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Games and Adversarial Search

Artificial Intelligence
Slides are mostly adapted from AIMA, MIT Open Courseware and 

Svetlana Lazebnik (UIUC)
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World Champion chess player Garry Kasparov is defeated by 
IBM’s Deep Blue chess-playing computer in a 

six-game match in May, 1997
(link)

© Telegraph Group Unlimited 1997© Telegraph Group Unlimited 1997

http://www.computerhistory.org/chess/full_record.php?iid=stl-431e1a07b22e1&mainImage=1
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Why study games?

• Games are a traditional hallmark of intelligence
• Games are easy to formalize
• Games can be a good model of real-world competitive 

or cooperative activities
– Military confrontations, negotiation, auctions, etc.
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Games – history of chess playing

• 1949 – Shannon paper – originated the ideas
• 1951 – Turing paper – hand simulation
• 1958 – Bernstein program 
• 1955-1960 – Simon-Newell program
• 1961 – Soviet program
• 1966 – 1967 – MacHack 6 – defeated a good player
• 1970s – NW chess 4.5
• 1980s – Cray Bitz
• 1990s – Belle, Hitech, Deep Thought, 
• 1997 - Deep Blue - defeated Garry Kasparov
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Games

• Multi agent environments : any given agent will need to 
consider the actions of other agents and how they affect 
its own welfare.

• The unpredictability of these other agents can introduce 
many possible contingencies

• There could be competitive or cooperative environments

• Competitive environments, in which the agent’s goals are 
in conflict require adversarial search – these problems are 
called as games
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Games vs. single-agent search

• We don’t know how the opponent will act
– The solution is not a fixed sequence of actions from start state to 

goal state, but a strategy or policy (a mapping from state to best 
move in that state)

• Efficiency is critical to playing well
– The time to make a move is limited
– The branching factor, search depth, and number of terminal 

configurations are huge
• In chess, branching factor ≈ 35 and depth ≈ 100, giving a search tree of 

10154 nodes
– Number of atoms in the observable universe ≈ 1080

– This rules out searching all the way to the end of the game
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Types of game environments

Deterministic Stochastic

Perfect information
(fully observable)

Imperfect information
(partially observable)

Chess, checkers, go Backgammon, 
monopoly

Battleships Scrabble, 
poker, bridge
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Games

• In game theory (economics), any multiagent environment 
(either cooperative or competitive) is a game provided 
that the impact of each agent on the other is significant

• AI games are a specialized kind - deterministic, turn 
taking, two-player, zero sum games of perfect 
information

• In our terminology – deterministic, fully observable 
environments with two agents whose actions alternate 
and the utility values at the end of the game are always 
equal and opposite (+1 and –1)
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Alternating two-player zero-sum games

• Players take turns
• Each game outcome or terminal state has a utility for 

each player (e.g., 1 for win, -1 for loss, 0 for draw)
• The sum of both players’ utilities is a constant
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Game Tree search
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Optimal strategies

• In a normal search problem, the optimal solution would be a 
sequence of moves leading to a goal state - a terminal state that is a 
win

• In a game, MIN has something to say about it and therefore MAX 
must find a contingent strategy, which specifies 

– MAX’s move in the initial state, 
– then MAX’s moves in the states resulting from every possible response by 

MIN,
– then MAX’s moves in the states resulting from every possible response by 

MIN to those moves
– …

• An optimal strategy leads to outcomes at least as good as any other 
strategy when one is playing an infallible opponent
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Partial Game Tree for Tic-Tac-Toe



13Game tree
• A game of tic-tac-toe between two players, “max” and “min”
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Minimax

• Perfect play for deterministic games
• Idea: choose move to position with highest minimax value

= best achievable payoff against best play
• E.g., 2-ply game:
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Minimax value

• Given a game tree, the optimal strategy can be 
determined by examining the minimax value of 
each node (MINIMAX-VALUE(n))

• The minimax value of a node is the utility of being 
in the corresponding state, assuming that both 
players play optimally from there to the end of the 
game

• Given a choice, MAX prefer to move to a state of 
maximum value, whereas MIN prefers a state of 
minimum value
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Minimax algorithm



19Game tree search

• Minimax value of a node: the utility (for MAX) of being in the 
corresponding state, assuming perfect play on both sides

