Unavoidable subhypergraphs: \textit{a}-clusters

Zoltán Füredi1 \\
Alfréd Rényi Institute \\
Hungarian Academy of Sciences \\
Budapest, P.O.Box 127, Hungary, H-1364, furedi@renyi.hu \\
and \\
Department of Mathematics \\
University of Illinois at Urbana-Champaign \\
Urbana, IL 61801, USA \\
z-furedi@illinois.edu

Lale Özkahya \\
Department of Mathematics \\
Iowa State University \\
Ames, IA 50011, USA \\
ozkahya@illinoisalumni.org

Abstract

One of the central problems of extremal hypergraph theory is the description of unavoidable subhypergraphs, in other words, the Turán problem. Let $a = (a_1, \ldots, a_p)$ be a sequence of positive integers, $k = a_1 + \cdots + a_p$. An \textit{a}-partition of a k-set F is a partition in the form $F = A_1 \cup \ldots \cup A_p$ with $|A_i| = a_i$ for $1 \leq i \leq p$. An \textit{a-cluster} \mathcal{A} with host F_0 is a family of k-sets $\{F_0, \ldots, F_p\}$ such that for some a-partition of F_0, $F_0 \cap F_i = F_0 \setminus A_i$ for $1 \leq i \leq p$ and the sets $F_i \setminus F_0$ are pairwise disjoint. The family \mathcal{A} has $2k$ vertices and it is unique up to isomorphisms. With an intensive use of the delta-system method we prove that for $k > p$ and sufficiently large n, if \mathcal{F} is a k-uniform family on n vertices with $|\mathcal{F}|$ exceeding the Erdős-Ko-Rado bound $\binom{n-1}{k-1}$, then \mathcal{F} contains an a-cluster. The only extremal family consists of all the k-subsets containing a given element.

\textbf{Key words and Phrases}: Erdős-Ko-Rado, set system, traces.
\textit{2000 Mathematics Subject Classification}: 05D05, 05C65.

Submitted to \textit{J. Combin. Th., Ser. A} \\
[c\texttt{luster-apr-25-2011.tex}] Printed on April 30, 2011

1 Research supported in part by the Hungarian National Science Foundation under grants OTKA 062321, 060427 and by the National Science Foundation under grant NSF DMS 06-00368, DMS 09-01276 ARRA.
1 Introduction

1.1 History

Let \mathcal{F} be a family of k subsets of the n-set $[n] = \{1, 2, \ldots, n\}$, $\mathcal{F} \subset \binom{[n]}{k}$, $n \geq k \geq 2$. The Erdős–Ko–Rado (EKR) theorem [12] states that if any two sets intersect and $n \geq 2k$, then $|\mathcal{F}| \leq \binom{n-1}{k-1}$. Katona proposed in 1980 the following related problem: Suppose that every three members $F_1, F_2, F_3 \in \mathcal{F}$ meet $(F_1 \cap F_2 \cap F_3 \neq \emptyset)$ whenever their union is small, $|F_1 \cup F_2 \cup F_3| \leq 2k$. It was proved by Frankl and the first author [15] that then the same EKR-type upper bound holds for $|\mathcal{F}|$ for $n > n_1(k)$. The case $3k/2 \leq n < 2k$ follows from a result of Frankl [13] (also see Mubayi and Verstraëte [29]), and finally Mubayi [25] gave a nice short proof that $|\mathcal{F}| \leq \binom{n-1}{k-1}$ holds for all $n \geq 2k$, (with equality only for $\cap \mathcal{F} \neq \emptyset$) so $n_1(k) = \lceil 3k/2 \rceil$. Mubayi [27] showed that the EKR bound also holds, if $|F_1 \cup F_2 \cup F_3 \cup F_4| \leq 2k$ implies $F_1 \cap F_2 \cap F_3 \cap F_4 \neq \emptyset$ (for $n > n_2(k)$). This led him to the following conjecture.

Conjecture 1. Call a family of k-sets $\{F_1, \ldots, F_d\}$ a (k,d)-cluster if

$$|F_1 \cup F_2 \cup \cdots \cup F_d| \leq 2k \quad \text{and} \quad F_1 \cap F_2 \cdots \cap F_d = \emptyset.$$

Let $k \geq d \geq 2$, $n \geq dk/(d-1)$ and suppose that \mathcal{F} is a k-uniform family on n elements containing no (k,d)-cluster. Then $|\mathcal{F}| \leq \binom{n-1}{k-1}$, with equality only if $\cap \mathcal{F} \neq \emptyset$.

The case $d = k$ follows from a theorem of Chvátal [9] as it was observed by Chen, Liu, and Wang [7]. Keevash and Mubayi [22] proved Conjecture 1 when both k/n and $n/2 - k$ are bounded away from zero, and Mubayi and Ramadurai [28] for $n > n_3(k)$. The present authors also proved Conjecture 1 in 2007 for $n > n_4(k)$ with a different approach (unpublished). Recently, Jiang, Pikhurko, and Yilma [20] proved a more general result concerning the so-called strong simplices.

In Theorem 2, we give a stronger generalization which not only implies Conjecture 1 and all the above results for sufficiently large n but also gives an explicit structure of the unavoidable subhypergraphs.

In our notation, $A \subset B$ also includes the case that $A = B$. We write $A \subsetneq B$ for the case $A \subset B$ and $A \neq B$.

1.2 a-clusters

Let $a = (a_1, \ldots, a_p)$ be a sequence of positive integers, $p \geq 2$, $k = a_1 + \cdots + a_p$. An a-partition of a k-set F is a partition in the form $F = A_1 \cup \cdots \cup A_p$ with $|A_i| = a_i$ for $1 \leq i \leq p$. An a-cluster \mathcal{A} with host F_0 is a family of k-sets $\{F_0, \ldots, F_p\}$ such that for
some a-partition of \(F_0, F_0 \cap F_i = F_0 \setminus A_i \) for \(1 \leq i \leq p \) and the sets \(F_i \setminus F_0 \) are pairwise disjoint. The family \(\mathcal{A} \) has \(2k \) vertices and it is unique up to isomorphisms.

