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Abstract

Refining a bound by Lih, Wang and Zhu, we prove that if the square G2 of a
K4-minor-free graph G with maximum degree ∆ > 6 does not contain a complete
subgraph on ⌊3

2
∆⌋ + 1 vertices, then G2 is ⌊3

2
∆⌋-colorable.
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1 Introduction

Problems involving coloring squares of graphs have recently attracted some attention. If
G is a graph with maximum degree ∆(G) = ∆, then the chromatic number χ(G2), and
even the clique number of G2, may be of the order of ∆2. However, this should not happen
with graphs of small genus. In particular, Wegner [6] made the following conjecture.

Conjecture 1. Let G be a planar graph. Then

χ(G2) 6

{

∆(G) + 5 if 4 6 ∆(G) 6 7,

⌊3

2
∆(G)⌋ + 1 if ∆(G) > 8.

Recently Havet, van den Heuvel, McDiarmid and Reed [2] proved an approximate
upper bound of 3

2
∆ + o(∆), but the exact result has not been proved.

The bound of Wegner’s conjecture, if true, is sharp. Moreover, for every ∆ > 4, there
are series-parallel (hence, K4-minor-free) graphs G with maximum degree ∆ such that
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Figure 1. The two possible forms for G[Q].

the chromatic number and clique number of G2 are both equal to ⌊3

2
∆⌋+1: see Figure 1,

where A, B and C are independent sets of suitable orders, as explained in Section 3. Lih,
Wang, and Zhu [5] proved the following theorem, which implies that Wegner’s conjecture
holds for K4-minor-free graphs.

Theorem 2. [5] Let G be a K4-minor-free graph. Then

χ(G2) 6

{

∆(G) + 3 if 2 6 ∆(G) 6 3,

⌊3

2
∆(G)⌋ + 1 if ∆(G) > 4.

Hetherington and Woodall [3] proved that the upper bound in Theorem 2 holds not
only for χ(G2) but also for the list chromatic number ch(G2). They remarked that they
“strongly suspect” that the bound t = ⌊3

2
∆⌋ + 1 is attained for ∆ > 4 only when G2

contains a clique of order t. In this paper we show that this suspicion is incorrect for
∆ ∈ {4, 5} but correct for every ∆ > 6, at least for the (ordinary) chromatic number.
(We do not see how to prove the analogous result for the list chromatic number. Any
counterexample for list colorings would disprove also the conjecture of the first and third
authors [4] that ch(G2) = χ(G2) for every graph G.)

The main result of this paper is the following.

Theorem 3. Let G be a K4-minor-free graph with maximum degree at most ∆ > 6. If

G2 does not contain a clique of order ⌊3

2
∆⌋ + 1, then χ(G2) 6 ⌊3

2
∆⌋.

Our proof uses the approach of Hetherington and Woodall [3]. In the next section we
introduce some notation and present examples for ∆ ∈ {4, 5}. In Section 3 we discuss
the structure of the cliques of order ⌊3

2
∆⌋ + 1 in the square of a K4-minor-free graph G

with maximum degree ∆, and in particular we show that if Q is the vertex-set of such a
clique in G2, then Q induces a subgraph of G with one of the forms shown in Figure 1.
The proof of Theorem 3 is then given in Sections 4 and 5.

The structure of the proof is as follows. We define G to be a smallest counterexample
to Theorem 3 (for a fixed value of ∆). In Section 4 we prove various results about G,
culminating in the fact that G must contain an induced subgraph of the form shown in
Figure 7. In Section 5 we use this induced subgraph, and the minimality of G, to show
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Figure 2. A K4-minor-free graph G with ∆(G) = 4 such that χ(G2) = 7

and G2 does not contain K7.

that G is ⌊3

2
∆⌋-colorable; this contradicts the choice of G and so proves Theorem 3. In

proving the results in Sections 4 and 5, we consider a number of graphs with fewer vertices
than G, which are constructed from G in various different ways. We wish to prove that
each such graph G̃ is ⌊3

2
∆⌋-colorable, using the fact that G is a minimal counterexample

to Theorem 3. To do this, we must verify that ∆(G̃) 6 ∆, G̃ is K4-minor-free, and
G̃2 contains no clique of order ⌊3

2
∆⌋ + 1. In most cases, verifying the first two of these

hypotheses is easy, but the third is much less straightforward. It is here that we repeatedly
use the main result of Section 3, which tells us that if Q is the vertex-set of such a clique
in G̃2, then Q induces a subgraph of G̃ of a particular form.

2 Some preliminaries

If G is a graph with vertex-set V (G) and edge-set E(G), and v ∈ V (G), then the set of
neighbors of v in G is denoted by NG(v) or just N(v), and the degree of v is dG(v) =
|NG(v)|. If u, v ∈ V (G) then dG(u, v) denotes the distance between u and v in G, i.e.,
the length of a shortest u, v-path. If X ⊆ V (G), then G[X] denotes the subgraph of G
induced by X. We denote by G2 the square of G: G2 has the same vertex-set as G, and
two vertices are adjacent in G2 if they are within distance two of each other in G.

Let G be the graph in Figure 2. By inspection, G is a K4-minor-free graph and G2 does
not contain K7 as a subgraph. For i = 1, 2, 3, let Ci := {xi, yi} ∪ (NG(xi) ∩ NG(yi)). Let
f be a proper coloring of G2, and let α := f(u) and β := f(v). Since uv ∈ E(G2), α 6= β.
Because x1, x2 and x3 all have different colors, at most one of them is colored with β.
Similarly, at most one of y1, y2 and y3 is colored with α. Thus, for some i ∈ {1, 2, 3},
neither α nor β is used to color any vertex of Ci. But all five vertices of Ci have different
colors in f ; thus f uses at least seven colors, i.e., χ(G2) > 7.

The example for ∆ = 5 is very similar, only instead of three copies of K2,3 we take
three copies of K2,4. So the example would need eight colors.

Thus for ∆ ∈ {4, 5} there is a K4-minor-free graph G with maximum degree ∆ such
that χ(G2) = ⌊3

2
∆⌋+ 1 but G2 contains no clique of order χ(G2), contrary to the “strong

suspicion” of Hetherington and Woodall [3]. Theorem 3 shows that this cannot happen
if ∆ > 6.

Our proof of Theorem 3 depends heavily on the following classic result of Dirac, which
is used explicitly in Lemmas 7 and 14.
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Lemma 4. [1] Every K4-minor-free graph has a vertex with degree at most 2.

3 Structure of large cliques

Let F denote the configuration F1 or F2 in Figure 1, where A, B and C are sets of vertices
which initially we do not assume to be independent, and v0 is adjacent to all vertices in
B ∪ C, v1 to all vertices in C ∪ A, and v2 to all vertices in A ∪ B. Let a := |A|, b := |B|
and c := |C|. For F 2

1 − v0 or F 2
2 to be a clique of order ⌊3

2
∆⌋ + 1, with ∆(F ) 6 ∆, we

require
a + b 6 ∆ − 1, a + c 6 ∆ − 1;

also, in Figure 1(a),

b + c 6 ∆,

a + b + c = ⌊3

2
∆⌋ − 1;

and, in Figure 1(b),

b + c 6 ∆ − 2,

a + b + c = ⌊3

2
∆⌋ − 2.