• Minimax strategy: Choose the move that gives the best worst-case 
payoff

3 2 2

3
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• Minimax(node) = 
§ Utility(node) if node is terminal
§ maxaction Minimax(Succ(node, action)) if player = MAX
§ minaction Minimax(Succ(node, action)) if player = MIN

3 2 2

3

MINIMAX-VALUE(root) = max(min(3,12,8), min(2,4,6), min(14,5,2))
= max(3,2,2)
= 3
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Optimality of minimax

• The minimax strategy is optimal 
against an optimal opponent

• What if your opponent is suboptimal?
– Your utility can only be higher than if you 

were playing an optimal opponent!
– A different strategy may work better for a 

sub-optimal opponent, but it will 
necessarily be worse against an optimal 
opponent

11

Example from D. Klein and P. Abbeel
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More general games

• More than two players, non-zero-sum
• Utilities are now tuples
• Each player maximizes their own utility at their node
• Utilities get propagated (backed up) from children to parents

4,3,2 7,4,1

4,3,2

1,5,2 7,7,1

1,5,2

4,3,2
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Tree Player and Non-zero sum games

(+1 +2 +3)

(+6 +1 +2)
(-1 +5 +2) (+5 +4 +5)

(+1 +2 +3)
(-1 +5 +2)

(+1 +2 +3)
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Alpha-beta pruning

• It is possible to compute the exact minimax decision 
without expanding every node in the game tree
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α-β pruning

MINIMAX-VALUE(root) = max(min(3,12,8), min(2,x,y), min(14,5,2))
= max(3,min(2,x,y),2)
= max(3,z,2)      where z <=2
= 3

X Y
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Alpha-beta pruning

3

³3
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Alpha-beta pruning

3

³3

£2
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Alpha-beta pruning

3

³3

£2 £14
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Alpha-beta pruning

3

³3

£2 £5
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Alpha-beta pruning

3

3

£2 2 
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Alpha-beta pruning

• α is the value of the best choice for 
the MAX player found so far 
at any choice point above node n

• We want to compute the 
MIN-value at n

• As we loop over n’s children, 
the MIN-value decreases

• If it drops below α, MAX will never 
choose n, so we can ignore n’s 
remaining children

• Analogously, β is the value of the 
lowest-utility choice found so far for 
the MIN player
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The α-β algorithm
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Alpha-beta pruning
Function action = Alpha-Beta-Search(node) 

v = Max-Value(node, −∞, ∞)
return the action from node with value v

α: best alternative available to the Max player
β: best alternative available to the Min player

Function v = Max-Value(node, α, β)
if Terminal(node) return Utility(node)
v = −∞
for each action from node

v = Max(v, Min-Value(Succ(node, action), α, β))
if v ≥ β return v
α = Max(α, v)

end for
return v

node

Succ(node, action)

action
…



34Alpha-beta pruning

Function action = Alpha-Beta-Search(node) 
v = Min-Value(node, −∞, ∞)
return the action from node with value v

α: best alternative available to the Max player
β: best alternative available to the Min player

Function v = Min-Value(node, α, β)
if Terminal(node) return Utility(node)
v = +∞
for each action from node

v = Min(v, Max-Value(Succ(node, action), α, β))
if v ≤ α return v
β = Min(β, v)

end for
return v

node

Succ(node, action)

action
…
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α-β pruning example
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α-β pruning example



37

α-β pruning example
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α-β pruning example
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α-β pruning example
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α-β pruning example
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α-β pruning example
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α-β pruning example
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α-β pruning example
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α-β pruning example
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α-β pruning example
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α-β pruning example
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α-β pruning example
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H I
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D E

6 5 8
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MIN

6 >=8

MAX

<=6

J K

= agent = opponent

MIN
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H I
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3 2 2

3 2 2
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Alpha-beta pruning

• Pruning does not affect final result
• Amount of pruning depends on move ordering

– Should start with the “best” moves (highest-value for MAX 
or lowest-value for MIN)

– For chess, can try captures first, then threats, then forward 
moves, then backward moves

– Can also try to remember “killer moves” from other branches 
of the tree

• With perfect ordering, the time to find the best move is 
reduced to O(bm/2) from O(bm)
– Depth of search is effectively doubled
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Move generation
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Min-Max

3
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Resource limits

Suppose we have 100 secs, explore 104 nodes/sec
à 106 nodes per move

Standard approach:
• cutoff test: 

e.g., depth limit (perhaps add quiescence search)

• evaluation function 
= estimated desirability of position
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Evaluation function 
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Evaluation function

• "material", : some measure of which pieces one has on the 
board. 