Theorem 2. Suppose that \(k > p > 1 \), \(\mathcal{F} \subset \binom{[n]}{k} \) with \(|\mathcal{F}| > \binom{n-1}{k-1} \) and \(n \) is sufficiently large \((n > N(k))\). Then \(\mathcal{F} \) contains any a-cluster, \(a \neq 1 \). Moreover, if \(|\mathcal{F}| = \binom{n-1}{k-1} \), a-cluster-free, then it consists of all the \(k \)-subsets containing a given element.

Our \(N(k) \) is very large, it is double exponential in \(k \). In the proof of Theorem 2, we use the delta-system method and a complicated version of the stability method developed in [17] by Frankl and the first author of this paper. Note that the case \(k = p \), i.e., \(a = (1,1,\ldots,1) \), is different as described in Section 3.2.

1.3 The delta-system method

It is natural to investigate the intersection structure of \(\mathcal{F} \). This is exactly where the delta-system method can be applied.

The **intersection structure** of \(F \in \mathcal{F} \) with respect to the family \(\mathcal{F} \) is defined as

\[
\mathcal{I}(F, \mathcal{F}) = \{ F \cap F' : F' \in \mathcal{F}, F \neq F' \}.
\]

If the set \(F \) is given, \(A \subset F \) with \((F \setminus A) \in \mathcal{I}(F, \mathcal{F}) \), then we use the notation \(F(A) \) for a \(k \)-set in \(\mathcal{F} \) such that \(F(A) \cap F = F \setminus A \).

A \(k \)-uniform family \(\mathcal{F} \subset \binom{[n]}{k} \) is **\(k \)-partite** if one can find a partition \([n] = X_1 \cup \cdots \cup X_k\) with \(|F \cap X_i| = 1\) for all \(F \in \mathcal{F}, 1 \leq i \leq k\). If \(\mathcal{F} \) is \(k \)-partite, then for any set \(S \subset [n] \), its **projection** \(\Pi(S) \) is defined as

\[
\Pi(S) = \{ i : S \cap X_i \neq \emptyset \} \quad \text{and} \quad \Pi(\mathcal{I}(F, \mathcal{F})) = \{ \Pi(S) : S \in \mathcal{I}(F, \mathcal{F}) \}.
\]

A family \(\{D_1, D_2, \ldots, D_s\} \) is called a **delta-system** of size \(s \) and with center \(C \) if \(D_i \cap D_j = C \) holds for all \(1 \leq i < j \leq s \). The delta-system method is described in the following theorem due to the first author.

Theorem 3. [19] For any positive integers \(s \) and \(k \) with \(s > k \), there exists a positive constant \(c(k, s) \) such that every family \(\mathcal{F} \subset \binom{[n]}{k} \) contains a subfamily \(\mathcal{F}^* \subset \mathcal{F} \) satisfying

\[
\begin{align*}
(3.1) & \quad |\mathcal{F}^*| \geq c(k, s)|\mathcal{F}|, \\
(3.2) & \quad \mathcal{F}^* \text{ is } k\text{-partite}, \\
(3.3) & \quad \text{there is a family } \mathcal{J} \subset 2^{\{1,2,\ldots,k\}} \setminus \{[k]\} \text{ such that } \Pi(\mathcal{I}(F, \mathcal{F}^*)) = \mathcal{J} \text{ holds for all } F \in \mathcal{F}^*, \\
(3.4) & \quad \mathcal{J} \text{ is closed under intersection, (i.e., } A, B \in \mathcal{J} \text{ imply } A \cap B \in \mathcal{J}), \\
(3.5) & \quad \text{every member of } \mathcal{I}(F, \mathcal{F}^*) \text{ is the center of a delta-system } \mathcal{D} \text{ of size } s \text{ formed by members of } \mathcal{F}^* \text{ and containing } F, F \in \mathcal{D} \subset \mathcal{F}^*.
\end{align*}
\]
We call a family \mathcal{F}^* homogeneous if \mathcal{F}^* satisfies (3.2)-(3.5). In this paper, we fix $s = 2k$ in Theorem 3.

Lemma 4. Suppose that $\mathcal{F}^* \subset \mathcal{F}$, where \mathcal{F}^* is obtained by using Theorem 3 with $s = 2k$. If $G_1 \in \mathcal{F}^*$, $G_2 \in \mathcal{F}$, $M \in \mathcal{I}(G_1, \mathcal{F}^*)$, $M \subset G_2$ and $M \cap S = \emptyset$, where $|S| \leq k$, then there exists a $G_3 \in \mathcal{F}^*$ such that $G_2 \cap G_3 = M$ and $S \cap G_3 = \emptyset$.

Proof. Let $\{F'_1, F'_2, \ldots, F'_{2k}\} \subset \mathcal{F}^*$ be a delta-system centered at M, where $F'_1 = G_1$. Since the sets $F'_1 \setminus M, \ldots, F'_{2k} \setminus M$ are pairwise disjoint, and $|G_2 \setminus M| < k$ and $|S| \leq k$ there is an F'_i avoiding both $(1 \leq i \leq 2k)$. Then $G_2 \cap F'_i = M$ and $S \cap F'_i = \emptyset$. □

2 Proof of the main theorem

2.1 Rank and shadow of a-cluster-free families

Throughout the proof of Theorem 2, we will be mostly interested in the *rank* of \mathcal{J}, which is defined as

$$r(\mathcal{J}) = \min \{|A| : A \subseteq [k], \exists B \in \mathcal{J}, A \subset B\}.$$

The rank of \mathcal{J} is k only if $\mathcal{J} = 2^{[k]} \setminus \{[k]\}$; otherwise, it is at most $k - 1$.

From now on, $\mathcal{F} \subset \binom{[n]}{k}$ is an arbitrary k-family containing no a-cluster, where $a = (a_1, \ldots, a_p)$ is a non-increasing sequence with $a_1 \geq 2$. We will show that $|\mathcal{F}| \geq \binom{n-1}{k-1}$ implies $\cap \mathcal{F} \neq \emptyset$ for sufficiently large n.

Frankl and the first author [16] developed a method while proving a conjecture of Erdős that is used in [17] to show that a family $\mathcal{F} \subset \binom{[n]}{k}$ has a common element ($\cap \mathcal{F} \neq \emptyset$) if certain intersection constraints are fulfilled. Here we revisit that result and modify that proof to obtain a version for a-cluster-free families.

For the rest of the paper, we let $\mathcal{F}^* \subset \mathcal{F}$ be a homogeneous subfamily of \mathcal{F}.