If ∆ is even, then there is a unique solution in each case. If ∆ is odd, then there are three
solutions in each case, depending on which one of the three inequalities is strict; but two
of the three solutions are isomorphic (interchanging B and C). Note for future reference
that a, b, c >

1

2
(∆ − 3) in each solution, so that each of the sets A,B,C has at least two

elements if ∆ > 6. Note also that if A,B,C are independent sets then, in F ,

if ∆ is even then all of v0, v1, v2 have degree ∆;
if ∆ is odd then two of v0, v1, v2 have degree ∆ and one has degree ∆ − 1;
every other vertex of F has degree 2.

(1)

By an F -path we mean a path whose endvertices are in F but whose internal vertices
(if any) are not in F .

Lemma 5. Suppose that F (∼= F1 or F2) is a subgraph of a K4-minor-free graph G, where

each of A, B and C has at least two vertices. Then A ∪ B ∪ C is an independent set in

G, and there is no F -path in G that joins two vertices in A ∪ B ∪ C, or that joins one

vertex u in this set to the vertex v ∈ {v0, v1, v2} that is not adjacent to u in F .

Proof. It is easy to see that if there were an edge or an F -path of the type described,
then G would have a K4 minor. For example, if there is an edge uv or an F -path from
u to v, where u ∈ A and v ∈ A ∪ B ∪ C ∪ {v0}, then there is a K4 minor with branch
vertices u, v, v1 and v2. (Note that, since |A| > 2, there is a path from v1 to v2 through
A that does not use u.) The remaining cases are similar. 2
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If Q ⊆ V (G) and Q induces a clique of order t = ⌊3

2
∆⌋ + 1 in G2, then we will say

that Q, its t-clique, and G[Q], are all of standard form if there is a vertex v ∈ V (G) such
that G[Q ∪ {v}] ∼= F1, or if G[Q] ∼= F2. We will define

F (G,Q) :=

{

G[Q ∪ {v}] if G[Q ∪ {v}] ∼= F1,

G[Q] if G[Q] ∼= F2.
(2)

Lemma 6. Let G be a 2-connected K4-minor-free graph with maximum degree at most

∆ > 6, and suppose that G2 contains a standard-form clique of order ⌊3

2
∆⌋ + 1 with

vertex-set Q. Let F := F (G,Q). Then either G ∼= F, or ∆ is odd and there is a connected

subgraph H of G, and an edge uv of F, where dG(u) = ∆, dF (u) = ∆ − 1 and dF (v) = 2,
such that G = F ∪ H and F ∩ H = {u, uv, v}.

Proof. It follows from Lemma 5 and (1) that F is an induced subgraph of G. Suppose
that G 6∼= F , and let C1, . . . , Ck be the components of G− V (F ). Since G is 2-connected,
each component Ci has at least two neighbors in F , all of which have F -degree less than
∆ (since a vertex with F -degree ∆ can have no neighbors outside F ). So it follows from
Lemma 5 and (1) that if u, v ∈ V (F ) ∩ N(Ci), then uv ∈ E(F ), ∆ is odd, and one of u
and v, say u, is the unique vertex of F -degree ∆ − 1, and the other, v, has F -degree 2.
Since the one edge between u and Ci raises the degree of u to its maximum possible value
∆, there is therefore exactly one component C1 of G − V (F ), and exactly two edges uu′

and vv′ between F and C1, and if we define H to be the union of C1 and the path u′uvv′

then G = F ∪ H and F ∩ H = {u, uv, v} as required. 2

The main result of this section is the following.

Lemma 7. Let G be a K4-minor-free graph with maximum degree at most ∆ > 6, and

let t := ⌊3

2
∆⌋ + 1. Then every clique of order t in G2 is of standard form.

Proof. Assume this is false, and consider a minor-minimal K4-minor-free graph G with
maximum degree at most ∆ such that G2 contains a t-clique K with V (K) = Q that
is not of standard form. By the minimality of G, G has no vertices with degree 0 or 1.
Therefore, by Lemma 4, G has a vertex with degree 2. Let v be such a vertex, with
neighbors u and w. We consider two cases.

Case 1: v /∈ Q. If u /∈ Q or w /∈ Q or uw ∈ E(G), then (G − v)2 contains the t-clique
K. By the minimality of G, (G− v)[Q] is of standard form, which is a contradiction since
G[Q] = (G − v)[Q]. Therefore u,w ∈ Q and uw /∈ E(G).

Let H := G− v +uw. Since H is a minor of G (obtained by contracting the edge uv),
H is K4-minor-free. Since v /∈ Q, K ⊆ H2. By the minimality of G, H[Q] is of standard
form. This implies that uw is one of the edges in Figure 1, and that by subdividing uw we
obtain G such that G2[Q] is the t-clique K. Notice that every edge in Figure 1 is incident
with some vertex vi (i ∈ {0, 1, 2}). By symmetry we may assume that u ∈ {v0, v1}.
If u = v0 and w ∈ B (respectively, w ∈ C) then the distance in G between w and C
(respectively, w and B) is greater than two, which contradicts the supposition that G2[Q]
is a clique. If u = v1 we get a similar contradiction with A instead of B. If uw = v1v2 in
F1, then the distance in G between v1 and B is greater than two. Finally, if uw = v0v1
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Figure 3. The vertex-sets in Q.

(respectively, v0v2) in F2, then the distance between v1 and B (respectively, v2 and C) is
greater than two. In each case we have a contradiction; thus Case 1 cannot arise.

Case 2: v ∈ Q. Partition the set of vertices in Q at distance exactly two from v as
X0 ∪ X1 ∪ X2, where

X0 := (N(u) ∩ N(w)) ∩ Q \ {v},

X1 := (N(u) \ N(w)) ∩ Q \ {w},

X2 := (N(w) \ N(u)) ∩ Q \ {u},

as shown in Figure 3. Let xi := |Xi| for i = 0, 1, 2.

Claim 7.1. There is a vertex z0 ∈ V (G)\{u, v, w} such that z0 is adjacent to all vertices

in (X1 ∪ X2) − z0.

Proof. Since X1 ∪ X2 ⊂ Q by the definition of the sets Xi, and the distance between
any two vertices of Q is at most two, every vertex of X1 is connected to every vertex of
X2 by a path of length at most two. Let H be the subgraph of G induced by the vertices
of all paths of length at most two between X1 and X2. Note that u, v, w /∈ V (H), since
there are no edges between u and X2 or between w and X1.

Suppose there is no vertex z0 as in the statement of the claim. Then there is no single
vertex whose removal disconnects all paths of H between X1 and X2. Thus, by Pym’s
version of Menger’s theorem, there are two vertex-disjoint paths P1 and P2 in H between
X1 and X2. Let P1 have endvertices p ∈ X1 and q ∈ X2, and P2 have endvertices r ∈ X1

and s ∈ X2. Since p and s are in a clique in G2, there is a path P3 of length at most two
with endvertices p and s. If P3 is internally disjoint from P1 and P2, then G has a K4

minor with branch vertices p, s, u and w. If P3 has a central vertex t, and t ∈ V (P1), then
G has a K4 minor with branch vertices s, t, u and w. Similarly, if t ∈ V (P2), then G has
a K4 minor with branch vertices p, t, u and w. In every case we have a contradiction. 2

The argument now splits into two subcases.

Subcase 2.1: uw ∈ E(G). In this case x0 + x1, x0 + x2 6 ∆ − 2 and, since |Q| = t,
x0 + x1 + x2 > ⌊3

2
∆⌋ − 2. This implies that x1, x2 > ⌊1

2
∆⌋ >

1

2
(∆ − 1).