• A typical weighting for each type of chess piece is shown 
• Other types of features try to encode something about the 

distribution of the pieces on the board. 
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Evaluation functions

• A typical evaluation function is a linear function in which some set of 
coefficients is used to weight a number of "features" of the board 
position. 

• weighted sum of features:

Eval(s) = w1 f1(s) + w2 f2(s) + … + wn fn(s)

– For chess, wk may be the material value of a piece (pawn = 1, 
knight = 3, rook = 5, queen = 9) and fk(s) may be the advantage in 
terms of that piece

– Eg. w1 = 9 with 
f1(s) = (number of white queens) – (number of black queens)
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Evaluation function

• Cut off search at a certain depth and compute the value of an 
evaluation function for a state instead of its minimax value

• The evaluation function may be thought of as the probability of 
winning from a given state or the expected value of that state
– If a position A has a 100% chance of winning it should have the 

evaluation 1
– If position B have a 50% chance of winning and 25% os loosing 

and 25% of being a draw, the evaluation value would be 
+1x0.50+ -1x0.25+ 0x0.25 = 0.25

• Evaluation functions may be learned from game databases or by 
having the program play many games against itself
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Cutting off search

MinimaxCutoff is identical to 
MinimaxValue except

1. Terminal? is replaced by 
Cutoff?

2. Utility is replaced by Eval
Does it work in practice?

bm = 106, b=35 m=4
4-ply lookahead is a hopeless chess 

player!
– 4-ply ≈ human novice
– 8-ply ≈ typical PC, human 

master
– 12-ply ≈ Deep Blue, 

Kasparov
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Chess playing systems

• Baseline system: 200 million node evalutions per move 
(3 min), minimax with a decent evaluation function and 
quiescence search

– 5-ply ≈ human novice
• Add alpha-beta pruning

– 10-ply ≈ typical PC, experienced player
• Deep Blue: 30 billion evaluations per move, singular 

extensions, evaluation function with 8000 features, 
large databases of opening and endgame moves

– 14-ply ≈ Garry Kasparov
• More recent state of the art (Hydra, ca. 2006): 36 billion 

evaluations per second, advanced pruning techniques
– 18-ply ≈ better than any human alive?

http://en.wikipedia.org/wiki/Hydra_(chess)
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Practical issues



65

Cutting off search

• Horizon effect: you may incorrectly estimate the 
value of a state by overlooking an event that is just 
beyond the depth limit
– For example, a damaging move by the opponent that 

can be delayed but not avoided
• Possible remedies

– Quiescence search: do not cut off search at positions 
that are unstable – for example, are you about to lose an 
important piece?

– Singular extension: a strong move that should be tried 
when the normal depth limit is reached
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Types of game environments

Deterministic Stochastic

Perfect information
(fully observable)

Imperfect information
(partially observable)

Chess, checkers, go Backgammon, 
monopoly

Battleships Scrabble, 
poker, bridge
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Stochastic games

• How to incorporate dice throwing into the game tree?
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Stochastic games
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Minimax vs. Expectiminimax
•
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Stochastic games

• Expectiminimax: for chance nodes, sum values of 
successor states weighted by the probability of each 
successor

• Value(node) = 
§ Utility(node) if node is terminal
§ maxaction Value(Succ(node, action)) if type = MAX
§ minaction Value(Succ(node, action)) if type = MIN
§ sumaction P(Succ(node, action)) * Value(Succ(node, action)) if 

type = CHANCE
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Expectiminimax summary

• All of the same methods are useful:
– Alpha-Beta pruning
– Evaluation function
– Quiescence search, Singular move

• Computational complexity is pretty bad
– Branching factor of the random choice can be high
– Twice as many “levels” in the tree
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Stochastic games

• Expectiminimax: for chance nodes, sum values of 
successor states weighted by the probability of each 
successor
– Nasty branching factor, defining evaluation functions and 

pruning algorithms more difficult
• Monte Carlo simulation: when you get to a chance 

node, simulate a large number of games with random 
dice rolls and use win percentage as evaluation function
– Can work well for games like Backgammon
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Stochastic games of imperfect information

Source

States are grouped into 
information sets for 

each player

http://www.sciencemag.org/content/347/6218/145.abstract
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Stochastic games of imperfect information

• Simple Monte Carlo approach: run multiple 
simulations with random cards pretending 
the game is fully observable
– “Averaging over clairvoyance”
– Problem: this strategy does not account for bluffing, 

information gathering, etc.
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Miniminimax with imperfect information

•
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Imperfect information example

• Min chooses a coin.
• I say the name of a U.S. 

