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Füredi and Özkahya: Unavoidable subhypergraphs: a-clusters 21 Introduction1.1 HistoryLet F be a family of k subsets of the n-set [n] = {1, 2, . . . , n}, F ⊂
([n]
k

), n ≥ k ≥ 2.The Erd®s�Ko�Rado (EKR) theorem [12] states that if any two sets intersect and n ≥ 2k,then | F | ≤
(

n−1
k−1

). Katona proposed in 1980 the following related problem: Suppose thatevery three members F1, F2, F3 ∈ F meet (F1∩F2∩F3 6= ∅) whenever their union is small,
|F1 ∪ F2 ∪ F3| ≤ 2k. It was proved by Frankl and the �rst author [15] that then the sameEKR-type upper bound holds for | F | for n > n1(k). The case 3k/2 ≤ n < 2k followsfrom a result of Frankl [13] (also see Mubayi and Verstraëte [29]), and �nally Mubayi [25]gave a nice short proof that | F | ≤

(n−1
k−1

) holds for all n ≥ 2k, (with equality only for
∩F 6= ∅) so n1(k) = d3k/2e. Mubayi [27] showed that the EKR bound also holds, if
|F1 ∪F2 ∪F3 ∪F4| ≤ 2k implies F1 ∩F2 ∩F3 ∩F4 6= ∅ (for n > n2(k)). This led him to thefollowing conjecture.Conjecture 1. Call a family of k-sets {F1, . . . , Fd} a (k, d)-cluster if

|F1 ∪ F2 ∪ · · · ∪ Fd| ≤ 2k and F1 ∩ F2 · · · ∩ Fd = ∅.Let k ≥ d ≥ 2, n ≥ dk/(d − 1) and suppose that F is a k-uniform family on n elementscontaining no (k, d)-cluster. Then | F | ≤
(n−1
k−1

), with equality only if ∩F 6= ∅.The case d = k follows from a theorem of Chvatal [9] as it was observed by Chen,Liu, and Wang [7]. Keevash and Mubayi [22] proved Conjecture 1 when both k/n and
n/2− k are bounded away from zero, and Mubayi and Ramadurai [28] for n > n3(k). Thepresent authors also proved Conjecture 1 in 2007 for n > n4(k) with a di�erent approach(unpublished). Recently, Jiang, Pikhurko, and Yilma [20] proved a more general resultconcerning the so-called strong simplices.In Theorem 2, we give a stronger generalization which not only implies Conjecture 1and all the above results for su�ciently large n but also gives an explicit structure of theunavoidable subhypergraphs.In our notation, A ⊂ B also includes the case that A = B. We write A ( B for the case
A ⊂ B and A 6= B.1.2 a-clustersLet a = (a1, . . . , ap) be a sequence of positive integers, p ≥ 2, k = a1 + · · · + ap. An
a-partition of a k-set F is a partition in the form F = A1 ∪ . . . Ap with |Ai| = ai for
1 ≤ i ≤ p. An a-cluster A with host F0 is a family of k-sets {F0, . . . , Fp} such that for



Füredi and Özkahya: Unavoidable subhypergraphs: a-clusters 3some a-partition of F0, F0 ∩ Fi = F0 \ Ai for 1 ≤ i ≤ p and the sets Fi \ F0 are pairwisedisjoint. The family A has 2k vertices and it is unique up to isomorphisms.Theorem 2. Suppose that k > p > 1, F ⊂
([n]
k

) with | F | >
(n−1
k−1

) and n is su�cientlylarge (n > N(k)). Then F contains any a-cluster, a 6= 1. Moreover, if | F | =
(n−1
k−1

),
a-cluster-free, then it consists of all the k-subsets containing a given element.Our N(k) is very large, it is double exponential in k. In the proof of Theorem 2, weuse the delta-system method and a complicated version of the stability method developedin [17] by Frankl and the �rst author of this paper. Note that the case k = p, i.e.,
a = (1, 1, . . . , 1), is di�erent as described in Section 3.2.1.3 The delta-system methodIt is natural to investigate the intersection structure of F . This is exactly where thedelta-system method can be applied.The intersection structure of F ∈ F with respect to the family F is de�ned as

I(F,F) = {F ∩ F ′ : F ′ ∈ F , F 6= F ′}.If the set F is given, A ⊂ F with (F \ A) ∈ I(F,F), then we use the notation F (A) for a
k-set in F such that F (A) ∩ F = F \A.A k-uniform family F ⊂