By Claim 7.1, there is a vertex z0 ∈ V (G) such that z0 is adjacent to every vertex
in (X1 ∪ X2) − z0. Note that z0 cannot be in X0 because |X1 ∪ X2 ∪ {u,w}| > ∆. If
z0 /∈ X1 ∪X2, then G[Q∪ {z0}] has the form in Figure 1(a), with A = X0 ∪ {v}, B = X1,
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C = X2, and (v0, v1, v2) = (z0, w, u). If z0 ∈ X1 then G[Q] has the form in Figure 1(b)
with A = X2, B = X0 ∪ {v}, C = X1 − z0, and (v0, v1, v2) = (u, z0, w). If z0 ∈ X2 then
the situation is similar, interchanging X1 and X2, and u and w. In each case we have a
contradiction.

Subcase 2.2: uw /∈ E(G). In this case x0 + x1, x0 + x2 6 ∆ − 1 and, since |Q| = t,
x0 + x1 + x2 > ⌊3

2
∆⌋− 2. This implies that x1, x2 > ⌊1

2
∆⌋− 1, so that x1, x2 > 2 since we

are assuming that ∆ > 6.
Recall that the distance between any two vertices of Q is at most two. Consider the

subgraph induced by the vertices of all paths of length at most two connecting the pairs
(u,X2), (w,X1) and (X1, X2). If all these paths go through the vertex z0, whose existence
was proved in Claim 7.1, then z0 /∈ X1 ∪ X2 ∪ {u,w}, since u and w are not adjacent to
X2 and X1 respectively; but z0 is adjacent to all vertices in X1 ∪ X2 ∪ {u,w}, so that
z0 ∈ Q. Thus z0 ∈ X0, and G[Q] has the form in Figure 1(b) with A = (X0 ∪ {v}) − z0,
B = X1, C = X2, and (v0, v1, v2) = (z0, w, u).

This contradiction shows that not all of the paths mentioned go through z0. By
symmetry, interchanging X1 and X2 if necessary, we may assume that there is a vertex
q ∈ X2 such that there is a shortest path (of length at most two) from u to q that does not
contain z0, and clearly does not contain w. Then G has a K4 minor with branch vertices
u, w, q and z0. (This uses the fact that |X1| > 2 and |X2| > 2.) This contradiction
completes the proof of Lemma 7. 2

4 Structure of minimum counterexamples

Let ∆ > 6 and t := ⌊3

2
∆⌋ + 1. If Theorem 3 fails for ∆, then there exists a K4-minor-

free graph G, minimum with respect to the total number of edges and vertices, such
that ∆(G) 6 ∆, G2 does not contain a Kt, and χ(G2) > t. We will call such a graph
a (∆, t)-graph. In this section, we derive a number of properties of (∆, t)-graphs. We
also introduce some terminology that will be used in the proof of Theorem 3 in the final
section. Note that

t − 1 = ⌊3

2
∆⌋ > ∆ + 3. (3)

Lemma 8. Let G be a (∆, t)-graph, where ∆ > 6 and t = ⌊3

2
∆⌋ + 1. Then G is 2-

connected.

Proof. Clearly G is connected. Suppose G has a cutvertex v, say G = G′ ∪ G′′ where
G′ ∩ G′′ = {v}, |V (G′)| > 1 and |V (G′′)| > 1. By the minimality of G, there are proper
colorings f ′ and f ′′ of G′2 and G′′2 respectively, using colors in {1, 2, . . . , ⌊3

2
∆⌋}. Permute

colors in f ′′ if necessary so that v has color f ′(v) and no G′′-neighbor of v has the same
color as any G′-neighbor of v; this is possible since |NG(v) ∪ {v}| 6 ∆ + 1 < ⌊3

2
∆⌋. Now

the union of the two colorings is a proper ⌊3

2
∆⌋-coloring of G2, and this contradicts the

definition of G. 2

For a graph G with ∆(G) > 3, we follow [3] in denoting by G1 the graph whose vertices
are the vertices of degree at least 3 in G, where two vertices are adjacent in G1 if and
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only if they are either adjacent in G or connected in G by a path whose internal vertices
all have degree 2. By definition, G1 is a minor of G.

Lemma 9. Let G be a graph that does not contain a vertex with degree 0 or 1 or two

adjacent vertices with degree 2. Then G1 exists and has no isolated vertices, and if G is

2-connected then either G1 is 2-connected or G1
∼= K2.

Proof. It is easy to see that G1 exists and has no isolated vertices. (This fact was stated
and used in [3].) Note that G1 can be obtained from G by contracting some edges, each
of which has an endvertex of degree 2 at the time of its contraction, and deleting multiple
edges. Neither of these operations can create a cutvertex, and so if G is 2-connected then
G1 is nonseparable, i.e., it is 2-connected or K2. 2

Lemma 10. Let G be a (∆, t)-graph, where ∆ > 6 and t = ⌊3

2
∆⌋ + 1. Then

(a) G does not contain a vertex with degree 0 or 1 or two adjacent vertices with degree 2;
(b) G1 exists and is 2-connected.

Proof. Suppose first that G contains two adjacent vertices u and w of degree 2. Then
(G − {u,w})2 = G2 − {u,w}. By the minimality of G, (G − {u,w})2 is ⌊3

2
∆⌋-colorable.

Since dG2(u), dG2(w) 6 ∆ + 2 < ⌊3

2
∆⌋, we can extend a ⌊3

2
∆⌋-coloring of (G−{u,w})2 to

G2, by coloring u and w with available colors not used on NG2(u) and NG2(w), respectively.
This contradicts the fact that χ(G2) > ⌊3

2
∆⌋. Thus G does not contain two adjacent

vertices of degree 2. Also, by the minimality of G, it has no vertex with degree 0 or 1.
This proves (a).

Since G is 2-connected by Lemma 8, it follows immediately from (a) and Lemma 9
that G1 exists and is either 2-connected or K2. But if G1

∼= K2, with vertices u, v, say,
then every vertex of G other than u, v is adjacent to u and v, and so G2 is a complete
graph; thus G cannot be a (∆, t)-graph, and this contradiction proves (b). 2

For u, v ∈ V (G), define

Muv := {x ∈ NG(u) ∩ NG(v) : dG(x) = 2},

ǫuv :=

{

1 if uv ∈ E(G),

0 otherwise,

and
duv := |Muv| + ǫuv.

Lemma 11. Let G be a (∆, t)-graph, where ∆ > 6 and t = ⌊3

2
∆⌋ + 1. If v ∈ V (G) and

NG1
(v) = {u,w}, then duv > ⌊1

2
∆⌋ and dvw > ⌊1

2
∆⌋.