President.
– If I guessed right, she gives 

me the coin.
– If I guessed wrong, I have 

to give her a coin to match 
the one she has.

1 -5 5-1
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Method #1: Treat “unknown” as “unknown”

• The problem: I don’t know which 
state I’m in.  I only know it’s one of 
these two.

• The solution: choose the policy that 
maximizes my minimum reward.

– “Lincoln”: minimum reward is -5.
– “Jefferson”: minimum reward is -1.

• Miniminimax policy: say 
“Jefferson”.

1 -5 5-1
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Method #2: Treat “unknown” as “random”

•

1 -1 5-5
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How to deal with imperfect information

• If you think you know the probabilities of 
different settings, and if you want to maximize 
your average winnings (for example, you can 
afford to play the game many times): 
expectiminimax

• If you have no idea of the probabilities of different 
settings; or, if you can only afford to play once, 
and you can’t afford to lose: miniminimax

• If the unknown information has been selected 
intentionally by your opponent: use game theory
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Stochastic search
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Stochastic search for stochastic games

•
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Monte Carlo Tree Search
• What about deterministic games with deep trees, large branching 

factor, and no good heuristics – like Go?
• Instead of depth-limited search with an evaluation function, 

use randomized simulations
• Starting at the current state (root of search tree), iterate:

– Select a leaf node for expansion 
using a tree policy (trading off
exploration and exploitation)

– Run a simulation using 
a default policy (e.g., random 
moves) until a terminal state 
is reached

– Back-propagate the outcome 
to update the value estimates 
of internal tree nodes

C. Browne et al., A survey of Monte Carlo Tree Search Methods, 2012

http://ccg.doc.gold.ac.uk/papers/browne_tciaig12_1.pdf
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Learned evaluation functions
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Stochastic search off-line

Training phase:
• Spend a few weeks allowing your computer to play 

billions of random games from every possible starting state
• Value of the starting state = average value of the ending 

states achieved during those billion random games

Testing phase:
• During the alpha-beta search, search until you reach a state 

whose value you have stored in your value lookup table
• Oops…. Why doesn’t this work?
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Evaluation as a pattern recognition problem

Training phase:
•Spend a few weeks allowing your computer to play billions of random games 
from billions of possible starting states.
•Value of the starting state = average value of the ending states achieved during 
those billion random games
Generalization:
•Featurize (e.g., x1=number of             patterns, x2 = number of             patterns, 
etc.)
•Linear regression: find a1, a2, etc. so that Value(state) ≈ a1*x1+x2*x2+…

Testing phase:
•During the alpha-beta search, search as deep as you can, then estimate the value 
of each state at your horizon using Value(state) ≈ a1*x1+x2*x2+…
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Pros and Cons

• Learned evaluation function
– Pro: off-line search permits lots of compute time, therefore 

lots of training data
– Con: there’s no way you can evaluate every starting state 

that might be achieved during actual game play.  Some 
starting states will be missed, so generalized evaluation 
function is necessary

• On-line stochastic search
– Con: limited compute time
– Pro: it’s possible to estimate the value of the state you’ve 

reached during actual game play



89

Case study: AlphaGo

• “Gentlemen 
should not 
waste their 
time on trivial 
games -- they 
should play 
go.”

• -- Confucius,
• The Analects
• ca. 500 B. C. E.

Anton Ninno Roy Laird, Ph.D.
antonninno@yahoo.com roylaird@gmail.com

special thanks to Kiseido Publications 
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AlphaGo

• Deep convolutional 
neural networks

– Treat the Go board as 
an image

– Powerful function 
approximation 
machinery

– Can be trained to 
predict distribution 
over possible moves 
(policy) or expected 
value of position

D. Silver et al., Mastering the Game of Go with Deep Neural Networks and Tree Search, Nature 
529, January 2016

http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html
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AlphaGo
• SL policy network

– Idea: perform supervised learning (SL) to predict human 
moves

– Given state s, predict probability distribution over moves a, 
P(a|s)

– Trained on 30M positions, 57% accuracy on predicting 
human moves

– Also train a smaller, faster rollout policy network (24% 
accurate)

