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Abstract

To study how balanced or unbalanced a maximal intersecting family F ⊆
(

[n]
r

)
is we

consider the ratio R(F) = ∆(F)
δ(F) of its maximum and minimum degree. We determine

the order of magnitude of the function m(n, r), the minimum possible value of R(F),
and establish some lower and upper bounds on the function M(n, r), the maximum
possible value of R(F). To obtain constructions that show the bounds on m(n, r)
we use a theorem of Blokhuis on the minimum size of a non-trivial blocking set in
projective planes.
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1 Introduction

A family F of sets is said to be intersecting if F1 ∩ F2 6= ∅ holds for any F1, F2 ∈ F . In
their seminal paper, Erdős, Ko and Rado showed [3] that if F is an intersecting family of
r-subsets of an n-element set X (we denote this by F ⊆

(
X
r

)
), then |F| ≤

(
n−1
r−1

)
provided
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that 2r ≤ n. Many generalizations of the above theorem have been considered ever since and
many researchers have been interested in describing how intersecting families may look. One
of the quantities concerning intersecting families that has been studied [2, 4] is the unbalance
U(F) = |F| −∆(F) where ∆(F) denotes the maximum degree in F .

In this paper we define another notion to measure how balanced or unbalanced F is.
U(F) is sensible when comparing the largest degree to the size of F , whereas our new notion
will measure how close all degrees are to each other. Denoting the minimum degree in F by
δ(F), our aim is to prove lower and upper bounds on R(F) = ∆(F)

δ(F)
. To avoid δ(F) = 0 we

will always assume that ∪F∈FF = X, i.e. the degree d(x) of any element x of the underlying
set is at least one. One can easily define intersecting families satisfying this condition with
large R-values: let x, y ∈ X and let F∗ = {F ⊆ X : x ∈ F, y /∈ F, |F | = r}∪{F ′} where F ′ is
any r-subset of X with x, y ∈ F ′. Clearly, d(y) = 1 holds and also d(x) = R(F) =

(|X|−2
r−1

)
+1.

We will restrict our attention to maximal intersecting families, i.e. families with the
property G ∈

(
X
r

)
\ F ⇒ ∃F ∈ F F ∩ G = ∅, and show that for these families, at least for

some range of r, the R-value is much smaller than that of F∗. For the sake of simplicity we
will also assume that the underlying set X of our families is [n] = {1, 2, ..., n}.

With the above notation and motivation we define our two main functions as follows:

M(n, r) = max

{
R(F) : F ⊆

(
[n]

r

)
is maximal intersecting with ∪F∈F F = [n]

}
,

m(n, r) = min

{
R(F) : F ⊆

(
[n]

r

)
is maximal intersecting with ∪F∈F F = [n]

}
.

We will use standard notation to compare the order of magnitude of two positive func-
tions. We will write f(n) = o(g(n)) to denote the fact that f(n)/g(n) tends to 0, and
f(n) = ω(g(n)) to denote that g(n)/f(n) tends to 0. We will write f(n) = O(g(n)) if there
exists a positive constant C such that f(n) ≤ Cg(n) holds for all n and f(n) = Ω(g(n)) there
exists a positive constant C such that Cg(n) ≤ f(n) holds for all n. If both f(n) = O(g(n))
and f(n) = Ω(g(n)) hold, then we will write f(n) = Θ(g(n)). Finally, f(n) ∼ g(n) denotes
the fact that f(n)/g(n) tends to one.

The family giving the extremal size in the theorem of Erdős, Ko and Rado seems to be a
natural candidate for achieving the value of M(n, r). In fact, most families F that occur in
the literature have R(F) = Θ(n

r
). In Section 2 we will prove the following theorems showing

that M(n, r) and m(n, r) have different orders of magnitude.

Theorem 1.1.
(i) For all r ≤ n we have M(n, r) ≤ n+ rr. In particular, if r < logn

log logn
,

then M(n, r) ≤ (1 + o(1))n holds.
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(ii) If 2r − 2 < n, then

M(n, r) ≥ n− 2r + 3− n− 2r + 2(
2r−3
r−2

)
holds. In particular, if r < logn

log logn
, then we obtain M(n, r) ∼ n.

At first sight, the upper bound n+rr seems to be very weak, but we will show in Section 3
that it cannot be strengthened too much in general.

