
1

Constraint Satisfaction

Problems

Artificial Intelligence

Slides are mostly adapted from AIMA, MIT Open Courseware

Svetlana Lazebnik (UIUC) and Manuela Veloso (CMU)

2

3

What is search for?

• Assumptions: single agent,

deterministic, fully observable,

discrete environment

• Search for planning

– The path to the goal is the important

thing

– Paths have various costs, depths

• Search for assignment

– Assign values to variables while

respecting certain constraints

– The goal (complete, consistent

assignment) is the important thing

4

Constraint satisfaction problems (CSPs)

• Definition:

– State is defined by variables Xi with values from domain Di

– Goal test is a set of constraints specifying allowable

combinations of values for subsets of variables

– Solution is a complete, consistent assignment

• How does this compare to the “generic” tree search

formulation?

– A more structured representation for states, expressed in a

formal representation language

– Allows useful general-purpose algorithms with more power

than standard search algorithms

5

7

Varieties of CSPs

• Discrete variables

– finite domains:

• n variables, domain size d -> O(dn) complete assignments

• e.g., Boolean CSPs, incl.~Boolean satisfiability (NP-complete)

– infinite domains:

• integers, strings, etc.

• e.g., job scheduling, variables are start/end days for each job

• need a constraint language, e.g., StartJob1 + 5 ≤ StartJob3

• Continuous variables

– e.g., start/end times for Hubble Space Telescope observations

– linear constraints solvable in polynomial time by linear programming

8

CSP definition

CSP = {V, D, C}

• Variables: V = {V1,..,VN}

– Example: The values of the nodes in the graph

• Domain: The set of d values that each variable can take

– Example: D = {R, G, B}

• Constraints: C = {C1,..,CK}

• Each constraint consists of a tuple of variables and a list of values

that the tuple is allowed to take for this problem

– Example: [(V2,V3),{(R,B),(R,G),(B,R),(B,G),(G,R),(G,B)}]

• Constraints are usually defined implicitly a A function is defined to

test if a tuple of variables satisfies the constraint

– Example: Vi ≠ Vj for every edge (i,j)

Unary constraints involve a single variable,

– e.g., SA ≠ green

Binary constraints involve pairs of variables,

– e.g., SA ≠ WA

9

10

Graph Coloring

11

Graph Coloring

12

Example: Map Coloring

• Variables: WA, NT, Q, NSW, V, SA, T

• Domains: {red, green, blue}

• Constraints: adjacent regions must have different colors

e.g., WA ≠ NT, or (WA, NT) in {(red, green), (red, blue),

(green, red), (green, blue), (blue, red), (blue, green)}

13

Example: Map Coloring

• Solutions are complete and consistent assignments, e.g.,

WA = red, NT = green, Q = red, NSW = green,

V = red, SA = blue, T = green

14

Example: n-queens problem

• Put n queens on an n × n board with no two queens on the

same row, column, or diagonal

15

N-Queens:

• Variables: Qi

• Domains: {1, … , N}

• Constraints:

 i, j non-threatening (Qi , Qj)
Q2

Q1

Q3

Q4

16

N- Queens

17

Alternative formulation

18

Example: N-Queens

• Variables: Xij

• Domains: {0, 1}

• Constraints:

i,j Xij = N

(Xij, Xik)  {(0, 0), (0, 1), (1, 0)}

(Xij, Xkj)  {(0, 0), (0, 1), (1, 0)}

(Xij, Xi+k, j+k)  {(0, 0), (0, 1), (1, 0)}

(Xij, Xi+k, j–k)  {(0, 0), (0, 1), (1, 0)}

Xij

19

Example: Sudoku

• Variables: Xij

• Domains: {1, 2, …, 9}

• Constraints:

Alldiff(Xij in the same unit)

Xij

20

Example: Cryptarithmetic

• Variables: T, W, O, F, U, R

 X1, X2

• Domains: {0, 1, 2, …, 9}

• Constraints:

O + O = R + 10 * X1

W + W + X1 = U + 10 * X2

T + T + X2 = O + 10 * F

Alldiff(T, W, O, F, U, R)

T ≠ 0, F ≠ 0

X2 X1

24

Real-world CSPs

• Assignment problems

– e.g., who teaches what class

• Timetable problems

– e.g., which class is offered when and where?