Corollary 5. Let $F = \{x_1, \ldots, x_k\} \in \mathcal{F}^*$. If $r(\mathcal{J}) \geq k - 1$, then $r(\mathcal{J}) = k - 1$, i.e., it is impossible that $(F \setminus \{x_i\}) \in \mathcal{I}(F, \mathcal{F}^*)$ for all $1 \leq i \leq k$.

Proof. Assume, on the contrary, that $r(\mathcal{J}) = k$. Because \mathcal{J} is closed under intersection, we have $\mathcal{J} = 2^{[k]} \setminus \{[k]\}$. Therefore, $\mathcal{I}(F, \mathcal{F}^*)$ contains all proper subsets of F. Consider an a-partition of $F = (A_1, \ldots, A_p)$. Using Lemma 4 p times with $G_1 = F$, $M = F \setminus A_i$ and $S = \cup_{j<i} (F_j \setminus F)$ we obtain $F_1, \ldots, F_p \in \mathcal{F}^*$ such that, for $i \in [p]$, $F \cap F_i = F \setminus \{A_i\}$ and the sets $F_i \setminus F$ are disjoint. Therefore, $\{F_1, \ldots, F_p, F\}$ is an a-cluster with host F. □
We use the notation $\Delta_\ell(H)$ for the \emph{ℓ-shadow} of the family H, i.e.,

$$\Delta_\ell(H) := \{L : |L| = \ell, \exists H \in H \text{ with } L \subset H\}.$$

Lemma 6. \mathcal{F} is not too dense, i.e., $|\Delta_{k-1}(G)| \geq c_1(k)|G|$ for all $G \in \mathcal{F}$, where $c_1(k) := c(k, 2k)$ from (3.1).

Proof. Apply Theorem 3 to G to obtain a k-partite G^* with a homogeneous intersection structure $J \subset 2^{|k|}$, i.e., $\Pi(I(G, G^*)) = J$ for all $G \in G^*$. Corollary 5 implies that the rank of J is at most $k - 1$ so each $G \in G^*$ has a $(k - 1)$-subset that is not contained by another member of G^*. We obtain $|\Delta_{k-1}(G^*)| \geq |G^*|$, and hence

$$|\Delta_{k-1}(G)| \geq |\Delta_{k-1}(G^*)| \geq |G^*| \geq c(k, 2k)|G|.$$

\[\square\]

2.2 The intersection structure of rank-$(k-1)$ subfamilies

For a subset $S \subset F \in \mathcal{F}$, denote the degree of S in \mathcal{F} by

$$\deg_{\mathcal{F}}(S) = |\{F : F \in \mathcal{F}, S \subset F\}|.$$

A subset of $F \in \mathcal{F}$ is called an own subset of F, if its degree in \mathcal{F} is one.

Lemma 7. Let $F_0 \in \mathcal{F}^*$ and $\{A_1, \ldots, A_p\}$ an a-partition of F_0. Assume that there exists an $H \in \mathcal{F}$ and $i \in [p]$ such that $F_0 \cap H = (F_0 \setminus A_i)$. Suppose $F_0 \setminus A_j \in I(F_0, \mathcal{F}^*)$ for each $j \in [p]$ when $j \neq i$. Then there is an a-cluster in \mathcal{F} with host F_0.

Proof. Call H to F_i. Use Lemma 4 ($p - 1$) times to define F_j for $j \in [p] \setminus \{i\}$ with $G_1 = H$, $M = F_0 \setminus A_j \in I(F_0, \mathcal{F}^*)$ and $S = (F_i \setminus F_0) \cup_{\ell<j} (F_\ell \setminus F_0)$. Note that $|S| < k$ at each step. \[\square\]

Lemma 7 can be generalized to allow more than one member with properties of H as used in the proof of Lemma 9.

Lemma 8. Let $F = \{x_1, \ldots, x_k\} \in \mathcal{F}^*$. If $r(J)-k-1$, and there are $k - 1$ $(k - 1)$-sets in J, say $F \setminus \{x_i\} \in I(F, \mathcal{F}^*)$ for $2 \leq i \leq k$, then $F \setminus \{x_1\}$ is an own subset of F in \mathcal{F}. Moreover, in this case

$$F_1 \in \mathcal{F}, |F_1 \cap F| \geq k - 2 \text{ imply } x_1 \in F_1.$$

(2)

Such an F (and J and \mathcal{F}^*) is called of type I. Note that we claim that $F \setminus \{x_1\}$ is an own subset of F in \mathcal{F}, not only in \mathcal{F}^*.
Proof. Suppose, on the contrary, that there exists an \(F_1 \in \mathcal{F} \) such that \(F_1 = \{ y, x_2, \ldots, x_k \} \), \(y \not\in F_1 \). This will enable us to find an \(\mathbf{a} \)-cluster (with a host \(F_2 \) to be defined later), a contradiction.

Choose a subset \(M \) of \(F \) such that \(x_1 \in M \) and \(|M| = k - a_1 + 1(< k) \). Note that (3.4) implies that
\[
\{ E : E \subseteq F, x_1 \in E \} \subset \mathcal{I}(F, \mathcal{F}^*).
\]
So \(M \in \mathcal{I}(F, \mathcal{F}^*) \) and by Lemma 4 we can pick another member \(F_2 \in \mathcal{F}^* \) such that \(F \cap F_2 = M \) and \(y \not\in F_2 \). We obtain
\[
F_2 \cap F_1 = M \setminus \{ x_1 \} \quad \text{hence} \quad |F_2 \cap F_1| = k - a_1.
\]
Consider an \(\mathbf{a} \)-partition of \(F_2 \) such that \(A_1 = F_2 \setminus F_1 \), i.e. \(F_1 = F_2(A_1) \). Since \(F_2 \in \mathcal{F}^* \) and \(\mathcal{F}^* \) is homogeneous, by (3) and (3.3) of Theorem 3, we have
\[
\{ E : E \subseteq F_2, x_1 \in E \} \subset \mathcal{I}(F_2, \mathcal{F}^*).
\]
Therefore, \(F_2 \setminus A_i \in \mathcal{I}(F_2, \mathcal{F}^*) \) for \(2 \leq i \leq p \) and we obtain an \(\mathbf{a} \)-cluster by Lemma 7, a contradiction.

