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What is search for?

• Assumptions: single agent, 

deterministic, fully observable, 

discrete environment

• Search for planning

– The path to the goal is the important 

thing

– Paths have various costs, depths

• Search for assignment

– Assign values to variables while 

respecting certain constraints

– The goal (complete, consistent 

assignment) is the important thing
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Constraint satisfaction problems (CSPs)

• Definition:

– State is defined by variables Xi with values from domain Di

– Goal test is a set of constraints specifying allowable 

combinations of values for subsets of variables

– Solution is a complete, consistent assignment

• How does this compare to the “generic” tree search 

formulation?

– A more structured representation for states, expressed in a 

formal representation language

– Allows useful general-purpose algorithms with more power 

than standard search algorithms
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Varieties of CSPs

• Discrete variables

– finite domains:

• n variables, domain size d -> O(dn) complete assignments

• e.g., Boolean CSPs, incl.~Boolean satisfiability (NP-complete)

– infinite domains:

• integers, strings, etc.

• e.g., job scheduling, variables are start/end days for each job

• need a constraint language, e.g., StartJob1 + 5 ≤ StartJob3

• Continuous variables

– e.g., start/end times for Hubble Space Telescope observations

– linear constraints solvable in polynomial time by linear programming
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CSP definition

CSP = {V, D, C}

• Variables: V = {V1,..,VN}

– Example: The values of the nodes in the graph

• Domain: The set of d values that each variable can take

– Example: D = {R, G, B}

• Constraints: C = {C1,..,CK}

• Each constraint consists of a tuple of variables and a list of values

that the tuple is allowed to take for this problem

– Example: [(V2,V3),{(R,B),(R,G),(B,R),(B,G),(G,R),(G,B)}]

• Constraints are usually defined implicitly a A function is defined to

test if a tuple of variables satisfies the constraint

– Example: Vi ≠ Vj for every edge (i,j)

Unary constraints involve a single variable,

– e.g., SA ≠ green

Binary constraints involve pairs of variables,

– e.g., SA ≠ WA
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Graph Coloring
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Graph Coloring
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Example: Map Coloring

• Variables: WA, NT, Q, NSW, V, SA, T 

• Domains: {red, green, blue}

• Constraints: adjacent regions must have different colors

e.g., WA ≠ NT, or (WA, NT) in {(red, green), (red, blue), 

(green, red), (green, blue), (blue, red), (blue, green)}
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Example: Map Coloring

• Solutions are complete and consistent assignments, e.g., 

WA = red, NT = green, Q = red, NSW = green, 

V = red, SA = blue, T = green
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Example: n-queens problem

• Put n queens on an n × n board with no two queens on the 

same row, column, or diagonal
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N-Queens:

• Variables: Qi

• Domains: {1, … , N}

• Constraints:

 i, j non-threatening (Qi , Qj)
Q2

Q1

Q3

Q4
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N- Queens
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Alternative formulation
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Example: N-Queens

• Variables: Xij

• Domains: {0, 1}

• Constraints:

i,j Xij = N

(Xij, Xik)  {(0, 0), (0, 1), (1, 0)}

(Xij, Xkj)  {(0, 0), (0, 1), (1, 0)}

(Xij, Xi+k, j+k)  {(0, 0), (0, 1), (1, 0)}

(Xij, Xi+k, j–k)  {(0, 0), (0, 1), (1, 0)}

Xij
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Example: Sudoku

• Variables: Xij

• Domains: {1, 2, …, 9}

• Constraints:

Alldiff(Xij in the same unit)

Xij
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Example: Cryptarithmetic

• Variables: T, W, O, F, U, R

      X1, X2

• Domains: {0, 1, 2, …, 9}

• Constraints: 

O + O = R + 10 * X1

W + W + X1 = U + 10 * X2

T + T + X2 = O + 10 * F

Alldiff(T, W, O, F, U, R)

T ≠ 0, F ≠ 0

X2 X1
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Real-world CSPs

• Assignment problems

– e.g., who teaches what class

• Timetable problems

– e.g., which class is offered when and where?

