
1

Games and Adversarial Search

Artificial Intelligence
Slides are mostly adapted from AIMA, MIT Open Courseware and

Svetlana Lazebnik (UIUC)

2

World Champion chess player Garry Kasparov is defeated by
IBM’s Deep Blue chess-playing computer in a

six-game match in May, 1997
(link)

© Telegraph Group Unlimited 1997© Telegraph Group Unlimited 1997

http://www.computerhistory.org/chess/full_record.php?iid=stl-431e1a07b22e1&mainImage=1

3

Why study games?

• Games are a traditional hallmark of intelligence
• Games are easy to formalize
• Games can be a good model of real-world competitive

or cooperative activities
– Military confrontations, negotiation, auctions, etc.

4

Games – history of chess playing

• 1949 – Shannon paper – originated the ideas
• 1951 – Turing paper – hand simulation
• 1958 – Bernstein program
• 1955-1960 – Simon-Newell program
• 1961 – Soviet program
• 1966 – 1967 – MacHack 6 – defeated a good player
• 1970s – NW chess 4.5
• 1980s – Cray Bitz
• 1990s – Belle, Hitech, Deep Thought,
• 1997 - Deep Blue - defeated Garry Kasparov

5

Games

• Multi agent environments : any given agent will need to
consider the actions of other agents and how they affect
its own welfare.

• The unpredictability of these other agents can introduce
many possible contingencies

• There could be competitive or cooperative environments

• Competitive environments, in which the agent’s goals are
in conflict require adversarial search – these problems are
called as games

6

Games vs. single-agent search

• We don’t know how the opponent will act
– The solution is not a fixed sequence of actions from start state to

goal state, but a strategy or policy (a mapping from state to best
move in that state)

• Efficiency is critical to playing well
– The time to make a move is limited
– The branching factor, search depth, and number of terminal

configurations are huge
• In chess, branching factor ≈ 35 and depth ≈ 100, giving a search tree of

10154 nodes
– Number of atoms in the observable universe ≈ 1080

– This rules out searching all the way to the end of the game

7

Types of game environments

Deterministic Stochastic

Perfect information
(fully observable)

Imperfect information
(partially observable)

Chess, checkers, go Backgammon,
monopoly

Battleships Scrabble,
poker, bridge

8

Games

• In game theory (economics), any multiagent environment
(either cooperative or competitive) is a game provided
that the impact of each agent on the other is significant

• AI games are a specialized kind - deterministic, turn
taking, two-player, zero sum games of perfect
information

• In our terminology – deterministic, fully observable
environments with two agents whose actions alternate
and the utility values at the end of the game are always
equal and opposite (+1 and –1)

9

Alternating two-player zero-sum games

• Players take turns
• Each game outcome or terminal state has a utility for

each player (e.g., 1 for win, -1 for loss, 0 for draw)
• The sum of both players’ utilities is a constant

10

Game Tree search

11

Optimal strategies

• In a normal search problem, the optimal solution would be a
sequence of moves leading to a goal state - a terminal state that is a
win

• In a game, MIN has something to say about it and therefore MAX
must find a contingent strategy, which specifies

– MAX’s move in the initial state,
– then MAX’s moves in the states resulting from every possible response by

MIN,
– then MAX’s moves in the states resulting from every possible response by

MIN to those moves
– …

• An optimal strategy leads to outcomes at least as good as any other
strategy when one is playing an infallible opponent

12

Partial Game Tree for Tic-Tac-Toe

13Game tree
• A game of tic-tac-toe between two players, “max” and “min”

16

Minimax

• Perfect play for deterministic games
• Idea: choose move to position with highest minimax value

= best achievable payoff against best play
• E.g., 2-ply game:

17

Minimax value

• Given a game tree, the optimal strategy can be
determined by examining the minimax value of
each node (MINIMAX-VALUE(n))

• The minimax value of a node is the utility of being
in the corresponding state, assuming that both
players play optimally from there to the end of the
game

• Given a choice, MAX prefer to move to a state of
maximum value, whereas MIN prefers a state of
minimum value

18

Minimax algorithm

19Game tree search

• Minimax value of a node: the utility (for MAX) of being in the
corresponding state, assuming perfect play on both sides

• Minimax strategy: Choose the move that gives the best worst-case
payoff

3 2 2

3

20

• Minimax(node) =
§ Utility(node) if node is terminal
§ maxaction Minimax(Succ(node, action)) if player = MAX
§ minaction Minimax(Succ(node, action)) if player = MIN