([n]
k

) is k-partite if one can �nd a partition [n] = X1 ∪ · · · ∪Xkwith |F ∩Xi| = 1 for all F ∈ F , 1 ≤ i ≤ k. If F is k-partite, then for any set S ⊂ [n], itsprojection Π(S) is de�ned as
Π(S) = {i : S ∩Xi 6= ∅} and Π(I(F,F)) = {Π(S) : S ∈ I(F,F)}.A family {D1,D2, . . . ,Ds} is called a delta-system of size s and with center C ifDi∩Dj =

C holds for all 1 ≤ i < j ≤ s. The delta-system method is described in the followingtheorem due to the �rst author.Theorem 3. [19] For any positive integers s and k with s > k, there exists a positiveconstant c(k, s) such that every family F ⊂
([n]
k

) contains a subfamily F∗ ⊂ F satisfying(3.1) | F∗ | ≥ c(k, s)| F |,(3.2) F∗ is k-partite,(3.3) there is a family J ⊂ 2{1,2,...,k} \ {[k]} such that Π(I(F,F∗)) = J holds for all
F ∈ F∗,(3.4) J is closed under intersection, (i.e., A,B ∈ J imply A ∩B ∈ J ),(3.5) every member of I(F,F∗) is the center of a delta-system D of size s formed bymembers of F∗ and containing F , F ∈ D ⊂ F∗.



Füredi and Özkahya: Unavoidable subhypergraphs: a-clusters 4We call a family F∗ homogeneous if F∗ satis�es (3.2)�(3.5). In this paper, we �x s = 2kin Theorem 3.Lemma 4. Suppose that F∗ ⊂ F , where F∗ is obtained by using Theorem 3 with s = 2k.If G1 ∈ F∗, G2 ∈ F , M ∈ I(G1,F
∗), M ⊂ G2 and M ∩ S = ∅, where |S| ≤ k, then thereexists a G3 ∈ F∗ such that G2 ∩G3 = M and S ∩G3 = ∅.Proof. Let {F ′

1, F
′
2, . . . , F

′
2k} ⊂ F∗ be a delta-system centered at M , where F ′

1 = G1. Sincethe sets F ′
1 \M, . . . , F ′

2k \M are pairwise disjoint, and |G2 \M | < k and |S| ≤ k there isan F ′
i avoiding both (1 ≤ i ≤ 2k). Then G2 ∩ F ′

i = M and S ∩ F ′
i = ∅.2 Proof of the main theorem2.1 Rank and shadow of a-cluster-free familiesThroughout the proof of Theorem 2, we will be mostly interested in the rank of J , whichis de�ned as

r(J ) = min{|A| : A ⊂ [k],@B ∈ J , A ⊂ B}.The rank of J is k only if J = 2[k] \ {[k]}; otherwise, it is at most k − 1.From now on, F ⊂
([n]
k

) is an arbitrary k-family containing no a-cluster, where a =

(a1, . . . , ap) is a non-increasing sequence with a1 ≥ 2. We will show that | F | ≥
(n−1
k−1

)implies ∩F 6= ∅ for su�ciently large n.Frankl and the �rst author [16] developed a method while proving a conjecture of Erd®sthat is used in [17] to show that a family F ⊂
([n]
k

) has a common element (∩F 6= ∅) ifcertain intersection constraints are ful�lled. Here we revisit that result and modify thatproof to obtain a version for a-cluster-free families.For the rest of the paper, we let F∗ ⊂ F be a homogeneous subfamily of F .Corollary 5. Let F = {x1, . . . , xk} ∈ F∗. If r(J ) ≥ k − 1, then r(J ) = k − 1, i.e., it isimpossible that (F \ {xi}) ∈ I(F,F *) for all 1 ≤ i ≤ k.Proof. Assume, on the contrary, that r(J ) = k. Because J is closed under intersection,we have J = 2[k] \ {[k]}. Therefore, I(F,F∗) contains all proper subsets of F . Consideran a-partition of F = (A1, . . . , Ap). Using Lemma 4 p times with G1 = F , M = F \ Aiand S = ∪j<i(Fj \ F ) we obtain F1, . . . , Fp ∈ F∗ such that, for i ∈ [p], F ∩ Fi = F \ {Ai}and the sets Fi \F are disjoint. Therefore, {F1, . . . , Fp, F} is an a-cluster with host F .