Certainly R(F) ≥ 1 is true for all families F ⊆
(

[n]
r

)
with ∪F∈FF = [n], so a trivial lower

bound on m(n, r) is 1. The next theorem states that for intersecting families n/r2 is also a
lower bound and we construct maximal intersecting families showing that this is the order of
magnitude of m(n, r) as long as r ≤ n1/2. For larger values of r we obtain regular maximal
families showing the tightness of the trivial lower bound.

Theorem 1.2.
(i) m(n, r) ≥ n

r2
holds for all r ≤ n.

(ii) m(n, r) = Θ( n
r2

) holds for all r ≤ n1/2.
(iii) If ω(n1/2) = r = o(n) and r(n)/n is monotone, then there exist
infinitely many n′ and r′ = r′(n′) with m(n′, r′(n′)) = 1 and r ∼ r′.

2 Proofs

In this section we prove Theorem 1.1 and Theorem 1.2.

Proof of Theorem 1.1.
To prove (i), let us consider a maximal intersecting family F ⊆

(
[n]
r

)
. Let us partition

F into two subfamilies F1 and F2 where F1 := {F ∈ F : ∃x ∈ F with (F \ {x}) ∩ F ′ 6=
∅ for all F ′ ∈ F} and F2 = F \ F1.

Claim 2.1. Let dj denote the maximum number of sets in F2 that contain the same j-subset.
Then dj ≤ rr−j holds. In particular, we have d0 = |F2| ≤ rr.

Proof of Claim 2.1. By the definition of F2, for any j < r and any j-subset J that is con-
tained in some F ∈ F2 there exists an F ′ ∈ F with J ∩ F ′ = ∅. Since F (and so F2) is
intersecting, any set in F2 containing J must intersect F ′, thus summing the number of sets
of F2 containing J ∪ {x} for all x ∈ F ′ we obtain dj ≤ rdj+1. Since dr = 1, the claim
follows.

Let τ denote the covering number of F , i.e. the minimum size of a set meeting all sets
of F . Clearly, if τ = r, then F1 = ∅ and thus by Claim 2.1 |F| ≤ rr and R(F) ≤ rr.
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Assume τ < r. We will show a mapping f from F1 to Fmin, the subfamily containing
one fixed vertex y of minimum degree. For any F ∈ F1 let g(F ) be an element of F so that
(F \ {g(F )}) ∩ F ′ 6= ∅ for all F ′ ∈ F (such an element exists by definition of F1). Let us
define f(F ) = F if y ∈ F , and f(F ) = (F \ {g(F )}) ∪ {y} if y /∈ F . Note that f(F ) ∈ F
as already F \ {g(F )} meets all sets in F and by assumption F is a maximal intersecting
family. Observe that at most n− r+ 1 sets can be mapped to the same set G since all such
sets should contain G \ {y}. This concludes the proof of (i) as R(F) ≤ R(F1) + |F2|.

To prove (ii) we need a construction. Let us write S = [2, 2r− 2] and S0 = [2, r− 1] and
define

F1 =

{
{1} ∪G : G ∈

(
S

r − 1

)}
, F2 =

{
{1, i} ∪H : 2r − 1 ≤ i ≤ n,H ∈

(
S

r − 2

)
\ {S0}

}
,

F3 =

(
S

r

)
, F4 = {(S \ S0) ∪ {i} : 2r − 1 ≤ i ≤ n}, F = ∪4

j=1Fj.

Claim 2.2. The family F is maximal intersecting.

Proof of Claim 2.2. F is clearly intersecting as all of its sets, except those coming from F2,
meet S in at least r − 1 elements. A set F2 from F2 meets any other from F1 ∪ F2 as they
both contain 1, a set from F3 because of the pigeon-hole principle, and a set from F4 as by
definition F2 ∩ S 6= S0.

To prove the maximality of F let us consider a set T /∈ F . If |T ∩ S| < r − 2, then
any r-subset of S \ T is in F and thus T cannot be added to F . Since all r-subsets of S
are already in F , it remains to deal with the cases |T ∩ S| = r − 1 and |T ∩ S| = r − 2. If
|T ∩ S| = r − 1, then 1 /∈ T as otherwise T is in F1, and T ∩ S 6= S \ S0 as otherwise T is
in F4. But then a set F from F2 with F ∩ S = S \ T is disjoint from T , thus T cannot be
added to F .

