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LOGIC log-ic
I'lajik/ )

noun
noun: logic

1. reasoning conducted or assessed according to strict principles of validity.
"gxperience is a better guide to this than deduclive logic"
synonyms: reasoning, line of reasoning, rationale, argument, argumentation
"the logic of their argument"

- a particular system or codification of the principles of proof and inference.
“Arnstotelian logic®

Also basis of digital circuits in computer chips

Logle: anather thing that
penguins aren't very gooad at.
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Role of logic Iin Al

For 2000 years, people tried to codify “human reasoning” and came up
with logic.

* Most Al work until 1980s: Build machines that represent knowledge
and do reasoning via logic. “Rule based reasoning.”

a program has common sense if it automatically deduces for itself a
sufficiently wide class of immediate consequences of anything it is told
and what it already knows. . . In order for a program to be capable of
learning something it must first be capable of being told it. John
McCarthy, “Programs with Common Sense”, 1959.




Requirements for a knowledge based agent

* 1. “what it already knows” [McCarthy '59]
A knowledge base of beliefs.

« 2. “it must first be capable of being told” [McCarthy ’59]
A way to put new beliefs into the knowledge base.

» 3. “automatically deduces for itself a sufficiently wide
class of immediate consequences” [McCarthy "59]

A reasoning mechanism to derive new beliefs from ones
already in the knowledge base.
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Early Knowledge Base Systems

« Much of Al involves building systems that are knowledge based
— Language understanding
— Planning
— Diagnosis
— EXxpert systems, etc.

« Expert system: use of a large collection of symbolic expert knowledge
to solve problems:

— E.A. Feigenbaum, B.G. Buchanan, J. Lederberg — Heuristic DENDRAL (1965):
contains knowledge from organic chemistry

— E.H. Shortliffe: MYCIN (1974-1979) — diagnostics of infectious diseases

— H.E. Pople, J.D. Myers: Internist-1 (1973-1982) — diagnosis in the big area of
Internal medicine

— D. Lenat: Cyc (1984-) — representation of common sense knowledge




Advantage of Knowledge Base Systems

Knowledge-based system most suitable for open-ended tasks

can structurally isolate reasons for particular behaviour

Good for

« explanation and justification
— “Because grass is a form of vegetation.”

 informability: debugging the KB
— “No the sky is not yellow. It's blue.”

« extensibility: new relations
— “Canaries are yellow.”

« extensibility: new applications
— returning a list of all the white things
— painting pictures

KR&R @ Brachman & Levesque 2005




What is knowledge?

Easier question: how do we talk about it?

We say “Jdohn knows that ..." and fill the blank with a proposition

— can be true / false, right/wrong

Contrast: “John fears that ...”

— same content, different attitude

Other forms of knowledge:
* know how, who, what, when, ...
» sensorimotor: typing, riding a bicycle
» affective: deep understanding

Belief: not necessarily true and/or held for appropriate reasons

and weaker yet: “John suspects that ...”

Here: no distinction o taking the world to be one
the main idea way and not another

KR &R @ Brachman & Levesque 2005



What Is representation?

Symbols standing for things in the world
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"John loves Mary" ——p

first aid
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John

the proposition that
John loves Mary

Knowledge representation:

symbolic encoding of propositions believed

(by some agent)

KR&R

@ Brachman & Levesque 2005



What Is reasoning?
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Manipulation of symbols encoding propositions to produce
representations of new propositions

Analogy: arithmetic =~ “1011" + 10" — “1107"
J U |

eleven two thirteen

L J’ . ‘ | 0 s _]_ .
ohn 1s I\a?[‘_aljg S > John 1s an adult
father male
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KR &R @ Brachman & Levesque 2005



Knowledge representation
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Understanding, designing, and implementing ways of representing
Information in computers so that programs (agents) can use this
Information

* to derive information that is implied by 1it,

* to converse with people 1n natural languages,

* to decide what to do next

* to plan future activities,

* to solve problems in areas that normally require human expertise.




Reasoning
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 Deriving information that is implied by the

Information already present is a form of reasoning.

« Knowledge representation schemes are useless
without the abilitv to reason with them.

Represent knowledge about the world.

* Reason with that knowledge.




Why reasoning?

Want knowledge to affect action
not do action 4 if sentence Pis in KB
but do action A4 if world believed in satisfies P

Difference:
P may not be explicitly represented

Need to apply what is known in general
to the particulars of a given situation

Example:

“Patient x is allergic to medication m.”