Füredi and Özkahya: Unavoidable subhypergraphs: a-clusters 5We use the notation ∆`(H) for the `-shadow of the family H, i.e.,
∆`(H) := {L : |L| = `,∃H ∈ H with L ⊂ H}.Lemma 6. F is not too dense, i.e., |∆k−1(G)| ≥ c1(k)| G | for all G ⊂ F , where c1(k) :=

c(k, 2k) from (3.1).Proof. Apply Theorem 3 to G to obtain a k-partite G∗ with a homogeneous intersectionstructure J ⊂ 2[k], i.e., Π(I(G,G∗)) = J for all G ∈ G∗. Corollary 5 implies that the rankof J is at most k− 1 so each G ∈ G∗ has a (k− 1)-subset that is not contained by anothermember of G∗. We obtain |∆k−1(G
∗)| ≥ | G∗ |, and hence

|∆k−1(G)| ≥ |∆k−1(G
∗)| ≥ | G∗ | ≥ c(k, 2k)| G |. (1)2.2 The intersection structure of rank-(k − 1) subfamiliesFor a subset S ⊂ F ∈ F , denote the degree of S in F by

degF (S) = |{F : F ∈ F , S ⊂ F}|.A subset of F ∈ F is called an own subset of F , if its degree in F is one.Lemma 7. Let F0 ∈ F∗ and {A1, . . . , Ap} an a-partition of F0. Assume that there existsan H ∈ F and i ∈ [p] such that F0 ∩H = (F0 \Ai). Suppose F0 \Aj ∈ I(F0,F
∗) for each

j ∈ [p] when j 6= i. Then there is an a-cluster in F with host F0.Proof. Call H to Fi. Use Lemma 4 (p−1) times to de�ne Fj for j ∈ [p]\{i} with G1 = H,
M = F0 \ Aj ∈ I(F0,F

∗) and S = (Fi \ F0) ∪`<j (F` \ F0). Note that |S| < k at eachstep.Lemma 7 can be generalized to allow more than one member with properties of H asused in the proof of Lemma 9.Lemma 8. Let F = {x1, . . . , xk} ∈ F∗. If r(J )=k − 1, and there are k − 1 (k − 1)-setsin J , say F \ {xi} ∈ I(F,F *) for 2 ≤ i ≤ k, then F \ {x1} is an own subset of F in F .Moreover, in this case
F1 ∈ F , |F1 ∩ F | ≥ k − 2 imply x1 ∈ F1. (2)Such an F (and J and F∗) is called of type I. Note that we claim that F \ {x1} is anown subset of F in F , not only in F∗.



Füredi and Özkahya: Unavoidable subhypergraphs: a-clusters 6Proof. Suppose, on the contrary, that there exists an F1 ∈ F such that F1 =
{y, x2, . . . , xk}, y /∈ F1. This will enable us to �nd an a-cluster (with a host F2 to bede�ned later), a contradiction.Choose a subset M of F such that x1 ∈ M and |M | = k− a1 + 1(< k). Note that (3.4)implies that

{E : E ( F, x1 ∈ E} ⊂ I(F,F∗). (3)So M ∈ I(F,F∗) and by Lemma 4 we can pick another member F2 ∈ F∗ such that
F ∩ F2 = M and y /∈ F2. We obtain

F2 ∩ F1 = M \ {x1} hence |F2 ∩ F1| = k − a1.Consider an a-partition of F2 such that A1 = F2 \ F1, i.e. F1 = F2(A1). Since F2 ∈ F∗and F∗ is homogeneous, by (3) and (3.3) of Theorem 3, we have
{E : E ( F2, x1 ∈ E} ⊂ I(F2,F

∗).Therefore, F2 \ Ai ∈ I(F2,F
∗) for 2 ≤ i ≤ p and we obtain an a-cluster by Lemma 7, acontradiction.The proof of (2) when |F1∩F | = k−2, assuming x1, x2 /∈ F1, is similar and we omit thedetails. To prove this case, one needs to follow the same steps assuming that x1, x2 ∈ Mand have to choose M and F2 such that |M | = k − a1 + 2 and F2 ∩ F1 = M \ {x1, x2},respectively, except in the case a1 = 2 when we de�ne F2 = F .Lemma 9. If r(J )=k − 1, and there are exactly k − t (k − 1)-sets in J with 2 ≤ t ≤ k,say F \ {xi} ∈ I(F,F *) for t < i ≤ k then
∑