Finally, suppose |T ∩S| = r− 2. If 1 /∈ T , then {1}∪ (S \T ) ∈ F1 is disjoint from T and
thus T cannot be added to F . If 1 ∈ T , then T ∩ S = S0 as T /∈ F2. Then we can find a set
disjoint from T in F4.

Note that for any x, y ∈ [n], the ratio d(x)/d(y) is a lower bound for R(F). Thus all
we have to observe is that in F the degree of 1 is

(
2r−3
r−1

)
+ (
(

2r−3
r−2

)
− 1)(n− 2r + 2), and the

degree of i is
(

2r−3
r−2

)
for any 2r − 1 ≤ i ≤ n. Dividing d(1) by d(i) yields the result.

Note that the proof of Theorem 1.1 (i) gives an upper bound M(n, r) ≤ n + rr for any
value of r and n.

Conjecture 2.3. If r = o(n) holds, then the order of magnitude of M(n, r) is Θ(n).
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Now we turn our attention to the function m(n, r). In the proof of Theorem 1.2 we
will use the following theorem by Blokhuis on blocking sets of projective planes (for a short
survey on the topic see [6]). Let us shortly introduce the properties of projective planes that
we will use in our proofs. A projective plane Q of order q is a family of subsets of V (Q) (the
points of the projective plane) of size q + 1 such that any two sets intersect in exactly one
point and for any x, y ∈ V (Q) there is exactly one F ∈ Q with x, y ∈ F . For every prime
power q = pn there exists a projective plane Q of order q with the following properties:

• both the number of points and the number of lines are q2 + q + 1,

• for any x ∈ V (Q), we have d(x) = q + 1.

Theorem 2.4 (Blokhuis, [1]). Let Q be a projective plane of order q and B be a blocking set
(a set that meets all lines of the projective plane) of size less than 3

2
(q + 1). If q is prime,

then B contains a line of the projective plane.

We will also need the following strengthening of Chebyshev’s theorem.

Theorem 2.5 (Nagura, [5]). For every integer n ≥ 25 there exists a prime p with n ≤ p ≤
(1 + 1/5)n.

Proof of Theorem 1.2. To prove (i) we make the following two easy observations: for any
intersecting family F we have ∆(F) ≥ |F|/r as for any set F ∈ F the inequality

∑
x∈F d(x) ≥

|F| holds. Also, the average degree in F equals r|F|
n

. As the average degree is at least as
large as the minimum degree, we obtain

R(F) =
∆(F)

δ(F)
≥

|F|
r

r|F|
n

=
n

r2
.

Note that the proof does not use the fact that F is maximal.
To prove (ii) and (iii) we need constructions. Suppose first that r ≤ n1/2 holds. By

Theorem 2.5 we can pick a prime p such that 2
3
r ≤ p ≤ 2

3
(1 + 1

5
)r = 4

5
r. Let P denote a

projective plane of order p with vertex set [p2 + p+ 1]. Let us define the following maximal
intersecting family

Fn,r,p =

{
F ∈

(
[n]

r

)
: l ⊂ F for some line l ∈ P

}
.

Note that Fn,r,p is intersecting because any two of its sets intersect as they both contain lines

of a projective plane, and Fn,r,p is maximal because if G ∈
(

[n]
r

)
does not contain any line

of P , then by Theorem 2.4 and r < 3(p+1)
2

we know that there exists a line l in P such that

l∩G = ∅ and this line can be extended to a set l ⊂ Fl ∈
(

[n]
r

)
such that Fl∩G = ∅ holds. As
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every vertex is contained in p+ 1 lines of P we have that d(x) = (p+ 1)
(
n−p−1
r−p−1

)
+ p2

(
n−p−2
r−p−2

)
if x ∈ [p2 + p + 1]. Indeed, either we pick one of the p + 1 lines of P containing x and add
r − p − 1 other points, or we pick one of the p2 lines of P not containing x and add x and
r−p−2 further points. Note that as r ≤ 2p, none of the sets can contain two lines and thus
we did not count any set F ∈ Fn,r,p twice.

Also for any y ∈ [p2 + p+ 2, n] we have d(y) = (p2 + p+ 1)
(
n−p−2
r−p−2

)
as we can pick any of

the p2 + p + 1 lines of P and extend it by y and any r − p − 2 other points. Therefore we
obtain

R(Fn,p,r) =
p2
(
n−p−2
r−p−2

)
+ (p+ 1)

(
n−p−1
r−p−1

)
(p2 + p+ 1)

(
n−p−2
r−p−2

) ≤ 1 +
1

p
· n− p− 1

r − p− 1
≤ 17

2
· n
r2

where the last inequality follows from 2
3
r ≤ p ≤ 4

5
r and n ≥ r2.