Proof. Since v ∈ V (G1), duv + dvw = dG(v) > 3. W.l.o.g. we may assume that duv > 2,
so that Muv 6= ∅. Let x ∈ Muv; then (G−x)2 = G2 −x. By the minimality of G, (G−x)2

has a ⌊3

2
∆⌋-coloring f . Let

N2(x) := (N(u) \ {x}) ∪ (N(v) \ N(u)) ∪ {u, v},

8
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Figure 4. The neighborhood of a vertex v contradicting Lemma 11.

which is the set of G2-neighbors of x. We may assume that |N2(x)| > ⌊3

2
∆⌋, since

otherwise we can extend f to G2 by giving x a color that is not used on any vertex in
N2(x). Since |N(u)| 6 ∆ and |N(v)\(N(u)∪{u})| 6 dvw, it follows that ∆−1+dvw +2 >

|N2(x)| > ⌊3

2
∆⌋, so that

dvw > ⌊1

2
∆⌋ − 1 > 2. (4)

By symmetry we may assume also that

duv > ⌊1

2
∆⌋ − 1. (5)

Suppose now that the lemma is false, say dvw < ⌊1

2
∆⌋. Then (4) and its derivation

imply that
dvw = ⌊1

2
∆⌋ − 1, |N2(x)| = ⌊3

2
∆⌋, and dG(u) = ∆. (6)

If uv ∈ E(G) then v ∈ N(u) \ {x} and so we have counted v twice in our estimate
for |N2(x)|; thus we may assume that uv /∈ E(G). If vw /∈ E(G) then the degree of
v in G2 is at most ∆ + 2 6 ⌊3

2
∆⌋ − 1, and so we can uncolor v, color x, and then

recolor v; thus we may assume that vw ∈ E(G). If uw ∈ E(G) then, since vw ∈ E(G),
|N(v) \ (N(u) ∪ {u})| = dvw − 1, and so |N2(x)| < ⌊3

2
∆⌋; thus we may assume that

uw /∈ E(G). Let y be a vertex in Mvw. The picture now is as in Figure 4.
If duv < ⌊1

2
∆⌋, then by exactly the same argument we can deduce that uv ∈ E(G)

and vw /∈ E(G). Since this is not so, we can strengthen (5) to

duv > ⌊1

2
∆⌋ > 3. (7)

Let G′ be the graph obtained from G by deleting all vertices in Muv ∪Mvw ∪ {v} and
adding an edge between u and w. Then G′ is a minor of G, and so G′ is K4-minor-free
and connected, since G is.

Suppose that G′ has a cutvertex y. If y ∈ {u,w}, then y is also a cutvertex in
G. Similarly, if y /∈ {u,w}, then since uw ∈ E(G′), vertices u and w are in the same
component of G′−y, and hence y is a cutvertex in G. But G is 2-connected, by Lemma 8,
and so has no cutvertex. It follows that G′ also has no cutvertex, and so G′ is 2-connected.
(Clearly G′ 6∼= K2, otherwise v is a cutvertex of G.)

Suppose now that G′2 contains a Kt, with vertex-set Q, say. By Lemma 7, Q is of
standard form, and so F (G′, Q), defined by (2), is one of the graphs shown in Figure 1.
Let F := F (G′, Q). Since G′−uw ⊂ G, and G2 contains no Kt, it follows that uw ∈ E(F ).
Now, dF (u) 6 dG′(u) = ∆+1−duv < ∆−1 by (6) and(7). By (1), therefore, dF (u) = 2 and
dF (w) > ∆− 1, with strict inequality if ∆ is even. But dF (w) 6 dG′(w) 6 ∆ + 1− dvw =

9



∆+2−⌊1

2
∆⌋, by (6). The only possibility is that ∆ = 7, dvw = 2, and dF (w) = dG′(w) = 6,

so that w is the unique vertex of degree ∆ − 1 in F , and it has the same degree in G′.
It now follows from Lemma 6 that F = G′, so that dG′(u) = dF (u) = 2 and, since
dG(u) = ∆ = 7 by (6), duv = 6 and dG(v) = duv + dvw = 8 > ∆. This contradiction shows
that G′2 contains no Kt.

By the minimality of G, there is a proper ⌊3

2
∆⌋-coloring f of G′2. We will use f to

give a proper ⌊3

2
∆⌋-coloring of G2. Since uw ∈ E(G′), color f(u) is not used on vertices in

NG′(w)\{u}. So we can use f(u) to color y. Then we consecutively color vertices in Mvw,
then v, and then vertices in Muv. We can do this since at the moment of coloring, each
vertex in Mvw ∪ {v} has at most dG(w) colored G2-neighbors, and (because f(y) = f(u))
each vertex in Muv has at most |N2(x)| − 1 = ⌊3

2
∆⌋ − 1 colors on its neighbors.

This contradiction shows that dvw > ⌊1

2
∆⌋, and it follows by symmetry that duv >

⌊1

2
∆⌋. This completes the proof of Lemma 11. 2

Lemma 12. Let G be a (∆, t)-graph, where ∆ > 6 and t = ⌊3

2
∆⌋ + 1. Then the graph

G1 cannot have two adjacent vertices with degree two.

Proof. Suppose that there are two adjacent vertices x, y ∈ V (G1) with degree two. Let
w and z, respectively, be the other neighbors of x and y in G1.

Suppose first that w = z. Note that z cannot be a cutvertex of G1, since G1 is
2-connected by Lemma 10. Thus z also has degree 2 in G1, which is a triangle. Let V0

consist of the vertices in {x, y, z} that are not adjacent in G to another vertex of this set,
and let V1 := {x, y, z} \V0. Then Mxy ∪Mxz ∪Myz ∪V1 induces a clique in G2, with order
at most ⌊3

2
∆⌋ since G is a (∆, t)-graph. Thus these vertices can be colored with at most

⌊3

2
∆⌋ colors, and the vertices in V0 are now easily colored since each has degree at most

∆ + 2 in G2.
Thus we may assume that w 6= z. (See Figure 5, where the broken edges may or may

not be present.) By Lemma 11,

⌊1

2
∆⌋ 6 dwx 6 ⌈1

2
∆⌉ and ⌊1

2
∆⌋ 6 dyz 6 ⌈1

2
∆⌉, (8)

since dwx = dG(x) − dxy 6 ∆ − dxy, and similarly for dyz. Without loss of generality we
may assume that dwx 6 dyz. Let s := dwx − 1, and note that s > 2 by (8). Also

dwx = s + 1 and dyz 6 s + 2 (9)

•

• •

•w

x y

z

Mwx

Mxy

Myz

Figure 5. The neighborhood of vertices x and y contradicting Lemma 12.
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by (8). Let G′ be the graph obtained from G by deleting all vertices in Mwx ∪ Mxy ∪
Myz ∪ {x, y}, and adding s vertices, v1, . . . , vs, each of which is adjacent to w and z. By
the definition of s,

dG′(w) 6 ∆ − 1 and dG′(z) 6 ∆ − 1; (10)

in particular, the maximum degree of G′ is at most ∆.
Since G is 2-connected, G′ also is 2-connected. Since G′ is a minor of G, G′ does not

have a K4 minor. If G′2 contains a Kt, with vertex-set Q, say, then Q is of standard form
by Lemma 7, and Q clearly contains at least one of the vertices vi, and so at least one of w
and z has degree ∆ in G′ by (1); but this contradicts (10). Thus G′2 contains no Kt. By
the minimality of G, G′2 has a ⌊3

2
∆⌋-coloring f . We will extend f to a ⌊3

2
∆⌋-coloring of

G. Color s vertices of Mwx and s vertices of Myz with the colors f(vi) (1 6 i 6 s). Then
consecutively color the remaining vertices in Mwx ∪ Myz, which is possible since each of
these vertices has at most ∆ colored G2-neighbors at the moment of its coloring.