“Anybody allergic to medication m: is also
allergicto m".”

Is it OK to prescribe m' for x ?

Usually need more than just DB-style retrieval of facts in the KB

Sentences P, P,, ..., P, entail sentence P iff the truth of P is
implicit in the truth of P, P,, ..., P

M-
If the world is such that it satisfies the P, then it must also satisfy P.
- Applies to a variety of languages (languages with truth theories)
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Natural Language

* A dime is better than a nickel. * A penny is better than a nothing.
Knowledge
* Anickel is better than a penny. * Nothing is better than world peace.
. Reasoning ]
* Therefore, a dime is better than a penny. * Therefore, a penny is better than world peace.

Natural language is tricky!

Use of logic removes ambiguity (similar to computer languages);
but also makes system less flexible. (Will study more flexible versions later.)




Logic in the real world
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« Encode information formally in web pages
« Business rules
« Airfare pricing




Airfare Pricing
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« Ignore, for now, finding the
best itinerary

« Given an itinerary, what’s
the least amount we can
pay for it?

« Can’t just add up prices for
the flight legs; different
prices for different flights in
various combinations and
circumstances




Fare Restrictions
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« Passenger under 2 or over 65

« Passenger accompanying someone paying full fare
« Doesn’t go through an expensive city

» No flights during rush hour

« Stay over Saturday night

« Layovers are legal

« Round-the-world itinerary that doesn’t backtrack

« Reqular two phase round-trip

« No flights on another airline

« This fare would not be cheaper than the standard
price




Ontology
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« What kinds of things are there in the world?
« What are their properties and relations?

/Ontology is the science of\
something and of nothing,

of being and not-being, of
the thing and the mode of
the thing, of substance

f‘rhe Role of
Ontological

Engineering in
B2B Net

\and accident. ‘/
\

Leibniz

Markets

) 4
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Airfare Domain Ontology
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« passenger

« flight

« City

» airport

» terminal

- flight segment (list of flights, to be flown all in one
"day”)

« itinerary (a passenger and list of flight segments)

« list

« number




Representing Properties
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« Object P is red
* Red(P)
» Color(P, Red)
» color(P) = Red
* Property(P, Color, Red)

« All the blocks in stack S are the same color

3c. vb. In(b, S) - Color(b, c)
- All the blocks in stack S have the same properties

Vp. 3v.Vvb. In(b,S) - Property(b, p, v)




Basic Relations
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« Age(passenger, number)

« Nationality(passenger, country)
« Wheelchair(passenger)

« Origin(flight, airport)

« Destination(flight, airport)

« Departure_Time(flight, number)
* Arrival_Time(flight, number)

« Latitude(city, number)

« Longitude(city, number)

« In_Country(city, country)

« In_City(airport, city)

« Passenger(itinerary, passenger)

Age(Fred, 47)
Nationality(Fred, US)
~Wheelchair(Fred)

« Flight_Segments(itinerary, passenger, segments)

- Nil
« cons(object,list) => list
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Defined Relations

« Define complex relations in terms of basic ones
 Like using subroutines

vi. P(i) A Q(i) -> Qualifies 37(/)

» Implication rather than equivalence
» easier to specify definitions in pieces
Vi. R(7) AS(i) —» Qualifies 37(J)
» can’t use the other direction
Qualifies 37(i) » ?
* if you need it, write the equivalence

Vi. (P(7) ~Q()) v (R(7) AS(i)) « Qualifies 37(i)

- %i,a,p Passenger(i, p) ~ Age(p,a)~a <2 - InfantFare(i) —



Rules and Logic Programming
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e Language of logic is extremely powerful.

e Say what's true, not how to use it.
« VY x,vy (3 z Parent(x,z) A Parent(z,y)) + GrandParent(x,y)

« Given parents, find grandparents
- Given grandparents, find parents

e But, resolution theorem-provers are too inefficient!
e To regain practicality:

« Limit the language

« Simplify the proof algorithm

e Rule-Based Systems
e Logic Programming




Horn Clauses
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e A clause is Horn if it has at most one positive

literal
¢« =P,Vv..v=P,VvQ(Rule)
. Q (Fact)

o= PiM LN Py (Consistency Constraint)
e We will not deal with Consistency Constraints
* Rule Notation
*P;A..AP,—>Q (Logic)
« If P, ... P, ThenQ (Rule-Based System)
«.Q = Py, ooy P (Prolog)
e P, are called antecedents (or body)
e Q is called the consequent (or head)