It remains to prove (iii). Consider the following general construction F ′k,p,s ⊆
(

[n]
r

)
where 1 ≤ k is an odd integer, p is a prime, 0 ≤ s ≤ p

2
and n = k(p2 + p + 1), r =

k+1
2

(p + 1) + s. For 1 ≤ i ≤ k let Pi be a projective plane of order p with underlying set
[(i− 1)(p2 + p+ 1) + 1, i(p2 + p+ 1)] and let us write

F ′k,p,s =

{
F ∈

(
[n]

r

)
: F contains a line of Pi if i ∈ I for some I ∈

(
[k]
k+1

2

)}
.

As any two lines of a projective plane intersect each other and so do any I, I ′ ∈
( [k]

k+1
2

)
, the

family F ′k,p,s is intersecting.
To obtain the maximality of F ′k,p,s we need to show that for any r-subset G /∈ F ′k,p,s

there exists an F ∈ F ′k,p,s with F ∩ G = ∅. Let G /∈ F ′k,p,s and let us write t = |{i :
∃` ∈ Pi, ` ⊂ G}|, b = |{i : G ∩ Pi is a blocking set in Pi and @` ∈ Pi, ` ⊂ G}| and u = |{i :
G∩Pi is not a blocking set in Pi}|. Since G /∈ F ′k,p,s, we have t ≤ (k−1)/2. By Theorem 2.4,
we know that whenever G ∩ Pi is a blocking set, then |G ∩ Pi| ≥ p + 1 and if G ∩ Pi does
not contain any line of Pi, then |G ∩ Pi| ≥ 3

2
(p+ 1). Therefore we must have

t · (p+ 1) + b · 3

2
(p+ 1) ≤ r =

k + 1

2
(p+ 1) + s

Since s ≤ p
2
, it follows that t+ b ≤ k−1

2
and thus u ≥ k+1

2
holds. Therefore we can pick lines

`i1 , `i2 , ..., `i(k+1)/2
of different Pij ’s such that `ij ∩ G = ∅. By definition of F ′k,p,s, every r-set

containing all `ij ’s belong to F ′k,p,s and therefore by adding s elements not in G we can find
a set F ∈ F ′k,p,s with F ∩G = ∅. This finishes the proof of the maximality of F ′k,p,s. As the
construction is symmetric, all degrees are equal and therefore we obtain R(F ′k,p,s) = 1.

Assume that we are given a sequence of integers r = r(n) with r = ω(n1/2). Let us pick
a prime p with p ∼ n

2r
and an odd integer k ∼ 4r2

n
. Then we can consider the family F ′k,p,s

with any 0 ≤ s ≤ p/2. Its vertex set has size k(p2 +p+ 1) = n′ ∼ n and by the monotonicity
of r/n and r = ω(n1/2) we obtain that the sets of F ′k,p,s have size k+1

2
(p+ 1) +s = r′ ∼ r.
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3 Concluding remarks

As we mentioned in the Introduction, the bound of Theorem 1.1 (i) cannot be greatly
improved in general, as the following example shows. If n = 2r, then a maximal intersecting
family F contains one set from every pair of complement sets. Thus the family F∗ = {F ∈(

[n]
r

)
: 1 /∈ F, F 6= [r + 1, n]} ∪ {[r]} is maximal intersecting and R(F∗) = Θ(

(
n
r

)
) = eΘ(n)

holds while rr = eΘ(n logn).
In Theorem 1.2 (iii), we could show regular maximal intersecting families only for special

values of n and r. There are two ways to generalize our construction. First, one needs not
insist that all projective planes should be of the same order, but for the maximality one
still needs that they should be of the same asymptotic order (one will have to choose s
a bit more carefully). This will ruin the regularity, but for families F obtained this way
R(F) = 1 + o(1) would still hold. The other possibility is to add extra vertices that do not
belong to ∪Pi, similarly to the construction used for Theorem 1.2 (iii). This will enable us
to obtain constructions for arbitrary values of n and r (provided n is large enough) but for
these families F ′ we will have R(F ′) = Θ( n

r2
).

It remains open whether one can construct maximal intersecting families with R-value
1 + o(1) for any r(n).
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