o(1))e(Qn), is due to Thomason and Wagner [17], while Brass, Harborth and
Nienborg [6] showed 1

2(n +
√

n)2n−1 ≤ ex(Qn, C4), when n is a positive integer power of
4, and 1

2(n + 0.9
√

n)2n−1 ≤ ex(Qn, C4) for all n ≥ 9.
Monotonocity implies that the limit c` := limn→∞ ex(Qn, C`)/e(Qn) exists. It is known

that 1/3 ≤ c6 < 0.3941 (Conder [8] and Lu [14], respectively), c4k = 0 for any integer k ≥ 2
(Chung [7]) and c4k+2 ≤ 1/

√
2 for k ≥ 1 (Axenovich and Martin [3]).
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Theorem 1. If G is a subgraph of Qn containing no cycle of length 14, then

e(G) = O(n6/72n).

Hence e(G) = o(e(Qn)), i.e., c14 = 0.

Actually, our proof gives ex(Qn,Θ14) = O(n6/72n), where Θ14 is the 14-cycle with a
longest diagonal. Further related hypercube results can be found, e.g., in Alon et al. [1, 2],
Bialostocki [4], Kostochka [13], Johnson and Entringer [12], Harborth and Nienborg [11],
O�ner [15], Schelp and Thomason [16].

2 The density of a C14-free subgraph of Qn is 0

2.1 Subgraphs with large girth
Lemma 2. Let G be a subgraph of Qn. Then, there is a subgraph G8 ⊂ G with girth at
least 8 such that e(G8) ≥ (1/3)e(G).

Proof. By a theorem of Conder [8], there is a C4, C6-free subgraph H of Qn with at least
(1/3)e(Qn) edges. Then, there is a permutation π ∈ Aut(Qn) such that

|E(π(H)) ∩ E(G)| ≥ 1
|Aut(Qn)|

∑

ρ∈Aut(Qn)

|E(ρ(H)) ∩ E(G)| = e(H)
e(Qn)

e(G) ≥ 1
3
e(G). ¤

2.2 The intersection structure of C8's
Lemma 3. Let G be a subgraph of the hypercube with no C4, C6 or C14. Let C ′ and C ′′

be two eight-cycles of G with a common edge. Then E(C ′)∩E(C ′′) forms a path of length
of 2, 3, or 4.

Proof. There are two vertices u and v dividing C ′ into two paths of lengths a and b and a
path P ⊂ C ′′ of length c such that V (C ′)∩V (P ) = {u, v}, a, b, c ≥ 1, a+ b = 8, a ≥ 4 ≥ b.
The condition on the girth of G implies c + b ≥ 8, hence c ≥ a ≥ 4. Thus C ′′ can possess
only one such path P , we have C ′′ ⊂ C ∪ P and E(C ′) ∩ E(C ′′) is a path of length b. If
b = 1, then the symmetric di�erence of C ′ and C ′′ is a cycle of length 14, a contradiction.¤

Let C8(G) or just C denote the set of 8-cycles in the graph G. C[e] and C[e, f ] denote
the set of 8-cycles containing the edge e, or containing the edges e and f , respectively. We
have the following obvious corollary of Lemma 3.

Lemma 4. Let G be a subgraph of the hypercube with no C4, C6 or C14. Let C be an
eight-cycle of G with three consecutive edges e, f and g. Then C[f ] = C[e, f ] ∪ C[f, g]. ¤
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2.3 An upper bound on N(G,C8)

There is a partition of E(Qn) into n matchings Mi, i ∈ [n], what we call directions,
where Mi is formed of the edges with endpoints di�ering in the i'th coordinate. In every
eight-cycle C in Qn each direction must occur an even number of times, so C has at
most 4 directions, and C is contained in a (unique) 4 or 3-dimensional subcube. Since
N(Q3, C8) = 6 and the number of 4-dimensional 8-cycles in Q4 is 648, we obtain that

N(Qn, C8) = 648
(

n

4

)
2n−4 + 6

(
n

3

)
2n−3.