We now color x and y. The number of colored G2-neighbors of x does not exceed

|{w} ∪ NG(w) \ {x}| + dyz 6 ∆ + (s + 2) (11)

by (9). But s colors are used on both Mwx and Myz; thus at most ∆ + 2 < ⌊3

2
∆⌋ colors

are forbidden for x, and x can be colored. In coloring y, in the same way as x, we have
an extra restriction, that f(y) 6= f(x). But since dwx = s + 1, we can replace the term
(s + 2) by (s + 1) on the RHS of (11), which exactly compensates for the extra color f(x)
that is forbidden for y. Thus y can be colored.

Finally, note that if v ∈ Mxy then

dG2(v) = (dG(x) − ǫxy) + (dG(y) − ǫxy) − (dxy − ǫxy − 1) (12)

6 dG(x) + dG(y) − dxy + 1, (13)

where the first term in (12) counts x and all its neighbors except v and y, the second
term counts y and all its neighbors except v and x, and the third term subtracts the
|Mxy| − 1 vertices of Mxy \ {v} that have been counted twice in the first two terms.
The number of distinct colors that cannot be used on v is at most dG2(v) − s, and so if
d2

G(v) 6 ⌊3

2
∆⌋ + 1 then we can color v, since s > 2. But if dG2(v) > ⌊3

2
∆⌋ + 1 then, by

(13) and Lemma 11, ∆ is odd, dG(x) = dG(y) = ∆, dxy = ⌊1

2
∆⌋, and dG2(v) = ⌊3

2
∆⌋ + 2.

But then dwx = dyz = ∆ − dxy = ⌈1

2
∆⌉ > 4, and so s > 3 and dG2(v) − s 6 ⌊3

2
∆⌋ − 1. In

every case, dG2(v)−s < ⌊3

2
∆⌋, and so we can consecutively color all the vertices of Mxy to

obtain a ⌊3

2
∆⌋-coloring of G2. This contradicts the definition of G, and this contradiction

completes the proof of Lemma 12. 2

Lemma 13. Let G be a (∆, t)-graph, where ∆ > 6 and t = ⌊3

2
∆⌋ + 1. Then the graph

G1 cannot contain a 4-cycle wxyzw such that x and z both have degree 2 in G1.

Proof. Suppose there is such a 4-cycle wxyzw in G1; call it C. By Lemma 12, G1

does not contain two adjacent vertices with degree 2, and so w and y both have degree at
least 3 in G1. By Lemma 11, ∆ is odd and

dwx = dxy = dyz = dzw = ⌊1

2
∆⌋, (14)

11



and w and y each have exactly one edge in G that is not counted in (14). Let these
edges join w and y to w′ and y′ respectively. Note that |Mwx| = ⌊1

2
∆⌋ if wx /∈ E(G) and

|Mwx| = ⌊1

2
∆⌋ − 1 if wx ∈ E(G), and similarly for the other edges of C.

Suppose first that wy ∈ E(G), so that w′ = y, y′ = w, and

V (G) = Mwx ∪ Mxy ∪ Myz ∪ Mzw ∪ {w, x, y, z}.

Then we can color the vertices of G2 with ∆+3 6 ⌊3

2
∆⌋ colors, by coloring the vertices of

Mwx and those of Myz from the same set of ⌊1

2
∆⌋ colors, coloring the vertices of Mxy and

Mzw from another set of ⌊1

2
∆⌋ colors, and giving the remaining four colors to w, x, y, z.

So we may suppose that wy /∈ E(G). Form G′ from G by deleting x, z and all their
neighbors except for w and y. By the minimality of G, there is a ⌊3

2
∆⌋-coloring f of G′2.

We will extend this coloring to G2. We may assume that f(y) 6= f(w), since y has at
most ∆ colored neighbors in G′2 and so can be recolored if necessary. Choose two disjoint
sets A and B of ⌊1

2
∆⌋ colors each, which do not include any of the colors of w,w′, y, y′.

If there is a color not in A ∪ B ∪ f({w,w′, y, y′}) then let γ be such a color and define
α := γ and β := γ; otherwise, the colors of w, w′, y and y′ are all distinct (and ∆ = 7),
and we define α := f(w′) and β := f(y′).

Color all vertices of Mwx and Myz with colors from A, and all vertices of Mxy and Mzw

with colors from B, ensuring that if |Mwx| = |Myz| = |A|− 1 then one color from A is not
used at all, and similarly with B. If G contains all four edges of C, then there is a color
in A and one in B that we have not used, and we can use these on x and z. If G omits
only one edge of C, say the edge wx, then we can color x with α and use a color from
B to color z. If G contains edges wx,wz (only) of C, then we can color x with the color
from A that is not used on Mwx, and z with the color from B that is not used on Mwz.
If G contains edges wx, xy (only) of C, then we can color x with color γ if it exists; if γ
does not exist then let v be the unique vertex in Myz whose color is not used on Mwx,
color x with f(v), and recolor v with f(w); now z can be colored since it has only ∆ + 1
G2-neighbors. Finally, if G does not contain two adjacent edges of C, say wx, yz /∈ E(G),
then we can color x with α and z with β. Every other case is similar to one of these,
leading to a ⌊3

2
∆⌋-coloring of G, and this contradiction proves Lemma 13. 2

Let a 2-path in G1 be a path of length 2 whose central vertex has degree 2 in G1.

Lemma 14. Let G be a (∆, t)-graph, where ∆ > 6 and t = ⌊3

2
∆⌋ + 1. Then the graph

G1 has a triangle xywx such that dG1
(w) = 2 and dG1

(y) = 3.

Proof. By Lemma 10, G1 is 2-connected and so does not contain a vertex with degree
0 or 1. By Lemma 12, G1 does not contain two adjacent vertices with degree 2. Let G2

be the graph obtained from G1 by suppressing each vertex v of degree 2 (i.e., contracting
one edge incident with v) and removing multiple edges; in other words, G2 = (G1)1. It
follows from Lemma 9 that G2 exists and is 2-connected or K2. But if G2

∼= K2, with
vertices w, y, then, since dG1

(w) > 3, G1 contains at least two 2-paths wxy and wzy
between w and y, and so contains a 4-cycle wxyzw of the sort that was proved impossible
in Lemma 13. Thus G2 is 2-connected and has minimum degree at least 2.

Since G2 is a minor of G1, G2 is K4-minor-free. So, by Lemma 4, G2 has a vertex y
with degree 2; let its G2-neighbors be x and z. By Lemma 13, there cannot be two or
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(a) (b)

•

• • •

w

x y z

•

• • •

w

x y z

•

u

Figure 6. The subgraphs induced by NG1
(y) ∪ {y} in G1.

more 2-paths in G1 between x and y or between y and z, and so y is connected to each
of x and z by an edge, or a 2-path, or both. By the definition of G2, dG1

(y) > 2, and so
there is no loss of generality in assuming that y is connected to x in G1 by an edge and
a 2-path ywx, forming a triangle xywx. If y is connected to z by a 2-path but not by an
edge, then redefine z to be the middle vertex of this 2-path. Then y and its neighbors
in G1 induce one of the graphs in Figure 6 (where the broken edges may or may not be
present). However, the graph in Figure 6(b) is impossible because, in G, y would have
degree at least duy + dwy + 2 > ∆ + 1, by Lemma 11. Therefore, y and its neighbors in
G1 induce the subgraph in Figure 6(a). 2

5 Proof of the main theorem

Let ∆ > 6 and t := ⌊3

2
∆⌋ + 1. Suppose that the theorem fails for ∆. Then there

exists a (∆, t)-graph G (defined at the start of Section 4). By Lemma 14, G1 contains
a subgraph of the form depicted in Figure 6(a). In G, this corresponds to the subgraph
depicted in Figure 7, where the broken edges may or may not be present. Among all
possible subgraphs of this form in G, choose one such that dwy is as small as possible. By
Lemma 11,

dwx > ⌊1

2
∆⌋ and dwy > ⌊1

2
∆⌋. (15)

Since dwx + dwy = dG(w) 6 ∆, it follows that equality holds in both parts of (15) if ∆ is
even, and in at least one part if ∆ is odd.