The proof of (2) when \(|F_1 \cap F| = k - 2 \), assuming \(x_1, x_2 \not\in F_1 \), is similar and we omit the details. To prove this case, one needs to follow the same steps assuming that \(x_1, x_2 \in M \) and have to choose \(M \) and \(F_2 \) such that \(|M| = k - a_1 + 2 \) and \(F_2 \cap F_1 = M \setminus \{ x_1, x_2 \} \), respectively, except in the case \(a_1 = 2 \) when we define \(F_2 = F \).

Lemma 9. If \(r(\mathcal{J}) = k - 1 \), and there are exactly \(k - t \) \((k - 1)\)-sets in \(\mathcal{J} \) with \(2 \leq t \leq k \), say \(F \setminus \{ x_i \} \in \mathcal{I}(\mathcal{F}, \mathcal{F}^*) \) for \(t < i \leq k \) then
\[
\sum_{1 \leq i \leq t} \frac{1}{\deg_{\mathcal{F}}(F \setminus \{ x_i \})} \geq 1 + \frac{1}{k - 1}.
\]

These \(F \in \mathcal{F}^* \) (and \(\mathcal{J} \) and \(\mathcal{F}^* \)) are called **type II.**

Proof. Define a bipartite graph \(G \) with partite sets \(X = \{ x_1, \ldots, x_t \} \) and \(Y = [n] \setminus F \) and edges \(xy \) for \(x \in X \) and \(y \in Y \) if and only if \((F \setminus \{ x \}) \cup \{ y \} \in \mathcal{F} \). We claim that the maximum number of independent edges in this graph, \(\nu(G) \), is at most \(t - 2 \). This indeed implies Lemma 9 as follows. By König–Hall theorem the size of a minimum vertex cover \(S \) of \(G \) is at most \(t - 2 \). Let \(|X \setminus S| = \ell \), we have \(\ell \geq 2 \) and \(|S \cap Y| \leq \ell - 2 \). Since each vertex \(v \in X \setminus S \) has neighbors only in \(S \cap Y \), we have
\[
\deg_{\mathcal{F}}(F \setminus \{ v \}) = \deg_{G}(v) + 1 \leq |S \cap Y| + 1 \leq \ell - 1.
\]
This yields
\[\sum_{v \in X \setminus S} \frac{1}{\deg_F(F \setminus \{v\})} \geq \frac{\ell}{\ell - 1} \geq \frac{k}{k - 1}. \]

To prove \(\nu(G) \leq t - 2 \) suppose, on the contrary, that there are \(F_i := (F \setminus \{x_i\} \cup \{y_i\}) \in \mathcal{F} \) for \(2 \leq i \leq t \), where \(y_i \)'s are distinct elements outside \(F \). We will see this leads to the existence of an \(a \)-cluster. First, we describe the intersection structure of \(F \) in \(\mathcal{F}^* \) by using repeatedly the fact that \(\mathcal{I}(F, \mathcal{F}^*) \) is closed under intersection.

Note that
\[\text{if } A \subseteq \{x_{t+1}, \ldots, x_k\} \text{ then } F \setminus A \in \mathcal{I}(F, \mathcal{F}^*). \quad (4) \]

Also, if \(A \subset F \), \(|A| < k \) and
\[|A \cap \{x_1, \ldots, x_t\}| \geq 2 \text{ then } (F \setminus A) \in \mathcal{I}(F, \mathcal{F}^*). \quad (5) \]

Indeed, the rank of \(\mathcal{J} \) exceeds \(k - 2 \), so we have that \(F \setminus \{x_u\}, F \setminus \{x_v\} \notin \mathcal{I}(F, \mathcal{F}^*) \) (\(1 \leq u < v \leq t \)), but \(F \setminus \{x_u, x_v\} \in \mathcal{I}(F, \mathcal{F}^*) \). Also \(F \setminus \{x_w\} \in \mathcal{I}(F, \mathcal{F}^*) \) for \(t < w \leq k \). Since \(\mathcal{J} \) is closed under intersection, we obtain that
\[F \setminus A = \left(\bigcap_{x_u, x_v \in A, u < v \leq t} (F \setminus \{x_u, x_v\}) \right) \bigcap \left(\bigcap_{x_w \in A, w > t} (F \setminus \{x_w\}) \right) \in \mathcal{I}(F, \mathcal{F}^*). \]

In the rest of the proof, we specify how one can build an \(a \)-cluster with host \(F \) using Lemma 7 if each \(A_i \) in an \(a \)-partition of \(F \) satisfies either one of (4) and (5) or \(A_i = \{x_j\} \) with \(1 < j \leq k \). There are several cases to consider.

Recall that \(a_1 \geq a_2 \geq \cdots \geq a_p \) and \(a_1 \geq 2 \). Define the positive integers \(i \) and \(\ell \) as follows.
\[a_1 + \cdots + a_{i-1} < t \leq a_1 + \cdots + a_i, \]
\[\ell = t - (a_1 + \cdots + a_{i-1}). \]

Except the last case, the host of the \(a \)-cluster is \(F \).

Case 1: \(\ell \geq 2 \). Then \(a_1, \ldots, a_i \geq \ell \geq 2 \).
Let \(A_1, A_2, \ldots, A_{i-1} \subset X = \{x_1, \ldots, x_t\} \) and \(|A_i \cap \{x_1, \ldots, x_t\}| = \ell \).

Case 2: \(\ell = 1 \) and \(a_i = 1 \).
By our assumption, there exist \(F_i := (F \setminus \{x_i\} \cup \{y_i\}) \in \mathcal{F} \) for \(2 \leq i \leq t \), where \(y_i \)'s are distinct elements outside \(F \). Let \(A_1 \cup A_2 \cdots \cup A_i = \{x_1, \ldots, x_t\}, x_1 \in A_1 \).

From now on, \(\ell = 1 \) and \(a_i \geq 2 \) so \(i \geq 2 \).

Case 3: \(\ell = 1 \), \(a_i \geq 2 \) and \(a_1 \geq 3 \).
Let \(A_1 \cup A_2 \cdots \cup A_i \supseteq \{x_1, \ldots, x_t, x_{t+1}\}, x_{t+1} \in A_1 \) and \(A_2 \cup \ldots \cup A_{i-1} \subset \{x_1, \ldots, x_t\} \). We
have that $|X \cap A_1|, |X \cap A_i| \geq 2$.