3 2 2

3

MINIMAX-VALUE(root) = max(min(3,12,8), min(2,4,6), min(14,5,2))
= max(3,2,2)
= 3

21

Optimality of minimax

• The minimax strategy is optimal
against an optimal opponent

• What if your opponent is suboptimal?
– Your utility can only be higher than if you

were playing an optimal opponent!
– A different strategy may work better for a

sub-optimal opponent, but it will
necessarily be worse against an optimal
opponent

11

Example from D. Klein and P. Abbeel

22

More general games

• More than two players, non-zero-sum
• Utilities are now tuples
• Each player maximizes their own utility at their node
• Utilities get propagated (backed up) from children to parents

4,3,2 7,4,1

4,3,2

1,5,2 7,7,1

1,5,2

4,3,2

23

Tree Player and Non-zero sum games

(+1 +2 +3)

(+6 +1 +2)
(-1 +5 +2) (+5 +4 +5)

(+1 +2 +3)
(-1 +5 +2)

(+1 +2 +3)

24

Alpha-beta pruning

• It is possible to compute the exact minimax decision
without expanding every node in the game tree

25

α-β pruning

MINIMAX-VALUE(root) = max(min(3,12,8), min(2,x,y), min(14,5,2))
= max(3,min(2,x,y),2)
= max(3,z,2) where z <=2
= 3

X Y

26

Alpha-beta pruning

3

³3

27

Alpha-beta pruning

3

³3

£2

28

Alpha-beta pruning

3

³3

£2 £14

29

Alpha-beta pruning

3

³3

£2 £5

30

Alpha-beta pruning

3

3

£2 2

31

Alpha-beta pruning

• α is the value of the best choice for
the MAX player found so far
at any choice point above node n

• We want to compute the
MIN-value at n

• As we loop over n’s children,
the MIN-value decreases

• If it drops below α, MAX will never
choose n, so we can ignore n’s
remaining children

• Analogously, β is the value of the
lowest-utility choice found so far for
the MIN player

32

The α-β algorithm

33

Alpha-beta pruning
Function action = Alpha-Beta-Search(node)

v = Max-Value(node, −∞, ∞)
return the action from node with value v

α: best alternative available to the Max player
β: best alternative available to the Min player

Function v = Max-Value(node, α, β)
if Terminal(node) return Utility(node)
v = −∞
for each action from node

v = Max(v, Min-Value(Succ(node, action), α, β))
if v ≥ β return v
α = Max(α, v)

end for
return v

node

Succ(node, action)

action
…

34Alpha-beta pruning

Function action = Alpha-Beta-Search(node)
v = Min-Value(node, −∞, ∞)
return the action from node with value v

α: best alternative available to the Max player
β: best alternative available to the Min player

Function v = Min-Value(node, α, β)
if Terminal(node) return Utility(node)
v = +∞
for each action from node

v = Min(v, Max-Value(Succ(node, action), α, β))
if v ≤ α return v
β = Min(β, v)

end for
return v

node

Succ(node, action)

action
…

35

α-β pruning example

36

α-β pruning example

37

α-β pruning example

38

α-β pruning example

39

α-β pruning example

40

α-β pruning example

41

α-β pruning example

42

α-β pruning example

43

α-β pruning example

44

α-β pruning example

45

α-β pruning example

46

α-β pruning example

47

α-β pruning example

48

H I

A

B C

D E

6 5 8

MAX

MIN

6 >=8

MAX

<=6

J K

= agent = opponent

MIN

49

H I

A

B C

D E F G

6 5 8

MAX

MIN

6 >=8

MAX

6

H I J K L M

= agent = opponent

2 1

2

<=2

>=6

MIN

50

H I

A

B C

D E F G

6 5 8

MAX

MIN

6 >=8

MAX

6

H I J K L M

= agent = opponent

2 1

2

2

>=6

MIN

51

H I

A

B C

D E F G

6 5 8

MAX

MIN

6 >=8

MAX

6

H I J K L M

= agent = opponent

2 1

2

2

6

alpha
cutoff

beta
cutoff

Alpha-beta Pruning

MIN

53

3 2 2

3 2 2

54

Alpha-beta pruning

• Pruning does not affect final result
• Amount of pruning depends on move ordering

– Should start with the “best” moves (highest-value for MAX
or lowest-value for MIN)

– For chess, can try captures first, then threats, then forward
moves, then backward moves

– Can also try to remember “killer moves” from other branches
of the tree

• With perfect ordering, the time to find the best move is
reduced to O(bm/2) from O(bm)
– Depth of search is effectively doubled

55

Move generation

56

Min-Max

3

57

Resource limits

Suppose we have 100 secs, explore 104 nodes/sec
à 106 nodes per move

Standard approach:
• cutoff test:

e.g., depth limit (perhaps add quiescence search)

• evaluation function
= estimated desirability of position

58

Evaluation function

59

Evaluation function

• "material", : some measure of which pieces one has on the
board.