• Transportation scheduling

• Factory scheduling

• More examples of CSPs: http://www.csplib.org/

http://www.csplib.org/

25

27

28

29

30

31

Standard search formulation (incremental)

• States:

– Variables and values assigned so far

• Initial state:

– The empty assignment

• Action:

– Choose any unassigned variable and assign to it a value

that does not violate any constraints

• Fail if no legal assignments

• Goal test:

– The current assignment is complete and satisfies all

constraints

32

CSP as a Standard search problem

33

CSP as a Standard search problem

34

35

36

Standard search formulation (incremental)

• What is the depth of any solution (assuming n variables)?

n (this is good)

• Given that there are m possible values for any variable,

how many paths are there in the search tree?

n! · mn (this is bad)

• How can we reduce the branching factor?

37

38

Backtracking DFS

For every possible value x in D:

– If assigning x to the next unassigned variable

Vk+1 does not violate any constraint with the k

already assigned variables:

• Set the variable Vk+1 to x

• Evaluate the successors of the current state with this variable

assignment

• If no valid assignment is found:

Backtrack to previous state

• Stop as soon as a solution is found

39

40

Backtracking search algorithm

41

Example

42

Example

43

Example

44

Example

46

Improving Backtracking Efficiency

• Making backtracking search efficient:

– Can we detect inevitable failure early?

– Which variable should be assigned next?

– In what order should its values be tried?

47

Early detection of failure

Apply inference to reduce the space of possible

assignments and detect failure early

48

Early detection of failure: Forward checking

• Keep track of remaining legal values for unassigned variables

• Terminate search when any variable has no legal values

49

Early detection of failure

Apply inference to reduce the space of possible

assignments and detect failure early

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

Early detection of failure: Forward checking

• Keep track of remaining legal values for unassigned variables

• Terminate search when any variable has no legal values

85

Early detection of failure: Forward checking

• Keep track of remaining legal values for unassigned variables

• Terminate search when any variable has no legal values

86

Early detection of failure: Forward checking

• Keep track of remaining legal values for unassigned variables

• Terminate search when any variable has no legal values

87

Early detection of failure: Forward checking

• Keep track of remaining legal values for unassigned variables
• Terminate search when any variable has no legal values

88

Constraint propagation

• Forward checking propagates information from assigned to

unassigned variables, but doesn't provide early detection for all

failures

• NT and SA cannot both be blue!

• Constraint propagation repeatedly enforces constraints locally

89

• Simplest form of propagation makes each pair of variables

consistent:

– X →Y is consistent iff for every value of X there is some allowed value of Y

Arc consistency

Consistent!

91

• Simplest form of propagation makes each pair of variables

consistent:

– X →Y is consistent iff for every value of X there is some allowed value of Y

– When checking X →Y, throw out any values of X for which there isn’t an

allowed value of Y

• If X loses a value, all pairs Z → X need to be rechecked

Arc consistency

92

Arc consistency

• Simplest form of propagation makes each pair of variables

consistent:

– X →Y is consistent iff for every value of X there is some allowed value of Y

– When checking X →Y, throw out any values of X for which there isn’t an

allowed value of Y

• If X loses a value, all pairs Z → X need to be rechecked

93

Arc consistency

• Simplest form of propagation makes each pair of variables

consistent:

– X →Y is consistent iff for every value of X there is some allowed value of Y

– When checking X →Y, throw out any values of X for which there isn’t an

allowed value of Y

• If X loses a value, all pairs Z → X need to be rechecked

94

• Simplest form of propagation makes each pair of variables

consistent:

– X →Y is consistent iff for every value of X there is some allowed value of Y

– When checking X →Y, throw out any values of X for which there isn’t an

allowed value of Y

Arc consistency

95

• Simplest form of propagation makes each pair of variables

consistent:

– X →Y is consistent iff for every value of X there is some allowed value of Y

– When checking X →Y, throw out any values of X for which there isn’t an

allowed value of Y

• Arc consistency detects failure earlier than forward checking
• Can be run before or after each assignment

Arc consistency

96

Arc consistency algorithm AC-3

97

98

99

100

101

102

103

104

105

Which variable should be assigned next?

• Most constrained variable:

– Choose the variable with the fewest legal values

– A.k.a. minimum remaining values (MRV) heuristic

106

Which variable should be assigned next?

• Most constraining variable:

– Choose the variable that imposes the most constraints

on the remaining variables

– Tie-breaker among most constrained variables

107

Given a variable, what should be the order of values?

• Choose the least constraining value:

– The value that rules out the fewest values in the remaining

variables

Which

assignment for

Q should we

choose?

108

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

109

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

110

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

111

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

112

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

113

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

114

• unary constraint constraint involving only one variable
• {A ≠ Monday}
• binary constraint constraint involving two variables
• {A ≠ B}

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

115

• node consistency when all the values in a variable's domain satisfy the
variable's unary constraints

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

116

• arc consistency when all the values in a variable's domain satisfy the
variable's binary constraints

• To make X arc-consistent with respect to Y, remove elements from X's domain
until every choice for X has a possible choice for Y

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

117

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

118

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

119

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

120

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

121

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

122

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

123

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

124

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

125

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

126

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

127

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

128

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

129

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

130

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

131

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

132

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

133

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

134

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

135

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

136

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

137

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

138

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

139

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

140

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

141

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

142

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

143

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

144

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

145

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

146

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

	Slide 1: Constraint Satisfaction Problems
	Slide 2
	Slide 3: What is search for?
	Slide 4: Constraint satisfaction problems (CSPs)
	Slide 5
	Slide 7: Varieties of CSPs
	Slide 8: CSP definition
	Slide 9
	Slide 10: Graph Coloring
	Slide 11: Graph Coloring
	Slide 12: Example: Map Coloring
	Slide 13: Example: Map Coloring
	Slide 14: Example: n-queens problem
	Slide 15: N-Queens:
	Slide 16: N- Queens
	Slide 17: Alternative formulation
	Slide 18: Example: N-Queens
	Slide 19: Example: Sudoku
	Slide 20: Example: Cryptarithmetic
	Slide 24: Real-world CSPs
	Slide 25
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31: Standard search formulation (incremental)
	Slide 32: CSP as a Standard search problem
	Slide 33: CSP as a Standard search problem
	Slide 34
	Slide 35
	Slide 36: Standard search formulation (incremental)
	Slide 37
	Slide 38: Backtracking DFS
	Slide 39
	Slide 40: Backtracking search algorithm
	Slide 41: Example
	Slide 42: Example
	Slide 43: Example
	Slide 44: Example
	Slide 46: Improving Backtracking Efficiency
	Slide 47: Early detection of failure
	Slide 48: Early detection of failure: Forward checking
	Slide 49: Early detection of failure
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84: Early detection of failure: Forward checking
	Slide 85: Early detection of failure: Forward checking
	Slide 86: Early detection of failure: Forward checking
	Slide 87: Early detection of failure: Forward checking
	Slide 88: Constraint propagation
	Slide 89: Arc consistency
	Slide 91: Arc consistency
	Slide 92: Arc consistency
	Slide 93: Arc consistency
	Slide 94: Arc consistency
	Slide 95: Arc consistency
	Slide 96: Arc consistency algorithm AC-3
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105: Which variable should be assigned next?
	Slide 106: Which variable should be assigned next?
	Slide 107: Given a variable, what should be the order of values?
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146