1≤i≤t

1

degF (F \ {xi})
≥ 1 +

1

k − 1
.These F ∈ F∗ (and J and F∗) are called type II.Proof. De�ne a bipartite graph G with partite sets X = {x1, . . . , xt} and Y = [n] \ F andedges xy for x ∈ X and y ∈ Y if and only if (F \ {x}) ∪ {y} ∈ F . We claim that themaximum number of independent edges in this graph, ν(G), is at most t− 2. This indeedimplies Lemma 9 as follows. By König�Hall theorem the size of a minimum vertex cover

S of G is at most t− 2. Let |X \ S| = `, we have ` ≥ 2 and |S ∩ Y | ≤ ` − 2. Since eachvertex v ∈ X \ S has neighbors only in S ∩ Y , we have
degF (F \ {v}) = degG(v) + 1 ≤ |S ∩ Y |+ 1 ≤ `− 1.
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∑

v∈X\S

1

degF (F \ {v})
≥

`

`− 1
≥

k

k − 1
.To prove ν(G) ≤ t−2 suppose, on the contrary, that there are Fi := (F \{xi}∪{yi}) ∈ Ffor 2 ≤ i ≤ t, where yi's are distinct elements outside F . We will see this leads to theexistence of an a-cluster. First, we describe the intersection structure of F in F∗ by usingrepeatedly the fact that I(F,F∗) is closed under intersection.Note that if A ⊆ {xt+1, . . . , xk} then F \ A ∈ I(F,F∗). (4)Also, if A ⊂ F , |A| < k and

|A ∩ {x1, . . . , xt}| ≥ 2 then (F \ A) ∈ I(F,F∗). (5)Indeed, the rank of J exceeds k − 2, so we have that F \ {xu}, F \ {xv} /∈ I(F,F ∗)(1≤ u < v ≤ t), but F \ {xu, xv} ∈ I(F,F∗). Also F \ {xw} ∈ I(F,F∗) for t < w ≤ k.Since J is closed under intersection, we obtain that
F \A =





⋂

xu,xv∈A, u<v≤t

(F \ {xu, xv})





⋂





⋂

xw∈A, w>t

(F \ {xw})



 ∈ I(F,F∗).In the rest of the proof, we specify how one can build an a-cluster with host F usingLemma 7 if each Ai in an a-partition of F satis�es either one of (4) and (5) or Ai = {xj}with 1 < j ≤ k. There are several cases to consider.Recall that a1 ≥ a2 ≥ · · · ≥ ap and a1 ≥ 2. De�ne the positive integers i and ` asfollows.
a1 + · · · + ai−1 < t ≤ a1 + · · ·+ ai ,

` = t− (a1 + · · ·+ ai−1).Except the last case, the host of the a-cluster is F .Case 1: ` ≥ 2. Then a1, . . . , ai ≥ ` ≥ 2.Let A1, A2, . . . , Ai−1 ⊂ X = {x1, . . . , xt} and |Ai ∩ {x1, . . . , xt}| = `.Case 2: ` = 1 and ai = 1.By our assumption, there exist Fi := (F \ {xi} ∪ {yi}) ∈ F for 2 ≤ i ≤ t, where yi's aredistinct elements outside F . Let A1 ∪A2 · · · ∪Ai = {x1, . . . , xt}, x1 ∈ A1.From now on, ` = 1 and ai ≥ 2 so i ≥ 2.Case 3: ` = 1, ai ≥ 2 and a1 ≥ 3.Let A1 ∪A2 · · · ∪Ai ⊇ {x1, . . . , xt, xt+1}, xt+1 ∈ A1 and A2 ∪ ...∪Ai−1 ⊂ {x1, . . . , xt}. We



Füredi and Özkahya: Unavoidable subhypergraphs: a-clusters 8have that |X ∩A1|, |X ∩Ai| ≥ 2.Case 4: ` = 1, ai ≥ 2, a1 ≤ 2 and ap = 1. Then a1 = · · · = ai = 2.Let A1 ∪A2 · · · ∪Ai−1 ∪Ap = {x1, . . . , xt}, Ap := {xt}.Case 5: ` = 1, a1 = · · · = ap = 2.This implies that t is odd, t ≥ 3, and k = 2p is even so t < k. Pick a member F0 from
F∗ such that F0 = F \ {xk} ∪ {y} for some y 6= y2. Choose an a-partition of F0 suchthat A1 = {y, x2}, which means F2 = F0(A1). The other parts are A2 = {x1, x3} and
Aj = {x2j−2, x2j−1} for 3 ≤ j ≤ p. By (3.3) of Theorem 3, the intersection structure
I(F0,F