• A typical weighting for each type of chess piece is shown
• Other types of features try to encode something about the

distribution of the pieces on the board.

60

Evaluation functions

• A typical evaluation function is a linear function in which some set of
coefficients is used to weight a number of "features" of the board
position.

• weighted sum of features:

Eval(s) = w1 f1(s) + w2 f2(s) + … + wn fn(s)

– For chess, wk may be the material value of a piece (pawn = 1,
knight = 3, rook = 5, queen = 9) and fk(s) may be the advantage in
terms of that piece

– Eg. w1 = 9 with
f1(s) = (number of white queens) – (number of black queens)

61

Evaluation function

• Cut off search at a certain depth and compute the value of an
evaluation function for a state instead of its minimax value

• The evaluation function may be thought of as the probability of
winning from a given state or the expected value of that state
– If a position A has a 100% chance of winning it should have the

evaluation 1
– If position B have a 50% chance of winning and 25% os loosing

and 25% of being a draw, the evaluation value would be
+1x0.50+ -1x0.25+ 0x0.25 = 0.25

• Evaluation functions may be learned from game databases or by
having the program play many games against itself

62

Cutting off search

MinimaxCutoff is identical to
MinimaxValue except

1. Terminal? is replaced by
Cutoff?

2. Utility is replaced by Eval
Does it work in practice?

bm = 106, b=35 m=4
4-ply lookahead is a hopeless chess

player!
– 4-ply ≈ human novice
– 8-ply ≈ typical PC, human

master
– 12-ply ≈ Deep Blue,

Kasparov

63

Chess playing systems

• Baseline system: 200 million node evalutions per move
(3 min), minimax with a decent evaluation function and
quiescence search

– 5-ply ≈ human novice
• Add alpha-beta pruning

– 10-ply ≈ typical PC, experienced player
• Deep Blue: 30 billion evaluations per move, singular

extensions, evaluation function with 8000 features,
large databases of opening and endgame moves

– 14-ply ≈ Garry Kasparov
• More recent state of the art (Hydra, ca. 2006): 36 billion

evaluations per second, advanced pruning techniques
– 18-ply ≈ better than any human alive?

http://en.wikipedia.org/wiki/Hydra_(chess)

64

Practical issues

65

Cutting off search

• Horizon effect: you may incorrectly estimate the
value of a state by overlooking an event that is just
beyond the depth limit
– For example, a damaging move by the opponent that

can be delayed but not avoided
• Possible remedies

– Quiescence search: do not cut off search at positions
that are unstable – for example, are you about to lose an
important piece?

– Singular extension: a strong move that should be tried
when the normal depth limit is reached

67

Types of game environments

Deterministic Stochastic

Perfect information
(fully observable)

Imperfect information
(partially observable)

Chess, checkers, go Backgammon,
monopoly

Battleships Scrabble,
poker, bridge

68

Stochastic games

• How to incorporate dice throwing into the game tree?

69

Stochastic games

70

Minimax vs. Expectiminimax
•

71

Stochastic games

• Expectiminimax: for chance nodes, sum values of
successor states weighted by the probability of each
successor

• Value(node) =
§ Utility(node) if node is terminal
§ maxaction Value(Succ(node, action)) if type = MAX
§ minaction Value(Succ(node, action)) if type = MIN
§ sumaction P(Succ(node, action)) * Value(Succ(node, action)) if

type = CHANCE

73

Expectiminimax summary

• All of the same methods are useful:
– Alpha-Beta pruning
– Evaluation function
– Quiescence search, Singular move

• Computational complexity is pretty bad
– Branching factor of the random choice can be high
– Twice as many “levels” in the tree

74

Stochastic games

• Expectiminimax: for chance nodes, sum values of
successor states weighted by the probability of each
successor
– Nasty branching factor, defining evaluation functions and

pruning algorithms more difficult
• Monte Carlo simulation: when you get to a chance

node, simulate a large number of games with random
dice rolls and use win percentage as evaluation function
– Can work well for games like Backgammon

75

Stochastic games of imperfect information

Source

States are grouped into
information sets for

each player

http://www.sciencemag.org/content/347/6218/145.abstract

76

Stochastic games of imperfect information

• Simple Monte Carlo approach: run multiple
simulations with random cards pretending
the game is fully observable
– “Averaging over clairvoyance”
– Problem: this strategy does not account for bluffing,

information gathering, etc.