This easily implies that for any two edges e and f of Qn sharing a vertex
|C8(Qn)[e, f ]| = (27/8)(n− 2)(n− 3) + (1/4)(n− 2) = O(n2). (1)

Lemma 5. Let G be a subgraph of Qn with no C4, C6 or C14. Then the number of C8's
in G is at most O(n2)× e(G).
Proof. It is su�cient to prove that |C[f ]| = O(n2) for each edge f ∈ E(G). Let C be an
eight-cycle of G containing f and let e, f and g be the three consecutive edges of C. Then
Lemma 4 and (1) complete the proof. ¤

2.4 A lower bound on the number of C4's
Lemma 6. Let H be a graph with e edges and n vertices. Then

N(H, C4) ≥ 2
e3(e− n)

n4
− e2

2n
≥ 2

e4

n4
− 3

4
en. (2)

Proof. This result goes back to Erd®s (1962) and was published, e.g., in Erd®s and Si-
monovits [10] in an asymptotic form. As we use it for arbitrary n and e, we revisit the
proof. Denote the average degree of H by d = 2e/n and the number of x, y-paths of length
two by d(x, y) and let d be its average. We have

d =
(

n

2

)−1 ∑

x,y∈V (H)

d(x, y) =
(

n

2

)−1 ∑

x∈V (H)

(
deg(x)

2

)
≥

(
n

2

)−1

n

(
d

2

)
. (3)

Therefore, d ≥ 2e(2e−n)
n2(n−1)

. Moreover

N(H, C4) =
1
2

∑

x,y∈V (H)

(
d(x, y)

2

)
≥ 1

2

(
n

2

)(
d

2

)
. (4)

We may suppose that the middle term in (2) is positive, which implies that 2e(2e−n)
n2(n−1)

≥ 1/2.
The paraboloid

(
x
2

)
is increasing for x ≥ 1/2. So we may substitute the lower bound of d

from (3) into (4) and a little algebra gives (2). ¤
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2.5 A lower bound on the number of C8's
For a graph G ⊂ Qn, we de�ne a graph Hx = Hx(G) for each vertex x ∈ Qn as it was used
by Chung in [7]. The vertex set of Hx consists of the n neighbors of x in Qn. Consider
two vertices y and z in Hx, there is a unique four-cycle C containing x, y and z in Qn, say
C = yxzw, w = w(y, z). (As vectors, w = y + z − x.) If wz and wy ∈ E(G) then we put
an edge yz in Hx. Every ywz path in G generates an edge in Hx, so we have

∑

x∈V (Qn)

e(Hx) =
∑

w∈V (Qn)

(
degG(w)

2

)
.

This implies
h ≥

(
d

2

)
, (5)

where h :=
∑

x e(Hx)/2n, and d := 2e(G)/2n.
A cycle C`, V (C`) = {y1, y2, . . . , y`}, ` ≥ 3, in Hx corresponds to a cycle y1, w(y1, y2),

y2, w(y2, y3),. . . , w(y`, y1) of length 2` in G. We have

N(G,C8) ≥
∑

x∈V (Qn)

N(Hx, C4).

By applying Lemma 6 and convexity, we get

N(G,C8) ≥
∑

x∈V (Qn)

(
2
e(Hx)4

n4
− 3

4
e(Hx)n

)
≥ 2n+1 1

n4
h

4 −O(nh2n). (6)

The inequality (5) and monotonicity in (6) give

N(G,C8) ≥ 2n+1 1
n4

(
d

2

)4

−O(nd
22n). (7)

2.6 The end of the proof of Theorem 1
Let G be a C14-free subgraph of Qn of girth at least 8 and let d be its average degree.
Compare (7) to the upper bound from Lemma 5, O(n2d2n) ≥ N(G, C8). Therefore, d(G) =
O(n6/7) and e(G) = o(e(Qn)). By Lemma 2, we get three times of this upper bound for
d(G) for an arbitrary C14-free subgraph of Qn, completing the proof of the Theorem. ¤
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