If v ∈ Mwx then

dG2(v) = (dG(w) − ǫwx) + (dG(x) − ǫwx) − (dwx − ǫwx − 1) − ǫwyǫxy, (16)

•

• • •

w

x y z

Mwx

Mxy

Mwy

Myz

Figure 7. The induced subgraph of G.
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where the first term in (16) counts w and all its neighbors except v and x, the second
term counts x and all its neighbors except v and w, the third term subtracts the |Mwx|−1
vertices of Mwx \ {v} that have been counted twice in the first two terms, and the last
term accounts for y which is also counted twice if wy, xy ∈ E(G). Let p := dG2(v), which
is the same for all v ∈ Mwx. It follows from (16), using (15) in the third line, that

p = dG(w) + dG(x) + 1 − dwx − ǫwx − ǫwyǫxy (17)

6 2∆ + 1 − dwx − ǫwx − ǫwyǫxy

6 ⌈3

2
∆⌉ + 1

=

{

⌊3

2
∆⌋ + 2 if ∆ is odd,

⌊3

2
∆⌋ + 1 if ∆ is even.

Similarly, let q := dG2(v) for all v ∈ Mwy. Then

q = dG(w) + dG(y) + 1 − dwy − ǫwy − ǫwxǫxy (18)

6 2∆ + 1 − dwy − ǫwy − ǫwxǫxy

6

{

⌊3

2
∆⌋ + 2 if ∆ is odd,

⌊3

2
∆⌋ + 1 if ∆ is even.

Let Gw denote the graph obtained from G by deleting w and all its neighbors except
x and y. Let G− be obtained from Gw by deleting y and all its neighbors except x and z.
Let G+ be obtained from G− by adding the edge xz if it is not already present. Let
N ′(x) := NG−(x) and N ′(z) := NG−(z). Since, by (15), dwx + dxy and dwy + dxy are both
at least ⌊1

2
∆⌋ + 1, it follows that

|N ′(x)| 6 ⌈1

2
∆⌉ − 1 and dyz 6 ⌈1

2
∆⌉ − 1. (19)

Let S := N ′(x) ∪ Mxy ∪ Myz ∪ {x, y} and S+ := S ∪ {z}. Note that

|S| 6 (⌈1

2
∆⌉ − 1) + (∆ − dwy) + 2 6 ∆ + 2, (20)

by (15) and (19). Recall that t − 1 = ⌊3

2
∆⌋ > ∆ + 3 by (3).

Lemma 15. Suppose that z /∈ N ′(x), and either (i) or (ii) holds, and at least one of (iii)
and (iv) holds :
(i) |N ′(x)| = 1;
(ii) |N ′(x)| = 2 and Myz = ∅;
(iii) there is a ⌊3

2
∆⌋-coloring f of (G−)2 such that all vertices in N ′(x) ∪ {x, z} have

different colors;
(iv) (G+)2 has no t-cliques.
Then there is a ⌊3

2
∆⌋-coloring of (Gw)2 such that all vertices in S+ have different colors.

Proof. We start by proving a claim, which is needed only in one special case, but which
cannot be avoided.

14



Claim 15.1. Suppose that dG(z) = ∆ ∈ {6, 7}, and (ii) and (iii) hold, say N ′(x) =
{u1, u2}. Then f can be chosen so that some vertex in N ′(z) has the same color as one

of u1, u2, x.

Proof. Let us assume that this is not true for the given f , so that the ⌊3

2
∆⌋ = ∆ + 3

distinct colors are those of u1, u2, x, z and the ∆−1 vertices in N ′(z) (and u1, u2 /∈ N ′(z)).
Note that x has degree 2 in G− and is not a cutvertex, since if it were a cutvertex in G−

then it would be a cutvertex in G, which is 2-connected by Lemma 8. There are two
cases.

Case 1: there are two internally disjoint paths between x and z in G−. Then there is no
path between u1 and u2 in G− − {x, z}, otherwise G contains a K4 minor. Thus u1 and
u2 are in different components of G− − {x, z}. Choose a vertex z1 ∈ N ′(z), and let u1

be in the component not containing z1. Then interchanging the colors f(u1) and f(z1)
throughout this component gives a coloring that satisfies the requirements of the claim.

Case 2: there do not exist two paths as in Case 1. Then there is a cutvertex v ∈ V (G−)
such that x and z are in different components of G−−v. Let C(x) be the component that
contains x, and let α be a color not in f(N(v)∪{v, z}). If α ∈ f(N ′(z)), then interchange
colors f(x) and α throughout C(x). Otherwise, α ∈ f({u1, u2, x}), by the first sentence
of the proof; so choose z1 ∈ N ′(z) such that f(z1) 6= f(v), and interchange colors f(z1)
and α throughout C(x). 2

We can now prove Lemma 15. Suppose first that (iii) holds. Transfer the given coloring
f to (Gw)2, and extend it to all uncolored vertices in NG(z) by consecutively coloring each
of them differently from all colored vertices in the set T := N ′(x) ∪ NG(z) ∪ {x, z}. This
is possible, because if we are coloring a vertex in T then there are at most |T |− 1 vertices
in T that are colored already; thus at each stage the number of colored vertices in T is at
most ⌊3

2
∆⌋−1 unless |N ′(x)| = 2 (so that (ii) holds), and |NG(z)| = ∆, and ⌊3

2
∆⌋ = ∆+3,

and we have shown in Claim 15.1 that in this case we can choose f so that the colors of
the vertices in T are not all distinct.

We can now consecutively color all vertices in Mxy, and y if yz /∈ E(G), by coloring each
of them differently from all colored vertices in S+, of which there are at most |S+| − 1 6

∆ + 2 by (20). This gives the required ⌊3

2
∆⌋-coloring of (Gw)2.

This proves the result when (iii) holds. Suppose now that (iv) holds. Since G+ is a
minor of G, G+ is K4-minor-free, and by construction its maximum degree is at most ∆.
By hypothesis (iv), (G+)2 has no t-cliques, and so, by the minimality of G, (G+)2 has a
⌊3

2
∆⌋-coloring f , in which all vertices in N ′(x) ∪ {x, z} necessarily have different colors;

thus (iii) holds, and the result follows. 2

Lemma 16. Suppose there is a ⌊3

2
∆⌋-coloring f of (Gw)2 in which all vertices of S have

different colors and f(x) 6= f(z). Then f can be chosen so that there exists a vertex

u ∈ N ′(x) with f(u) 6= f(z).