77

Miniminimax with imperfect information

•

78

Imperfect information example

• Min chooses a coin.
• I say the name of a U.S.

President.
– If I guessed right, she gives

me the coin.
– If I guessed wrong, I have

to give her a coin to match
the one she has.

1 -5 5-1

79

Method #1: Treat “unknown” as “unknown”

• The problem: I don’t know which
state I’m in. I only know it’s one of
these two.

• The solution: choose the policy that
maximizes my minimum reward.

– “Lincoln”: minimum reward is -5.
– “Jefferson”: minimum reward is -1.

• Miniminimax policy: say
“Jefferson”.

1 -5 5-1

80

Method #2: Treat “unknown” as “random”

•

1 -1 5-5

81

How to deal with imperfect information

• If you think you know the probabilities of
different settings, and if you want to maximize
your average winnings (for example, you can
afford to play the game many times):
expectiminimax

• If you have no idea of the probabilities of different
settings; or, if you can only afford to play once,
and you can’t afford to lose: miniminimax

• If the unknown information has been selected
intentionally by your opponent: use game theory

82

Stochastic search

83

Stochastic search for stochastic games

•

84

Monte Carlo Tree Search
• What about deterministic games with deep trees, large branching

factor, and no good heuristics – like Go?
• Instead of depth-limited search with an evaluation function,

use randomized simulations
• Starting at the current state (root of search tree), iterate:

– Select a leaf node for expansion
using a tree policy (trading off
exploration and exploitation)

– Run a simulation using
a default policy (e.g., random
moves) until a terminal state
is reached

– Back-propagate the outcome
to update the value estimates
of internal tree nodes

C. Browne et al., A survey of Monte Carlo Tree Search Methods, 2012

http://ccg.doc.gold.ac.uk/papers/browne_tciaig12_1.pdf

85

Learned evaluation functions

86

Stochastic search off-line

Training phase:
• Spend a few weeks allowing your computer to play

billions of random games from every possible starting state
• Value of the starting state = average value of the ending

states achieved during those billion random games

Testing phase:
• During the alpha-beta search, search until you reach a state

whose value you have stored in your value lookup table
• Oops…. Why doesn’t this work?

87

Evaluation as a pattern recognition problem

Training phase:
•Spend a few weeks allowing your computer to play billions of random games
from billions of possible starting states.
•Value of the starting state = average value of the ending states achieved during
those billion random games
Generalization:
•Featurize (e.g., x1=number of patterns, x2 = number of patterns,
etc.)
•Linear regression: find a1, a2, etc. so that Value(state) ≈ a1*x1+x2*x2+…

Testing phase:
•During the alpha-beta search, search as deep as you can, then estimate the value
of each state at your horizon using Value(state) ≈ a1*x1+x2*x2+…

88

Pros and Cons

• Learned evaluation function
– Pro: off-line search permits lots of compute time, therefore

lots of training data
– Con: there’s no way you can evaluate every starting state

that might be achieved during actual game play. Some
starting states will be missed, so generalized evaluation
function is necessary

• On-line stochastic search
– Con: limited compute time
– Pro: it’s possible to estimate the value of the state you’ve

reached during actual game play

89

Case study: AlphaGo

• “Gentlemen
should not
waste their
time on trivial
games -- they
should play
go.”

• -- Confucius,
• The Analects
• ca. 500 B. C. E.

Anton Ninno Roy Laird, Ph.D.
antonninno@yahoo.com roylaird@gmail.com

special thanks to Kiseido Publications

90

AlphaGo

• Deep convolutional
neural networks

– Treat the Go board as
an image

– Powerful function
approximation
machinery

– Can be trained to
predict distribution
over possible moves
(policy) or expected
value of position

D. Silver et al., Mastering the Game of Go with Deep Neural Networks and Tree Search, Nature
529, January 2016

http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html

91

AlphaGo
• SL policy network

– Idea: perform supervised learning (SL) to predict human
moves

– Given state s, predict probability distribution over moves a,
P(a|s)