∗) is isomorphic to I(F,F∗) so (4) and (5) imply that F \ Aj ∈ I(F0,F
∗) for

2 ≤ j ≤ p. Then Lemma 7 implies that there is an a-cluster with host F0.2.3 Type I dominates, a partition of FApply Theorem 3 to F to obtain G1 := (F)∗ with the intersection structure J 1 ⊂ 2[k].Then we apply Theorem 3 again to F \G1 to obtain G2 = (F \G1)
∗ and J 2, then apply to

F \(G1 ∪G2) and so on, until either F \(G1 ∪ · · · ∪ Gm) = ∅ or r(Jm+1) ≤ k − 2 for some
m. Let F1 be the union of those Gi's, where J i contains exactly k− 1 (k− 1)-sets (type Ifamilies) and let F2 be the union of the rest of these families (type II families)

F2 :=
⋃

j{Gj : r(J j) = k − 1, but J j does not contain exactly (k − 1) (k − 1)-sets}.Finally, let
F3 := F \(G1 ∪ · · · ∪ Gm) = F \(F1 ∪F2).Lemma 10. If F ⊂

([n]
k

) is a-cluster-free with | F | ≥
(n−1
k−1

), then
| F2 |+ | F3 | ≤

k

c1(k)

(

n

k − 2

)

+ (k − 1)

(

n− 1

k − 2

)

< c2(k)n
k−2,where c1(k) := c(k, 2k) from (3.1).Proof. Since the rank of Jm+1 is at most k− 2, each member of Gm+1 has its own (k− 2)-subset in Gm+1. We obtain as in (1) that

c(k, 2k)| F \(G1 ∪ · · · ∪ Gm)| ≤ | Gm+1 | ≤ |∆k−2(Gm+1)| ≤

(

n

k − 2

)

,therefore we can write
k

k − 1
| F3 | ≤

k

(k − 1)c1(k)

(

n

k − 2

)

.Lemma 8 implies that every F ∈ F1 contains an own (k − 1)-set. This and Lemma 9 give
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| F1 |+

k

k − 1
| F2 | ≤

∑

F∈F

(

∑

v∈F

1

degF (F \ {v})

)

= |∆k−1(F)| ≤

(

n

k − 1

)

.Compare the sum of the above two inequalities to (n−1
k−1

)

≤ |F1 |+ | F2 |+ | F3 |. A simplecalculation completes the proof.2.4 Another partition, the stability of the extremumFor every F ∈ F1 there exists a type I family Gi ⊂ F , F ∈ Gi. By the de�nition of typeI family, there exists a (unique) ` := `(F ) such that {E : ` ∈ E ⊂ F} ⊂ I(F,Gi). Classifythe members F ∈ F1 according to `(F ), let Hi := {F ∈ F1 : `(F ) = i}, i ∈ [n]. Let
H̃i := {H \ {i} : H ∈ Hi}.These families are pairwise disjoint, H̃i ∩ H̃j = ∅. The shadows ∆k−2(H̃i) are pairwisedisjoint, too. Otherwise, for a set H ∈ ∆k−2(H̃i) ∩ ∆k−2(H̃j), i 6= j, (2) implies that

H ′ = H ∪ {i, j} ∈ Hi ∩Hj contradicting with the uniqueness of `(H ′).Given a positive integer d and real x de�ne (xd) as x(x − 1) . . . (x − d + 1)/d!. We willneed the following version of the Kruskal-Katona theorem due to Lovász.Theorem 11. [24] Suppose that H ⊂
([n]
d

) and |H | =
(x
d

), x ≥ d. Then |∆h(H)| ≥
(x
h

)holds for all d > h ≥ 0.In case of Hi 6= ∅ let xi be a real number such that xi ≥ k − 1 and |H̃i| =
(

xi

k−1

)

. Withoutloss of generality, let x1 be the maximal one, i.e. n− 1 ≥ x1 ≥ xi. We obtain for all i ∈ [n]that
|Hi | = |H̃i| ≤

( xi

k−1

)

( xi

k−2

) |∆k−2(H̃i)| ≤
x1 − k + 2

k − 1
|∆k−2(H̃i)| ≤

n− k + 1

k − 1
|∆k−2(H̃i)|. (6)We assume that | F | ≥

(n−1
k−1

). Then Lemma 10 gave a lower bound for | F1 | =
∑

|Hi |.
(

n− 1

k − 1

)