• Transportation scheduling

• Factory scheduling

• More examples of CSPs: http://www.csplib.org/

http://www.csplib.org/
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Standard search formulation (incremental)

• States: 

– Variables and values assigned so far

• Initial state:

– The empty assignment 

• Action:

– Choose any unassigned variable and assign to it a value 

that does not violate any constraints

• Fail if no legal assignments

• Goal test: 

– The current assignment is complete and satisfies all 

constraints
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CSP as a Standard search problem



33

CSP as a Standard search problem
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Standard search formulation (incremental)

• What is the depth of any solution (assuming n variables)? 

n  (this is good)

• Given that there are m possible values for any variable, 

how many paths are there in the search tree?

n! · mn  (this is bad)

• How can we reduce the branching factor?
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Backtracking DFS

For every possible value x in D:

– If assigning x to the next unassigned variable

Vk+1 does not violate any constraint with the k

already assigned variables:

• Set the variable Vk+1 to x

• Evaluate the successors of the current state with this variable 

assignment

• If no valid assignment is found:

Backtrack to previous state

• Stop as soon as a solution is found
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Backtracking search algorithm
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Example
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Example



43

Example
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Example
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Improving Backtracking Efficiency

• Making backtracking search efficient:

– Can we detect inevitable failure early?

– Which variable should be assigned next?

– In what order should its values be tried?
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Early detection of failure

Apply inference to reduce the space of possible 

assignments and detect failure early 
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Early detection of failure: Forward checking

• Keep track of remaining legal values for unassigned variables

• Terminate search when any variable has no legal values
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Early detection of failure

Apply inference to reduce the space of possible 

assignments and detect failure early 
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Early detection of failure: Forward checking

• Keep track of remaining legal values for unassigned variables

• Terminate search when any variable has no legal values
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Early detection of failure: Forward checking

• Keep track of remaining legal values for unassigned variables
• Terminate search when any variable has no legal values
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Constraint propagation

• Forward checking propagates information from assigned to 

unassigned variables, but doesn't provide early detection for all 

failures

• NT and SA cannot both be blue!

• Constraint propagation repeatedly enforces constraints locally
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• Simplest form of propagation makes each pair of variables 

consistent:

– X →Y is consistent iff for every value of X there is some allowed value of Y

Arc consistency

Consistent!
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• Simplest form of propagation makes each pair of variables 

consistent:

– X →Y is consistent iff for every value of X there is some allowed value of Y

– When checking X →Y, throw out any values of X for which there isn’t an 

allowed value of Y

• If X loses a value, all pairs Z → X need to be rechecked

Arc consistency
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Arc consistency
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Arc consistency

• Simplest form of propagation makes each pair of variables 

consistent:

– X →Y is consistent iff for every value of X there is some allowed value of Y

– When checking X →Y, throw out any values of X for which there isn’t an 

allowed value of Y

• If X loses a value, all pairs Z → X need to be rechecked
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• Simplest form of propagation makes each pair of variables 

consistent:

– X →Y is consistent iff for every value of X there is some allowed value of Y

– When checking X →Y, throw out any values of X for which there isn’t an 

allowed value of Y

Arc consistency
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• Simplest form of propagation makes each pair of variables 

consistent:

– X →Y is consistent iff for every value of X there is some allowed value of Y

– When checking X →Y, throw out any values of X for which there isn’t an 

allowed value of Y

• Arc consistency detects failure earlier than forward checking
• Can be run before or after each assignment

Arc consistency
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Arc consistency algorithm AC-3
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Which variable should be assigned next?

• Most constrained variable:

– Choose the variable with the fewest legal values

– A.k.a. minimum remaining values (MRV) heuristic
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Which variable should be assigned next?

• Most constraining variable:

– Choose the variable that imposes the most constraints 

on the remaining variables

– Tie-breaker among most constrained variables
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Given a variable, what should be the order of values?

• Choose the least constraining value:

– The value that rules out the fewest values in the remaining 

variables

Which 

assignment for 

Q should we 

choose?
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Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python, 

David J. Malan and Brian Yu
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• unary constraint constraint involving only one variable 
• {A ≠ Monday} 
• binary constraint constraint involving two variables 
• {A ≠ B} 

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python, 

David J. Malan and Brian Yu
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• node consistency when all the values in a variable's domain satisfy the 
variable's unary constraints 

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python, 

David J. Malan and Brian Yu
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• arc consistency when all the values in a variable's domain satisfy the 
variable's binary constraints 

• To make X arc-consistent with respect to Y, remove elements from X's domain 
until every choice for X has a possible choice for Y 

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python, 

David J. Malan and Brian Yu
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