– Trained on 30M positions, 57% accuracy on predicting
human moves

– Also train a smaller, faster rollout policy network (24%
accurate)

• RL policy network
– Idea: fine-tune policy network using reinforcement learning

(RL)
– Initialize RL network to SL network
– Play two snapshots of the network against each other, update

parameters to maximize expected final outcome
– RL network wins against SL network 80% of the time, wins

against open-source Pachi Go program 85% of the time

D. Silver et al., Mastering the Game of Go with Deep Neural Networks and Tree Search, Nature
529, January 2016

http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html

92

AlphaGo

• SL policy network
• RL policy network
• Value network

– Idea: train network for position evaluation
– Given state s, estimate v(s), expected outcome of

play starting with position s and following the
learned policy for both players

– Train network by minimizing mean squared error
between actual and predicted outcome

– Trained on 30M positions sampled from different
self-play games

D. Silver et al., Mastering the Game of Go with Deep Neural Networks and Tree Search, Nature
529, January 2016

http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html

93

AlphaGo

D. Silver et al., Mastering the Game of Go with Deep Neural Networks and Tree Search, Nature
529, January 2016

http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html

94

AlphaGo

• Monte Carlo Tree Search
– Each edge in the search tree maintains prior probabilities P(s,a), counts

N(s,a), action values Q(s,a)
– P(s,a) comes from SL policy network
– Tree traversal policy selects actions that maximize Q value plus

exploration bonus (proportional to P but inversely proportional to N)
– An expanded leaf node gets a value estimate that is a combination of

value network estimate and outcome of simulated game using rollout
network

– At the end of each simulation, Q values are updated to the average of
values of all simulations passing through that edge

D. Silver et al., Mastering the Game of Go with Deep Neural Networks and Tree Search, Nature
529, January 2016

http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html

95

AlphaGo

• Monte Carlo Tree Search

D. Silver et al., Mastering the Game of Go with Deep Neural Networks and Tree Search, Nature
529, January 2016

http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html

96

AlphaGo

D. Silver et al., Mastering the Game of Go with Deep Neural Networks and Tree Search, Nature
529, January 2016

http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html

97

Alpha-Go video

98

Game AI: Origins

• Minimax algorithm: Ernst Zermelo, 1912
• Chess playing with evaluation function, quiescence

search, selective search:
Claude Shannon, 1949 (paper)

• Alpha-beta search: John McCarthy, 1956
• Checkers program that learns its own evaluation

function by playing against itself: Arthur Samuel,
1956 (Rodney Brooks blog post)

http://archive.computerhistory.org/projects/chess/related_materials/text/2-0%20and%202-1.Programming_a_computer_for_playing_chess.shannon/2-0%20and%202-1.Programming_a_computer_for_playing_chess.shannon.062303002.pdf
https://rodneybrooks.com/forai-machine-learning-explained/

99

Game AI: State of the art
• Computers are better than humans:

– Checkers: solved in 2007
– Chess:

• State-of-the-art search-based systems now better than humans
• Deep learning machine teaches itself chess in 72 hours, plays at

International Master Level (arXiv, September 2015)
• Computers are competitive with top human players:

– Backgammon: TD-Gammon system (1992) used
reinforcement learning to learn a good evaluation function

– Bridge: top systems use Monte Carlo simulation and
alpha-beta search

– Go: computers were not considered competitive until
AlphaGo in 2016

https://www.theatlantic.com/technology/archive/2017/07/marion-tinsley-checkers/534111/
http://www.technologyreview.com/view/541276/deep-learning-machine-teaches-itself-chess-in-72-hours-plays-at-international-master/
https://en.wikipedia.org/wiki/TD-Gammon

100

Game AI: State of the art
• Computers are not competitive with top human players:

– Poker
• Heads-up limit hold’em poker is solved (2015)

– Simplest variant played competitively by humans
– Smaller number of states than checkers, but partial observability makes it difficult

– Essentially weakly solved = cannot be beaten with statistical significance
in a lifetime of playing

• CMU’s Libratus system beats four of the best human players
at no-limit Texas Hold’em poker (2017)

http://www.sciencemag.org/content/347/6218/145.abstract
https://www.wired.com/2017/02/libratus/

101

http://xkcd.com/1002/

See also: http://xkcd.com/1263/

http://xkcd.com/1002/
http://xkcd.com/1263/

102

Calvinball:
• Play it online
• Watch an instructional video

https://insaner.com/calvinball/
https://www.youtube.com/watch?v=jr85nM9q08k