− c2n
k−2 ≤

∑

i∈[n]

|Hi | ≤
x1 − k + 2

k − 1





∑

i∈[n]

|∆k−2(H̃i)|



 ≤
x1 − k + 2

k − 1

(

n

k − 2

)

.This inequality implies that x1 > n − c3 for some constant c3 = c3(k). Therefore thereexists a constant c4 := c4(k) such that
∑

2≤i≤k

|Hi | =
∑

2≤i≤k

|H̃i| ≤

(

n

k − 1

)

−

(

n− c3
k − 1

)

< c4n
k−2.



Füredi and Özkahya: Unavoidable subhypergraphs: a-clusters 10This and Lemma 10 lead to
| F \H1 | ≤ (c2 + c4)n

k−2. (7)Note that (with minor modi�cations) the arguments in the above two sections lead tothe following stability result.Theorem 12. For every ε > 0 there exists a δ > 0 and n0 = n0(k, ε) such that thefollowing holds. If F ⊂
([n]
k

) contains no a-cluster and | F | > (1 − δ)
(n−1
k−1

), n > n0, thenthere exists an element v ∈ [n] such that all but at most ε(n−1
k−1

) members of F contains v.2.5 The extremal family is unique, the end of the proofIn this section we complete the proof of Theorem 2. We have given a family F ⊂
([n]
k

)containing no a-cluster and of size | F | ≥
(n−1
k−1

). In previous sections we have alreadyde�ned H1 ⊂ F1, F2, and F3 and showed in (7) that H1 constitutes the bulk of F . Onecan see (as we have seen in Lemma 8) that
F ∈ F , H ∈ H1, |F ∩H| ≥ k − a1 imply 1 ∈ F. (8)Let us split F into four subfamilies

B = {B : 1 /∈ B ∈ F},

C = {C : 1 ∈ C ∈ F and |C ∩B| ≥ k − a1 for some B ∈ B},

D = {D : 1 ∈ D ∈ F \C and every S with 1 ∈ S ( Dis a center of some delta-system of F of size 2k},

E = {E : 1 ∈ E ∈ F} \ (C ∪D).We have H1 ⊂ D. In (16), (17) and (20) we will prove that for su�ciently large n withrespect to k, one has
| D |+ 4| B | ≤

(

n− 1

k − 1

)

, | D |+ 4| C | ≤

(

n− 1

k − 1

)

, | D |+ 4| E | ≤

(

n− 1

k − 1

)

. (9)By adding these three, we have
3| F |+ (| B |+ | C |+ E |) ≤ 3

(

n− 1

k − 1

)implying B = C = E = ∅. Thus F = D, ∩F 6= ∅, and we are done.



Füredi and Özkahya: Unavoidable subhypergraphs: a-clusters 11Before starting the proof of (9), let us de�ne the following subfamilies.
C̃ := {C \ {1} : C ∈ C}, D̃ := {D \ {1} : D ∈ D}, Ẽ := {E \ {1} : E ∈ E} (10)We also apply Theorem 3 with c1(k) := c(k, s) and s = 2k to C̃ and Ẽ to obtain (k− 1)-partite subfamilies C∗ ⊂ C and E∗ ⊂ E . By (3.1), we have

| C∗ | ≥ c1(k)|C̃| = c1(k)| C | and | E∗ | ≥ c1(k)|Ẽ | = c1(k)| E | (11)Since each member of D̃ has (k−1) subsets of size k−2 and every (k−2)-set is containedin at most (n − k + 1) members of D̃ we have that (n − k + 1)|∆k−2(D̃)| ≥ (k − 1)|D̃|.Rearranging and using |D̃| = |D| we obtain
n− k + 1

k − 1
|∆k−2(D̃)| ≥ |D |. (12)Subfamily B: By de�nition of D and Lemma 8, we have |D ∩B| 6= k− 2 for all D ∈ D̃ and

B ∈ B. In other words, ∆k−2(D̃) ∩∆k−2(B) = ∅. Hence,
(

n− 1

k − 2

)

≥ |∆k−2(D̃)|+ |∆k−2(B)|.Multiplying (14) with (n− k + 1)/(k − 1) and using (12), we obtain
(

n− 1

k − 1

)

≥ |D |+
n− k + 1

k − 1
|∆k−2(B)|. (13)Let x ≥ k − 1 be a real number such that |∆k−1(B)| =
( x
k−1