Proof. Suppose this is not true for the given f . Then |N ′(x)| 6 1. Since G is
2-connected by Lemma 8, z is not a cutvertex, and so |N ′(x)| = 1 and N ′(x) 6= {z}.
Let N ′(x) = {u}. Since f(u) = f(z), dG(u, z) > 3 and xz /∈ E(G).
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Suppose, for a contradiction, that (G+)2 has a t-clique, with vertex-set Q, say. By
Lemma 7, Q is of standard form in G+, and so F (G+, Q), defined by (2), is one of the
graphs shown in Figure 1. Since x has degree 2 in G+, and G2 has no t-cliques, it follows
that x ∈ Q and u is connected to z by more than one path of length 2 in G+. But this is
impossible since dG(u, z) > 3. Thus (G+)2 has no t-cliques. Thus hypotheses (i) and (iv)
of Lemma 15 hold, and the result follows from Lemma 15. 2

Lemma 17. Suppose there is a ⌊3

2
∆⌋-coloring f of (Gw)2 in which all vertices of S have

different colors and f(x) 6= f(z). Then there is a ⌊3

2
∆⌋-coloring of G2.

Proof. By Lemma 16, we may assume that there is a vertex u ∈ N ′(x) such that
f(u) 6= f(z). (We use u in Case 1 only.)

We first color w differently from all the colored vertices in (NG(x) \ Mwx) ∪ Myz ∪
(NG(y) ∩ {z}) ∪ {x, y}, of which there are at most ∆ − dwx + dyz + 2 6 ∆ + 2 by (15)
and (19).

Case 1: dwy = ⌊1

2
∆⌋; then either ∆ is even, or dG(w) < ∆, or dwx = ⌊1

2
∆⌋ + 1. In this

case we first color consecutively all vertices in Mwy, each of them differently from the (at
most ∆− 1) colored neighbors of y and from w, x, y, a total of at most ∆ + 2 6 ⌊3

2
∆⌋− 1

by (3). In doing this, we take care to use the color f(u) on one vertex of Mwy. We now
consecutively color the vertices of Mwx, in four subcases.

Subcase 1.1: wx ∈ E(G). Then p 6 ⌊3

2
∆⌋ by the hypothesis of Case 1 and (17) (since

ǫwx = 1). Since every vertex in Mwx has two G2-neighbors with the same color f(u), the
vertices in Mwx can all be colored.

Subcase 1.2: wx,wy /∈ E(G). Then p 6 ⌊3

2
∆⌋+ 1, and so if we try to color the vertices

of Mwx as in Subcase 1.1 it is only with the last vertex that we may fail. If this happens,
uncolor w, color the last vertex in Mwx, then recolor w, which is possible since w has at
most ∆ + 2 neighbors in G2.

Subcase 1.3: wx /∈ E(G) and wy, xy ∈ E(G). Then p 6 ⌊3

2
∆⌋ by (17), and we color as

in Subcase 1.1.

Subcase 1.4: wx, xy /∈ E(G) and wy ∈ E(G). Then p 6 ⌊3

2
∆⌋ + 1. But now x is not

adjacent to the vertices of Mwy in G2, and so when we color Mwy, as well as using f(u) on
one vertex of Mwy, we also use f(x) on another vertex. Then, when we color the vertices
of Mwx as in Subcase 1.1, each has two pairs of G2-neighbors with the same color, and
the coloring succeeds.

Case 2: dwy 6= ⌊1

2
∆⌋. Then ∆ is odd, dwx = 1

2
(∆− 1), and dwy = 1

2
(∆ + 1), by (15). We

first color consecutively all vertices in Mwx, each of them differently from the (at most
∆ − 1) colored neighbors of x and from w, x, y, a total of at most ∆ + 2 6 ⌊3

2
∆⌋ − 1.

Case 2 now divides into Cases 2a, 2b and 2c.

Case 2a: either Myz 6= ∅, or Myz = ∅ (so that yz ∈ E(G)) and f(z) is not used on any
vertex of N ′(x). Choose v ∈ Myz in the first case and let v := z in the second. When we
color Mwx we make sure to use f(v) on one vertex of Mwx. We can now color the vertices
in Mwy exactly as in Case 1, interchanging x and y, p and q, and using v instead of u and
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(18) instead of (17). Note that, in each subcase, q satisfies the same upper bound as was
given for p in the corresponding subcase of Case 1.

Case 2b: Myz = ∅ and f(z) ∈ f(N ′(x)) and dG(y) < ∆. Then there is no vertex v as in
Case 2a, but in each subcase the upper bound for q is one less than in Case 2a, and so
the argument works with no need for v.

Case 2c: Myz = ∅ and f(z) ∈ f(N ′(x)) and dG(y) = ∆. Then dxy = 1

2
(∆ − 3) and so

|N ′(x)| 6 2. Let N ′(x) = {u1, u2}, where for the moment we allow the possibility that
u1 = u2. We may assume that

f(z) ∈ f(N ′(x)) (21)

for every ⌊3

2
∆⌋-coloring f of (Gw)2 satisfying the hypotheses of the lemma, since otherwise

the result follows by Case 2a.

Subcase 2c.1: z ∈ {u1, u2}, i.e., xz ∈ E(G). Then we have a t-clique in G2, a contra-
diction, unless either all of the edges wx,wy, xy are in G, or none of these edges are in
G. If all of these edges are in G, then q 6 ⌊3

2
∆⌋ − 1 by (18), and so we can color all the

vertices in Mwy. If none of the edges wx,wy, xy are in G, then q 6 ⌊3

2
∆⌋ + 1, but we

can use f(y) on some vertex of Mwx and also uncolor w before coloring the last vertex of
Mwy, after which it easy to recolor w.

Subcase 2c.2: z /∈ {u1, u2}. Assume f(u1) = f(z). This implies that dG(u1, z) > 3.
If (G+)2 has no t-cliques, then hypotheses (i) or (ii), and (iv), of Lemma 15 hold, and

the ⌊3

2
∆⌋-coloring of (Gw)2, whose existence was proved in Lemma 15, contradicts (21).

So we may assume that (G+)2 has a t-clique; let its vertex-set be Q. Then by Lemma 7,
Q is of standard form in G+, i.e., F (G+, Q), defined by (2), is isomorphic to one of the
graphs F1 and F2 in Figure 1. Let F := F (G+, Q).

Since G2 has no t-cliques, and x has degree at most 3 < ∆ − 1 in G+, it follows from
(1) that x has degree 2 in F and the three vertices of degree at least ∆ − 1 in F are z,
another neighbor ui of x, and a third vertex w′. Then ui and z have common neighbors
other than x in F , and hence in G. Since dG(u1, z) > 3, it follows that i 6= 1, so that
u1 6= u2 and the ‘big’ vertices in F are z, u2 and w′. It follows from this that Q induces
the only t-clique in (G+)2.

Since x has a G+-neighbor u1 that is not in F , and G is 2-connected by Lemma 8,
it follows from Lemma 6 that either {u2, x} or {x, z} is a cutset of G, and there is a
subgraph H of G+ such that G+ = F ∪H where F ∩H = {u2, u2x, x} or {x, xz, z}. There
are two cases to consider.

Subcase 2c.2i: F ∩H = {u2, u2x, x}. Then u2 is a cutvertex of G−. The given coloring
f of (Gw)2 induces a coloring of (G−)2, and we can permute colors on the vertices of
V (F ) \ V (H) in this induced coloring so that z has a different color from both u1 and x
(and, automatically, from u2). Then hypotheses (ii) and (iii) of Lemma 15 hold, and the
⌊3

2
∆⌋-coloring of (Gw)2, whose existence was proved in Lemma 15, contradicts (21).