Case 4: $\ell = 1, a_i \geq 2, a_1 \leq 2$ and $a_p = 1$. Then $a_1 = \cdots = a_i = 2$.

Let $A_1 \cup A_2 \cdots \cup A_{i-1} \cup A_p = \{x_1, \ldots, x_t\}$, $A_p = \{x_t\}$.

Case 5: $\ell = 1, a_1 = \cdots = a_p = 2$.

This implies that t is odd, $t \geq 3$, and $k = 2p$ is even so $t < k$. Pick a member F_0 from \mathcal{F} such that $F_0 = F \setminus \{x_k\} \cup \{y\}$ for some $y \neq y_2$. Choose an a-partition of F_0 such that $A_1 = \{y, x_2\}$, which means $F_2 = F_0(A_1)$. The other parts are $A_2 = \{x_1, x_3\}$ and $A_j = \{x_{2j-2}, x_{2j-1}\}$ for $3 \leq j \leq p$. By (3.3) of Theorem 3, the intersection structure $\mathcal{I}(F, \mathcal{F}^*)$ is isomorphic to $\mathcal{I}(F, \mathcal{F}^*)$ so (4) and (5) imply that $F \setminus A_j \in \mathcal{I}(F_0, \mathcal{F}^*)$ for $2 \leq j \leq p$. Then Lemma 7 implies that there is an a-cluster with host F_0.

2.3 Type I dominates, a partition of \mathcal{F}

Apply Theorem 3 to \mathcal{F} to obtain $\mathcal{G}_1 := (\mathcal{F})^*$ with the intersection structure $\mathcal{J}_1 \subset 2^{[k]}$.

Then we apply Theorem 3 again to $\mathcal{F} \setminus \mathcal{G}_1$ to obtain $\mathcal{G}_2 = (\mathcal{F} \setminus \mathcal{G}_1)^*$ and \mathcal{J}_2, then apply to $\mathcal{F} \setminus (\mathcal{G}_1 \cup \mathcal{G}_2)$ and so on, until either $\mathcal{F} \setminus (\mathcal{G}_1 \cup \cdots \cup \mathcal{G}_m) = \emptyset$ or $r(\mathcal{J}_{m+1}) \leq k - 2$ for some m. Let \mathcal{F}_1 be the union of those \mathcal{G}_i’s, where \mathcal{J}_i contains exactly $k-1$ $(k-1)$-sets (type I families) and let \mathcal{F}_2 be the union of the rest of these families (type II families)

$\mathcal{F}_2 := \bigcup \{\mathcal{J}_j : r(\mathcal{J}_j) = k - 1, \text{ but } \mathcal{J}_j \text{ does not contain } (k-1) (k-1)\text{-sets}\}$.

Finally, let

$\mathcal{F}_3 := \mathcal{F} \setminus (\mathcal{G}_1 \cup \cdots \cup \mathcal{G}_m) = \mathcal{F} \setminus (\mathcal{F}_1 \cup \mathcal{F}_2)$.

Lemma 10. If $\mathcal{F} \subset \binom{[n]}{k}$ is a-cluster-free with $|\mathcal{F}| \geq \binom{n}{k-1}$, then

$$|\mathcal{F}_2| + |\mathcal{F}_3| \leq \frac{k}{c_1(k)} \left(\binom{n}{k-2} + (k-1) \binom{n-1}{k-2} \right) < c_2(k)n^{k-2},$$

where $c_1(k) := c(k, 2k)$ from (3.1).

Proof. Since the rank of \mathcal{J}_{m+1} is at most $k-2$, each member of \mathcal{G}_{m+1} has its own $(k-2)$-subset in \mathcal{G}_{m+1}. We obtain as in (1) that

$$c(k, 2k) \mid \mathcal{F} \setminus (\mathcal{G}_1 \cup \cdots \cup \mathcal{G}_m) \mid \leq \mid \mathcal{G}_{m+1} \mid \leq \mid \Delta_{k-2}(\mathcal{G}_{m+1}) \mid \leq \binom{n}{k-2},$$

therefore we can write

$$\frac{k}{k-1} \mid \mathcal{F}_3 \mid \leq \frac{k}{(k-1)c_1(k)} \binom{n}{k-2}.$$

Lemma 8 implies that every $F \in \mathcal{F}_1$ contains an own $(k-1)$-set. This and Lemma 9 give
\[|F_1| + \frac{k}{k-1} |F_2| \leq \sum_{F \in \mathcal{F}} \left(\sum_{v \in F} \frac{1}{\text{deg}_F(F \setminus \{v\})} \right) \leq |\Delta_{k-1}(\mathcal{F})| \leq \binom{n}{k-1}. \]

Compare the sum of the above two inequalities to \(\binom{n-1}{k-1} \leq |F_1| + |F_2| + |F_3| \). A simple calculation completes the proof. \(\square \)

2.4 Another partition, the stability of the extremum

For every \(F \in \mathcal{F} \) there exists a \textit{type I} family \(\mathcal{G}_i \subset \mathcal{F}, F \in \mathcal{G}_i \). By the definition of type I family, there exists a (unique) \(\ell := \ell(F) \) such that \(\{ E : \ell \in E \subset F \} \subset \mathcal{I}(F, \mathcal{G}_i) \). Classify the members \(F \in \mathcal{F}_1 \) according to \(\ell(F) \), let \(\mathcal{H}_i := \{ F \in \mathcal{F}_1 : \ell(F) = i, i \in [n] \} \). Let

\[\mathcal{H}_i := \{ H \setminus \{i\} : H \in \mathcal{H}_i \}. \]

These families are pairwise disjoint, \(\mathcal{H}_i \cap \mathcal{H}_j = \emptyset \). The shadows \(\Delta_{k-2}(\mathcal{H}_i) \) are pairwise disjoint, too. Otherwise, for a set \(H \in \Delta_{k-2}(\mathcal{H}_i) \cap \Delta_{k-2}(\mathcal{H}_j), i \neq j \), (2) implies that \(H' = H \cup \{i, j\} \in \mathcal{H}_i \cap \mathcal{H}_j \) contradicting with the uniqueness of \(\ell(H') \).

Given a positive integer \(d \) and real \(x \) define \(\binom{x}{d} \) as \(x(x-1) \ldots (x-d+1)/d! \). We will need the following version of the Kruskal-Katona theorem due to Lovász.