). By Theorem 11, we have
|∆k−2(B)| ≥

k − 1

x− k + 2
|∆k−1(B)|. (14)By Lemma 6,

|∆k−1(B)| ≥ c1(k)| B |. (15)Then (13), (14) and (15) yield
(

n− 1

k − 1

)

≥ |D |+ c1(k)
n− k + 1

x− k + 2
| B |. (16)Since B is contained in F \H1 inequality (7) gives

(

x

k − 1

)

= |∆k−1(B)| ≤ k| B | < k(c2 + c4)n
k−2implying that x < c5n

(k−2)/(k−1) for some constant c5. Therefore, the coe�cient of | B | in(16) is at least 4 for su�ciently large n.Subfamily C: We denote the homogeneous intersection structure of C by J C .



Füredi and Özkahya: Unavoidable subhypergraphs: a-clusters 12Claim 13. Each C ′ ∈ C∗ has a (k − 2)-set such that it is contained neither in ∆k−2(D̃)nor in I(C ′, C∗).Proof. Suppose, on the contrary, that for some C ′ = {x1, . . . , xk−1} ∈ C∗ with C =
C ′ ∪ {1} ∈ C, we have

C ′ \ {xi} ∈

{

I(C ′, D̃), i = 1, . . . , r

I(C ′, C∗), i = r + 1, . . . , k − 1.All subsets of C ′ \ {xi} are contained in I(C ′, D̃), for 1 ≤ i ≤ r, and all supersets of theset {x1, . . . , xr} in C ′, except C ′ itself, are contained in I(C ′, C∗). So, for all S ⊂ C ′, thereis a delta-system of size 2k with center S ∪ {1}.We claim that r ≥ 1. Otherwise J C = 2[k−1] \ {[k − 1]} and there exists a member
C ′′ ∈ C such that C ′′ \ {1} ∈ C∗ and |C ′′ ∩ B| = k − a1 for some B ∈ B. Then one canbuild an a-cluster with host C ′′ such that C ′′(A1) = B.Let Di ∈ D such that C ∩ Di = C \ {xi}, for i = 1, . . . , r and choose a B ∈ B with
|C ∩B| ≥ k − a1. By de�nition of D,

|Di ∩B| ≤ k − a1 − 1.We also have
|Di ∩B|+ 1 ≥ |C ′ ∩B| = |C ∩B| ≥ k − a1.Therefore, xi ∈ C ∩ B for all i = 1, . . . , r and |C ∩ B| = k − a1 and one can build an

a-cluster with host C and C(A1) = B, a contradiction.By Claim 13, we have
(

n− 1

k − 2

)

≥ |∆k−2(D̃)|+ | C∗ |.Multiplying this by n−k+1
k−1 and applying (11) and (12) we obtain

(

n− 1

k − 1

)

≥ |D |+ c1(k)
n − k + 1

k − 1
| C |. (17)Subfamily E: First we show that each E′ ∈ E∗ has a (k−2)-subset that is neither in I(E′, E∗)nor in I(E′, D̃). Suppose, on the contrary, that for some E ∈ E , E′ := E \ {1} ∈ E∗,

E′ = {x1, . . . , xk−1} such that
E′ \ {xi} ∈

{

I(E′, D̃), i = 1, . . . , r

I(E′, E∗), i = r + 1, . . . , k − 1.
(18)



Füredi and Özkahya: Unavoidable subhypergraphs: a-clusters 13All subsets of E′ \ {xi} are contained in I(E′, D̃), for 1 ≤ i ≤ r, and all supersets of theset {x1, . . . , xr} in E′, except E′ itself, are contained in I(E′, E∗). So, for all S ⊂ E′, thereis a delta-system of size 2k with center S ∪ {1}. This contradicts to E /∈ D.Since every E′ ∈ E∗ contains a (k − 2)-set that is not contained in any member of D̃ oranother member of E∗, we have
(

n− 1

k − 2

)

≥ |∆k−2(D̃)|+ | E∗ |. (19)After multiplying (19) with n−k+1
k−1 and applying the inequalities (11) and (12), we obtain

(

n− 1

k − 1

)