• RL policy network
– Idea: fine-tune policy network using reinforcement learning

(RL)
– Initialize RL network to SL network
– Play two snapshots of the network against each other, update 

parameters to maximize expected final outcome
– RL network wins against SL network 80% of the time, wins 

against open-source Pachi Go program 85% of the time

D. Silver et al., Mastering the Game of Go with Deep Neural Networks and Tree Search, Nature 
529, January 2016

http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html


92

AlphaGo

• SL policy network
• RL policy network
• Value network

– Idea: train network for position evaluation
– Given state s, estimate v(s), expected outcome of 

play starting with position s and following the 
learned policy for both players

– Train network by minimizing mean squared error 
between actual and predicted outcome

– Trained on 30M positions sampled from different 
self-play games

D. Silver et al., Mastering the Game of Go with Deep Neural Networks and Tree Search, Nature 
529, January 2016

http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html
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AlphaGo

D. Silver et al., Mastering the Game of Go with Deep Neural Networks and Tree Search, Nature 
529, January 2016

http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html
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AlphaGo

• Monte Carlo Tree Search
– Each edge in the search tree maintains prior probabilities P(s,a), counts

N(s,a), action values Q(s,a)
– P(s,a) comes from SL policy network
– Tree traversal policy selects actions that maximize Q value plus 

exploration bonus (proportional to P but inversely proportional to N)
– An expanded leaf node gets a value estimate that is a combination of 

value network estimate and outcome of simulated game using rollout 
network

– At the end of each simulation, Q values are updated to the average of 
values of all simulations passing through that edge

D. Silver et al., Mastering the Game of Go with Deep Neural Networks and Tree Search, Nature 
529, January 2016

http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html
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AlphaGo

• Monte Carlo Tree Search

D. Silver et al., Mastering the Game of Go with Deep Neural Networks and Tree Search, Nature 
529, January 2016

http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html
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AlphaGo

D. Silver et al., Mastering the Game of Go with Deep Neural Networks and Tree Search, Nature 
529, January 2016

http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html
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Alpha-Go video
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Game AI: Origins

• Minimax algorithm: Ernst Zermelo, 1912
• Chess playing with evaluation function, quiescence 

search, selective search: 
Claude Shannon, 1949 (paper)

• Alpha-beta search: John McCarthy, 1956 
• Checkers program that learns its own evaluation 

function by playing against itself: Arthur Samuel,  
1956 (Rodney Brooks blog post)

http://archive.computerhistory.org/projects/chess/related_materials/text/2-0%20and%202-1.Programming_a_computer_for_playing_chess.shannon/2-0%20and%202-1.Programming_a_computer_for_playing_chess.shannon.062303002.pdf
https://rodneybrooks.com/forai-machine-learning-explained/
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Game AI: State of the art
• Computers are better than humans:

– Checkers: solved in 2007
– Chess:

• State-of-the-art search-based systems now better than humans
• Deep learning machine teaches itself chess in 72 hours, plays at 

International Master Level (arXiv, September 2015)
• Computers are competitive with top human players:

– Backgammon: TD-Gammon system (1992) used 
reinforcement learning to learn a good evaluation function

– Bridge: top systems use Monte Carlo simulation and 
alpha-beta search

– Go: computers were not considered competitive until 
AlphaGo in 2016

https://www.theatlantic.com/technology/archive/2017/07/marion-tinsley-checkers/534111/
http://www.technologyreview.com/view/541276/deep-learning-machine-teaches-itself-chess-in-72-hours-plays-at-international-master/
https://en.wikipedia.org/wiki/TD-Gammon
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Game AI: State of the art
• Computers are not competitive with top human players:

– Poker 
• Heads-up limit hold’em poker is solved (2015) 

– Simplest variant played competitively by humans
– Smaller number of states than checkers, but partial observability makes it difficult

– Essentially weakly solved = cannot be beaten with statistical significance 
in a lifetime of playing

• CMU’s Libratus system beats four of the best human players 
at no-limit Texas Hold’em poker (2017)

http://www.sciencemag.org/content/347/6218/145.abstract
https://www.wired.com/2017/02/libratus/
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http://xkcd.com/1002/

See also: http://xkcd.com/1263/

http://xkcd.com/1002/
http://xkcd.com/1263/
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Calvinball:
• Play it online
• Watch an instructional video

https://insaner.com/calvinball/
https://www.youtube.com/watch?v=jr85nM9q08k