Theorem 11. [24] Suppose that \(\mathcal{H} \subset \binom{[n]}{d} \) and \(|\mathcal{H}| = \binom{x}{d}, x \geq d \). Then \(|\Delta_{k}(\mathcal{H})| \geq \binom{x}{h} \) holds for all \(d > h \geq 0 \).

In case of \(\mathcal{H}_i \neq \emptyset \) let \(x_i \) be a real number such that \(x_i \geq k-1 \) and \(|\mathcal{H}_i| = \binom{x_i}{k-1} \). Without loss of generality, let \(x_1 \) be the maximal one, i.e. \(n-1 \geq x_1 \geq x_i \). We obtain for all \(i \in [n] \) that

\[|\mathcal{H}_i| = |\mathcal{H}_i| \leq \binom{x_i}{k-2} |\Delta_{k-2}(\mathcal{H}_i)| \leq \frac{x_i - k + 2}{k-1} |\Delta_{k-2}(\mathcal{H}_i)| \leq \frac{n - k + 1}{k-1} |\Delta_{k-2}(\mathcal{H}_i)|. \]

(6)

We assume that \(|\mathcal{F}| \geq \binom{n-1}{k-1} \). Then Lemma 10 gave a lower bound for \(|\mathcal{F}_1| = \sum |\mathcal{H}_i| \).

\[\binom{n-1}{k-1} - c_2 n^{k-2} \leq \sum_{i \in [n]} |\mathcal{H}_i| \leq \frac{x_1 - k + 2}{k-1} \left(\sum_{i \in [n]} |\Delta_{k-2}(\mathcal{H}_i)| \right) \leq \frac{x_1 - k + 2}{k-1} \binom{n}{k-2}. \]

This inequality implies that \(x_1 > n - c_3 \) for some constant \(c_3 = c_3(k) \). Therefore there exists a constant \(c_4 := c_4(k) \) such that

\[\sum_{2 \leq i \leq k} |\mathcal{H}_i| = \sum_{2 \leq i \leq k} |\mathcal{H}_i| \leq \binom{n}{k-1} - \binom{n-c_3}{k-1} < c_4 n^{k-2}. \]
This and Lemma 10 lead to
\[|F \setminus H_1| \leq (c_2 + c_4) n^{k-2}. \] (7)

Note that (with minor modifications) the arguments in the above two sections lead to the following stability result.

Theorem 12. For every \(\varepsilon > 0 \) there exists a \(\delta > 0 \) and \(n_0 = n_0(k, \varepsilon) \) such that the following holds. If \(F \subset \binom{[n]}{k} \) contains no \(a \)-cluster and \(|F| > (1 - \delta) \binom{n-1}{k-1} \), \(n > n_0 \), then there exists an element \(v \in [n] \) such that all but at most \(\varepsilon \binom{n-1}{k-1} \) members of \(F \) contains \(v \).

2.5 The extremal family is unique, the end of the proof

In this section we complete the proof of Theorem 2. We have given a family \(F \subset \binom{[n]}{k} \) containing no \(a \)-cluster and of size \(|F| \geq \binom{n-1}{k-1} \). In previous sections we have already defined \(H_1 \subset F_1, F_2, \) and \(F_3 \) and showed in (7) that \(H_1 \) constitutes the bulk of \(F \). One can see (as we have seen in Lemma 8) that
\[F \in F, \ H \in H_1, \ |F \cap H| \geq k - a_1 \text{ imply } 1 \in F. \] (8)

Let us split \(F \) into four subfamilies
\[B = \{ B : 1 \notin B \in F \}, \]
\[C = \{ C : 1 \in C \in F \text{ and } |C \cap B| \geq k - a_1 \text{ for some } B \in B \}, \]
\[D = \{ D : 1 \in D \in F \setminus C \text{ and every } S \text{ with } 1 \in S \subseteq D \}
\text{ is a center of some delta-system of } F \text{ of size } 2k \}, \]
\[E = \{ E : 1 \in E \in F \setminus (C \cup D) \} \].

We have \(H_1 \subset D \). In (16), (17) and (20) we will prove that for sufficiently large \(n \) with respect to \(k \), one has
\[|D| + 4|B| \leq \binom{n-1}{k-1}, \quad |D| + 4|C| \leq \binom{n-1}{k-1}, \quad |D| + 4|E| \leq \binom{n-1}{k-1}. \] (9)

By adding these three, we have
\[3|F| + (|B| + |C| + |E|) \leq 3 \binom{n-1}{k-1} \]
implying \(B = C = E = \emptyset \). Thus \(F = D, \cap F \neq \emptyset \), and we are done.
Before starting the proof of (9), let us define the following subfamilies.
\[
\tilde{\mathcal{C}} := \{ C \setminus \{ 1 \} : C \in \mathcal{C} \}, \quad \tilde{\mathcal{D}} := \{ D \setminus \{ 1 \} : D \in \mathcal{D} \}, \quad \tilde{\mathcal{E}} := \{ E \setminus \{ 1 \} : E \in \mathcal{E} \} \quad (10)
\]

We also apply Theorem 3 with \(c_1(k) := c(k, s) \) and \(s = 2k \) to \(\tilde{\mathcal{C}} \) and \(\tilde{\mathcal{E}} \) to obtain \((k - 1) \)-partite subfamilies \(\mathcal{C}^* \subset \mathcal{C} \) and \(\mathcal{E}^* \subset \mathcal{E} \). By (3.1), we have
\[
|\mathcal{C}^*| \geq c_1(k)|\tilde{\mathcal{C}}| = c_1(k)|\mathcal{C}| \quad \text{and} \quad |\mathcal{E}^*| \geq c_1(k)|\tilde{\mathcal{E}}| = c_1(k)|\mathcal{E}| \quad (11)
\]

Since each member of \(\tilde{\mathcal{D}} \) has \((k - 1) \) subsets of size \(k - 2 \) and every \((k - 2) \)-set is contained in at most \((n - k + 1) \) members of \(\tilde{\mathcal{D}} \), we have that \((n - k + 1)|\Delta_{k-2}(\tilde{\mathcal{D}})| \geq (k - 1)|\tilde{\mathcal{D}}| \). Rearranging and using \(|\tilde{\mathcal{D}}| = |\mathcal{D}| \) we obtain
\[
\frac{n - k + 1}{k - 1}|\Delta_{k-2}(\tilde{\mathcal{D}})| \geq |\mathcal{D}|. \quad (12)
\]