≥ |D |+ c1(k)
n− k + 1

k − 1
| E |. (20)3 Concluding remarks3.1 Finding a (k, k + 1)-clusterOur �rst observation is, that in Conjecture 1 the constraint d ≤ k is not necessary. Weprove the case d = k+1. It is not clear what is the possible maximum value of d. We needa classical result of Bollobás [4]. A cross-intersecting set system, {Ai, Bi} for i ∈ [m], is acollection of pairs of sets such that Ai ∩ Bi=∅ and Ai ∩ Bj 6= ∅ for i 6= j. If |Ai| ≤ a and

|Bi| ≤ b (for all 1 ≤ i ≤ m) then
m ≤

(

a+ b

a

)

.Equality holds only if {A1, . . . , Am} =
([a+b]

a

) and Bi = [a+ b] \ Ai.Theorem 14. If F ⊂
([n]
k

) contains no (k, k + 1)-cluster and n ≥ k, then | F | ≤
(n−1
k−1

).Here equality hold only if ∩F 6= ∅.Proof. Every F ∈ F has a (k − 1)-subset B(F ) ⊂ F that is not contained by any othermember of F , otherwise there are sets F1, . . . , Fk ∈ F such that F = {x1, . . . , xk} and
F ∩Fi = F \{xi}, a contradiction. Therefore, the sets {B(F ), [n]−F} form an intersectingset pair system and the result of Bollobás yields | F | ≤

((k−1)+(n−k)
k−1

)

=
(

n−1
k−1

).3.2 Trees in hypergraphs, Kalai's conjectureA system of k-sets T := {E1, E2, . . . , Eq} is called a tree (k-tree) if for every 2 ≤ i ≤ q wehave |Ei \ ∪j<iEj | = 1, and there exists an α = α(i) < i such that |Eα ∩Ei| = k − 1. The



Füredi and Özkahya: Unavoidable subhypergraphs: a-clusters 14case k = 2 corresponds to the usual trees in graphs. Let T be a k-tree on v vertices, andlet exk(n,T) denote the maximum size of a k-family on n elements without T. We have
exk(n,T) ≥ (1 + o(1))

v − k

k

(

n

k − 1

)

. (21)Indeed, consider a P (n, v− 1, k− 1) packing P1, . . . , Pm on the vertex set [n]. This meansthat |Pi| = v − 1 and |Pi ∩ Pj | < k − 1 for 1 ≤ i < j ≤ m. Rödl's [32] theorem gives apacking of the size m = (1+o(1))
(

n
k−1

)

/
(

v−1
k−1

), when n → ∞. Put a complete k-hypergraphinto each Pi, the obtained k-graph does not contain T.Conjecture 15. (Erd®s and Sós for graphs, Kalai 1984 for all k, see in [17])
exk(n,T) ≤

v − k

k

(

n

k − 1

)

.This was proved for star-shaped trees by Frankl and the �rst author [17], i.e., whenever
T contains an edge wich intersects all other edges in k − 1 vertices. (For k = 2 these arethe the diameter 3 trees, i.e., 'brooms'.)Note that a 1-cluster is a k-tree with v = 2k, here 1 := (1, 1, . . . , 1). A Steiner system
S(n, k, t) is a perfect packing, a family of k-subsets of [n] such that each t-subset of [n]is contained in a unique member of that family. So if an S(n, 2k − 1, k − 1) exists thenconstruction (21) gives a cluster-free k-family of size ( n

k−1

), slightly exceeding the EKRbound. (Such designs exist, e.g., for k = 3 and n ≡ 1 or 5 (mod 20), see [3]). On the otherhand, the result of Frankl and the �rst author [17] (cited above) implies that if F ⊂
([n]
k

)is a family with more than ( n
k−1

) members, then F contains every star-shaped tree with
k + 1 edges, especially it contains a 1-cluster.3.3 TracesTheorem 2 is related to the trace problem of uniform hypergraphs. Given a hypergraph
H, its trace on S ⊆ V (H) is de�ned as the set {E ∩ S : E ∈ E(H)}. Let Tr(n, r, k) denotethe maximum number of edges in an r-uniform hypergraph of order n and not admittingthe power set 2[k] as a trace. For k ≤ r ≤ n, the bound Tr(n, r, k) ≤

(

n
k−1

) was provedby Frankl and Pach [18]. Mubayi and Zhao [30] slightly reduced this upper bound by
logp n− k!kk in the case when k− 1 is a power of the prime p and n is large. On the otherhand, Ahlswede and Khachatrian [1] showed Tr(n, k, k) ≥

(

n−1
k−1

)

+
(

n−4
k−3

) for n ≥ 2k ≥ 6.
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