Subcase 2c.2ii: F ∩H = {x, xz, z}. In this case z is the vertex of degree ∆−1 in F , and
both x and z have degree 2 in H. Now, H2 has no t-cliques, since we have already seen
that Q induces the only t-clique in (G+)2. But H is a minor of G and so is K4-minor-free.
By the minimality of G, H2 has a ⌊3

2
∆⌋-coloring f ′. Let z1 6= x be the other neighbor of
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•
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•

u1 z1 = u′

x = z′ z = x′

u2 = y′ w′

H−(⊂ H)

C ′(⊂ F )

Figure 8. The graph G− in Subcase 2c.2ii.

z in H. Note that f ′(u1) 6= f ′(z) and f ′(x) 6= f ′(z1).
Let C ′ := F − xz. Then C ′ is a configuration of the same type as the configuration

C in Figure 7 that we have been working with, with the vertices w′, z, u2, x playing the
roles of w, x, y, z respectively; and this configuration exists in G− with z having exactly
one neighbor, z1, outside C ′. Let us emphasize this by writing x′ = z, y′ = u2, z′ = x, and
u′ = z1 (see Figure 8). Since dwy > ⌊1

2
∆⌋ by the hypothesis of Case 2, we may assume

that dw′y′ > ⌊1

2
∆⌋ also, since otherwise we would have chosen to work with C ′ rather than

C at the start of Section 5.
Let H− := H − xz. Then H− is obtained from G− by deleting w′, y′ and all their

neighbors other than x′ and z′; in other words, C ′, H− and G− are related to each other
in exactly the same way that C, G− and G are. Also, f ′ is a ⌊3

2
∆⌋-coloring of (H−)2

in which the vertices u′, x′, z′ (i.e., z1, z, x) all have different colors. With respect to C ′,
H− and G−, therefore, hypotheses (i) and (iii) of Lemma 15 hold, and the proof of that
Lemma, and Case 2a of this Lemma, show that f ′ can be extended to a ⌊3

2
∆⌋-coloring of

(G−)2, in which necessarily f ′(u2) 6= f ′(z) since dG−(u2, z) 6 2.
Note that the color modifications required by Claim 15.1 and Lemma 16 have not

been needed here, and the colors of vertices in H have not changed. (This is because
Claim 15.1 is needed only when hypothesis (ii) of Lemma 15 holds, not hypothesis (i),
and Lemma 16 is not needed if all vertices in S+ already have different colors, which is
guaranteed by Lemma 15.) Thus all vertices in N ′(x) ∪ {x, z} now have different colors.
This shows that, with respect to C, hypotheses (ii) and (iii) of Lemma 15 hold, and the
⌊3

2
∆⌋-coloring of (Gw)2, whose existence was proved in Lemma 15, contradicts (21). This

completes the proof of Lemma 17. 2

Now let s := dyz and let Ĝ be the graph obtained from G− by adding s vertices
y1, . . . , ys of degree 2, each with neighbors x and z.

Lemma 18. ∆(Ĝ) 6 ∆, Ĝ has no K4 minor, and (Ĝ)2 has no t-cliques.

Proof. By (19),

dĜ(x) = |N ′(x)| + dyz 6 2⌈1

2
∆⌉ − 2 6 ∆ − 1, (22)
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and so ∆(Ĝ) 6 ∆. The graph obtained from G− by adding just one vertex y1 adjacent to
x and z is a minor of G, and so is K4-minor-free. Adding s−1 further vertices of degree 2
in parallel with y1 cannot create a K4 minor, and so Ĝ is K4-minor-free. The proof of the
final statement of Lemma 18 uses the following claim.

Claim 18.1. If (Ĝ)2 has a t-clique with vertex-set Q, then:
(a) ∆ is odd and |N ′(x)| = dyz = s = 1

2
(∆ − 1);

(b) dwx = dwy = 1

2
(∆ − 1) and dxy = 1;

(c) all vertices y1, . . . , ys are in Q.

Proof. By Lemma 7, Q is of standard form. Since G2 has no t-clique, Q must contain
at least one new vertex yi. By (1), in F (Ĝ, Q), x and z both have degree ∆ if ∆ is even,
and if ∆ is odd then one of them has degree ∆ and the other has degree at least ∆ − 1.
It follows from (22) that x has degree ∆ − 1 (in both F (Ĝ, Q) and Ĝ), so that ∆ is odd;
and equality in (22) implies that there is equality in both parts of (19), so that the rest
of (a) holds. In proving (19), we used the inequalities dwx > ⌊1

2
∆⌋, dwy > ⌊1

2
∆⌋ (by (15))

and dxy > 1, and equality must hold in each case if there is equality in (19); thus (b)
holds. (Equality in (19) also implies that dG(x) = dG(y) = ∆, but we do not need this
here.) Finally, (c) holds because otherwise z, which has degree ∆ in F (Ĝ, Q), would have
degree greater than ∆ in Ĝ and hence in G. 2

Now suppose, for a contradiction, that (Ĝ)2 has a t-clique, with vertex-set Q, say.
Then the graph G∗ := Ĝ − ys is a K4-minor-free graph with maximum degree at most ∆
whose square does not contain a Kt, by Claim 18.1(c). By the minimality of G, (G∗)2 has
a ⌊3

2
∆⌋-coloring f . We will use f to construct a ⌊3

2
∆⌋-coloring of G2. First we use colors

f(y1), . . . , f(ys−1) to color all but one vertex, say vyz, in Myz, and to color y if yz ∈ E(G).
Then we choose a vertex u ∈ N ′(x) such that f(u) 6= f(z) and we color vyz with a color
not used on any vertex in NG(z)∪{u, x, z}. There remain at most two uncolored vertices
in Gw: possibly y, and, by Claim 18.1(b), at most one vertex in Mxy. These vertices
(if they exist) can be colored (in this order) differently from all the colored vertices in
N ′(x)∪Myz ∪ {x, y, z}, of which by Claim 18.1(a) there are at most (∆− 1) + 3 < ⌊3

2
∆⌋.

At this point we have a ⌊3

2
∆⌋-coloring of (Gw)2. It may fail to satisfy the hypotheses

of Lemma 17, but only because it is possible that vyz ∈ Myz may have the same color as
some vertex in N ′(x). However, we have ensured that u ∈ N ′(x) does not have the same
color as any vertex in Myz ∪ {z}, and this is enough to ensure that Case 1 in the proof of
Lemma 17 works and gives a ⌊3

2
∆⌋-coloring of G2. This contradicts the choice of G as a

(∆, t)-graph, and this contradiction shows that (Ĝ)2 has no t-cliques. 2

Finally, we prove Theorem 3. By Lemma 18 and the minimality of G, Ĝ2 has a ⌊3

2
∆⌋-

coloring f ; clearly f(x) 6= f(z). We will use f to construct a ⌊3

2
∆⌋-coloring of (Gw)2.

First, we use f(y1), . . . , f(ys) to color all vertices in Myz, and to color y if yz ∈ E(G).
Then we consecutively color all vertices in Mxy, and y if yz /∈ E(G), differently from
all colored vertices in S (see (20)). The result is a ⌊3

2
∆⌋-coloring of (Gw)2 such that

all vertices in S have different colors. It now follows from Lemma 17 that there is a
⌊3

2
∆⌋-coloring of G2, and this contradiction completes the proof of Theorem 3.
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