Subfamily \(\mathcal{B} \): By definition of \(\mathcal{D} \) and Lemma 8, we have \(|D \cap B| \neq k - 2 \) for all \(D \in \tilde{\mathcal{D}} \) and \(B \in \mathcal{B} \). In other words, \(\Delta_{k-2}(\tilde{\mathcal{D}}) \cap \Delta_{k-2}(\mathcal{B}) = \emptyset \). Hence,
\[
\binom{n - 1}{k - 2} \geq |\Delta_{k-2}(\tilde{\mathcal{D}})| + |\Delta_{k-2}(\mathcal{B})|.
\]

Multiplying (14) with \((n - k + 1)/(k - 1) \) and using (12), we obtain
\[
\binom{n - 1}{k - 1} \geq |\mathcal{D}| + \frac{n - k + 1}{k - 1}|\Delta_{k-2}(\mathcal{B})|. \quad (13)
\]

Let \(x \geq k - 1 \) be a real number such that \(|\Delta_{k-1}(\mathcal{B})| = \binom{x}{k - 1} \). By Theorem 11, we have
\[
|\Delta_{k-2}(\mathcal{B})| \geq \frac{k - 1}{x - k + 2}|\Delta_{k-1}(\mathcal{B})|. \quad (14)
\]

By Lemma 6,
\[
|\Delta_{k-1}(\mathcal{B})| \geq c_1(k)|\mathcal{B}|. \quad (15)
\]

Then (13), (14) and (15) yield
\[
\binom{n - 1}{k - 1} \geq |\mathcal{D}| + c_1(k)\frac{n - k + 1}{x - k + 2}|\mathcal{B}|. \quad (16)
\]

Since \(\mathcal{B} \) is contained in \(\mathcal{F} \setminus \mathcal{H}_1 \) inequality (7) gives
\[
\binom{x}{k - 1} = |\Delta_{k-1}(\mathcal{B})| \leq k|\mathcal{B}| < k(c_2 + c_4)n^{k-2}
\]

implying that \(x < c_5n^{(k-2)/(k-1)} \) for some constant \(c_5 \). Therefore, the coefficient of \(|\mathcal{B}| \) in (16) is at least 4 for sufficiently large \(n \).

Subfamily \(\mathcal{C} \): We denote the homogeneous intersection structure of \(\mathcal{C} \) by \(\mathcal{J}_C \).
Claim 13. Each $C' \in C^*$ has a $(k - 2)$-set such that it is contained neither in $\Delta_{k-2}(\vec{D})$ nor in $I(C', C^*)$.

Proof. Suppose, on the contrary, that for some $C' = \{x_1, \ldots, x_{k-1}\} \in C^*$ with $C = C' \cup \{1\} \in \mathcal{C}$, we have

$$C' \setminus \{x_i\} \in \begin{cases} I(C', \vec{D}), & i = 1, \ldots, r \\ I(C', C^*), & i = r + 1, \ldots, k-1. \end{cases}$$

All subsets of $C' \setminus \{x_i\}$ are contained in $I(C', \vec{D})$, for $1 \leq i \leq r$, and all supersets of the set $\{x_1, \ldots, x_r\}$ in C', except C' itself, are contained in $I(C', C^*)$. So, for all $S \subset C'$, there is a delta-system of size $2k$ with center $S \cup \{1\}$.

We claim that $r \geq 1$. Otherwise $J_C = 2^{[k-1]} \setminus \{[k-1]\}$ and there exists a member $C'' \in \mathcal{C}$ such that $C'' \setminus \{1\} \in C^*$ and $|C'' \cap B| = k - a_1$ for some $B \in \mathcal{B}$. Then one can build an α-cluster with host C'' such that $C''(A_1) = B$.

Let $D_i \in \mathcal{D}$ such that $C \cap D_i = C \setminus \{x_i\}$, for $i = 1, \ldots, r$ and choose a $B \in \mathcal{B}$ with $|C \cap B| \geq k - a_1$. By definition of \mathcal{D},

$$|D_i \cap B| \leq k - a_1 - 1.$$

We also have

$$|D_i \cap B| + 1 \geq |C' \cap B| = |C \cap B| \geq k - a_1.$$

Therefore, $x_i \in C \cap B$ for all $i = 1, \ldots, r$ and $|C \cap B| = k - a_1$ and one can build an α-cluster with host C and $C(A_1) = B$, a contradiction. \hfill \Box

By Claim 13, we have

$$\binom{n-1}{k-2} \geq |\Delta_{k-2}(\vec{D})| + |C^*|.$$

Multiplying this by $\frac{n-k+1}{k-1}$ and applying (11) and (12) we obtain

$$\binom{n-1}{k-1} \geq |\mathcal{D}| + c_1(k) \frac{n-k+1}{k-1}|\mathcal{C}|. \tag{17}$$

Subfamily \mathcal{E}: First we show that each $E' \in \mathcal{E}$ has a $(k-2)$-subset that is neither in $I(E', \mathcal{E}^*)$ nor in $I(E', \vec{D})$. Suppose, on the contrary, that for some $E \in \mathcal{E}$, $E' := E \setminus \{1\} \in \mathcal{E}^*$, $E' = \{x_1, \ldots, x_{k-1}\}$ such that

$$E' \setminus \{x_i\} \in \begin{cases} I(E', \vec{D}), & i = 1, \ldots, r \\ I(E', \mathcal{E}^*), & i = r + 1, \ldots, k-1. \end{cases} \tag{18}$$
All subsets of \(E' \setminus \{x_i\} \) are contained in \(\mathcal{I}(E', \mathcal{D}) \), for \(1 \leq i \leq r \), and all supersets of the set \(\{x_1, \ldots, x_r\} \) in \(E' \), except \(E' \) itself, are contained in \(\mathcal{I}(E', \mathcal{E}^*) \). So, for all \(S \subseteq E' \), there is a delta-system of size \(2k \) with center \(S \cup \{1\} \). This contradicts to \(E \notin \mathcal{D} \).

Since every \(E' \in \mathcal{E}^* \) contains a \((k-2) \)-set that is not contained in any member of \(\mathcal{D} \) or another member of \(\mathcal{E}^* \), we have

\[
\binom{n-1}{k-2} \geq |\Delta_{k-2}(\mathcal{D})| + |\mathcal{E}^*|.
\] (19)

After multiplying (19) with \(\frac{n-k+1}{k-1} \) and applying the inequalities (11) and (12), we obtain

\[
\binom{n-1}{k-1} \geq |\mathcal{D}| + c_1(k)\frac{n-k+1}{k-1} |\mathcal{E}|.
\] (20)

3 Concluding remarks

3.1 Finding a \((k, k+1) \)-cluster

Our first observation is, that in Conjecture 1 the constraint \(d \leq k \) is not necessary. We prove the case \(d = k+1 \). It is not clear what is the possible maximum value of \(d \). We need a classical result of Bollobás [4]. A cross-intersecting set system, \(\{A_i, B_i\} \) for \(i \in [m] \), is a collection of pairs of sets such that \(A_i \cap B_i = \emptyset \) and \(A_i \cap B_j \neq \emptyset \) for \(i \neq j \). If \(|A_i| \leq a \) and \(|B_i| \leq b \) (for all \(1 \leq i \leq m \)) then

\[m \leq \binom{a+b}{a}. \]

Equality holds only if \(\{A_1, \ldots, A_m\} = \binom{[a+b]}{a} \) and \(B_i = [a+b] \setminus A_i \).

Theorem 14. If \(\mathcal{F} \subseteq \binom{[n]}{k} \) contains no \((k, k+1)\)-cluster and \(n \geq k \), then \(|\mathcal{F}| \leq \binom{n-1}{k-1} \). Here equality holds only if \(\cap \mathcal{F} \neq \emptyset \).

Proof. Every \(F \in \mathcal{F} \) has a \((k-1)\)-subset \(B(F) \subseteq F \) that is not contained by any other member of \(\mathcal{F} \), otherwise there are sets \(F_1, \ldots, F_k \in \mathcal{F} \) such that \(F = \{x_1, \ldots, x_k\} \) and \(F \cap F_i = F \setminus \{x_i\} \), a contradiction. Therefore, the sets \(\{B(F), [n] - F\} \) form an intersecting set pair system and the result of Bollobás yields \(|\mathcal{F}| \leq \binom{(k-1)+(n-k)}{k-1} = \binom{n-1}{k-1}. \) \(\square \)

3.2 Trees in hypergraphs, Kalai’s conjecture

A system of \(k \)-sets \(\mathbb{T} := \{E_1, E_2, \ldots, E_q\} \) is called a **tree** \((k\text{-tree})\) if for every \(2 \leq i \leq q \) we have \(|E_1 \cup \bigcup_{j<i} E_j| = 1 \), and there exists an \(\alpha = \alpha(i) < i \) such that \(|E_{\alpha} \cap E_i| = k - 1 \). The
case $k = 2$ corresponds to the usual trees in graphs. Let T be a k-tree on v vertices, and let $\text{ex}_k(n, T)$ denote the maximum size of a k-family on n elements without T. We have

$$\text{ex}_k(n, T) \geq (1 + o(1)) \frac{v - k}{k} \left(\begin{array}{c} n \\ k - 1 \end{array} \right).$$

Indeed, consider a $P(n, v - 1, k - 1)$ packing P_1, \ldots, P_m on the vertex set $[n]$. This means that $|P_i| = v - 1$ and $|P_i \cap P_j| < k - 1$ for $1 \leq i < j \leq m$. Rödl's [32] theorem gives a packing of the size $m = (1 + o(1)) \left(\begin{array}{c} n \\ k - 1 \end{array} \right) / \left(\begin{array}{c} v - 1 \\ k - 1 \end{array} \right)$, when $n \to \infty$. Put a complete k-hypergraph into each P_i, the obtained k-graph does not contain T.

Conjecture 15. (Erdős and Sós for graphs, Kalai 1984 for all k, see in [17])

$$\text{ex}_k(n, T) \leq \frac{v - k}{k} \left(\begin{array}{c} n \\ k - 1 \end{array} \right).$$

This was proved for star-shaped trees by Frankl and the first author [17], i.e., whenever T contains an edge which intersects all other edges in $k - 1$ vertices. (For $k = 2$ these are the three diameter 3 trees, i.e., "brooms").

Note that a 1-cluster is a k-tree with $v = 2k$, here 1 := $(1, 1, \ldots, 1)$. A Steiner system $S(n, k, t)$ is a perfect packing, a family of k-subsets of $[n]$ such that each t-subset of $[n]$ is contained in a unique member of that family. So if an $S(n, 2k - 1, k - 1)$ exists then construction (21) gives a cluster-free k-family of size $\left(\begin{array}{c} n \\ k - 1 \end{array} \right)$, slightly exceeding the EKR bound. (Such designs exist, e.g., for $k = 3$ and $n \equiv 1$ or 5 (mod 20), see [3]). On the other hand, the result of Frankl and the first author [17] (cited above) implies that if $\mathcal{F} \subset \left(\begin{array}{c} n \\ k \end{array} \right)$ is a family with more than $\left(\begin{array}{c} n \\ k - 1 \end{array} \right)$ members, then \mathcal{F} contains every star-shaped tree with $k + 1$ edges, especially it contains a 1-cluster.

3.3 Traces

Theorem 2 is related to the trace problem of uniform hypergraphs. Given a hypergraph H, its trace on $S \subseteq V(H)$ is defined as the set $\{ E \cap S : E \in \mathcal{E}(H) \}$. Let $\text{Tr}(n, r, k)$ denote the maximum number of edges in an r-uniform hypergraph of order n and not admitting the power set 2^k as a trace. For $k \leq r \leq n$, the bound $\text{Tr}(n, r, k) \leq \left(\begin{array}{c} n \\ k - 1 \end{array} \right)$ was proved by Frankl and Pach [18]. Mubayi and Zhao [30] slightly reduced this upper bound by $\log_p n - k! k^k$ in the case when $k - 1$ is a power of the prime p and n is large. On the other hand, Ahlswede and Khachatrian [1] showed $\text{Tr}(n, k, k) \geq \left(\begin{array}{c} n - 1 \\ k - 1 \end{array} \right) + \left(\begin{array}{c} n - 4 \\ k - 3 \end{array} \right)$ for $n \geq 2k \geq 6$.
4 Acknowledgements

We thank the referees for reading the paper carefully and suggesting many helpful clarifications.

References