Limitations
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e Cannot conclude negation
P -Q
« - PVv-0Q: Consistency constraint
« - P : Consistency constraint

e Cannot conclude (or assert) disjunction
*PyAP, 2 Q,VQ,
*Q; VQ;

« These are not Horn




Inference: Backchaining
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e To "prove” a literal C
« Push C and an Ans literal on a stack
« Repeat until stack only has Ans literal or no
actions available.
- Pop literal L off of stack
- Choose [with backup] a rule (or fact) whose
consequent unifies with L
- Push antecedents (in order) onto stack

- Apply unifier to entire stack
- Rename variables on stack

- If no match, fail [backup to last choice]




Backchaining and Resolution
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¢ Backchaining is just resolution
* To prove C (propositional case)
« Negate C = - C
« Find rule-P,v..v-P,vC
» Resolvetoget - P, v ..V~ P,
« Repeat for each negative literal

* First order case introduces unification but otherwise
the same.




Proof Strategy
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¢ Depth-First search for a proof
* Order matters
« Rule order
-try ground facts first
-then rules in given order
« Antecedent order
- |left to right
* More predictable, like a program, less like logic




Example
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s wn -

Father (A,B) ; ground fact

Mother(B,C) ; ground fact
GrandP(?x,?z) : - Parent (?x,?y) ,Parent (?y,?z)
Parent (?x,?y) : - Father(?x,?y)

Parent(?x,?y) : - Mother (?x,?y)




Example
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1.
2.
3.
4.
5.

Father (A, ,B) i ground fact
Mother (B,C) ; ground fact
GrandP(?x,?z) : - Parent(?x,?y) ,Parent(?y,?z)

Parent(?x,?y) : - Father(?x,?y)
Parent(’x,?y) : - Mother (?x,7y)

Prove:
GrandP (?g,C), Ans(?g)




Example
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vdas W -

.

Father (A,B) ; ground fact

Mother (B,C) ; ground fact
GrandP(?x,?z) : - Parent(?x,?y) ,Parent(?y,?z)
Parent (?x,?y) : - Father(?x,?y)

Parent (?x,?y) : - Mother (?x,?%y)

Prove:
GrandP(?g,C), Ans(?qg)
(3,?x/2q9,22/C; 2y=>?Y,.,?29=>7q,]
Parent(?qg,,?y,), Parent(?y,,C), Ans(?g,)
[4,2x/29,,2y/?¥,; ?¥,7>7Y¥,,79,77q,]
Father(?g,,?y,), Parent(?y,,C), Ans(?g,)
[1,?q9,/A,?y,/B]
Parent (B,C), Ans(A)
{4,?x/B,?y/C)
Father(B,C), Ans(A)
<fail>




Example
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s W =

Father (A, ,B) ; ground fact

Mother(B,C) ; ground fact
GrandP(?x,?z) : - Parent (?x,?%y) ,Parent(?y,?z)
Paront (?x,?y) : = Father (?x,?y)

Parent (?x,?y) : - Mother (?x,7y)

Prove:
GrandP(?g,C), Ans(?g)
(3,?x/?g9,?z/C; y=>?y,,?2g=>7g,]
Parent (?g,,?y,), Parent(?y,,C), Ans(?q,)
[4,72x/7q,.2y/?Y,: ?¥,=>?Y..,79,=>79,]
Father(?g,,?y,), Parent(?y,,C), Ans(?g,)
(1,?g9,/A,?y,/B)
Parent(B,C), Ans(A)
[4,?x/B,?y/C)
Father (B8,C), Ans(A)
<fail>
[5,?x/B,?y/C]
Mother(B,C), Ans(A)
(2]
Ans (A)




1. FIAB)
2. M)
Proof Tree : ciwra:- somrmooyra
4. P(Pn. %) i~ F(?x.%)
S,  P(7s,%y):i- M("™w.%)
P (79.C)
¢ Prove:
CP (7g.C), Ans{?g)
v p"'l”’l" "".OC’. M.(?"’
. F(?q,.%y,). P(?y,.Cl. Ans(7g,)
L rs.c., M.(M
¢ F(8.C), AnsiA)
. <fall>
—— ¢ MBS, AMslAN)
Py} pn,.C) X Ans (A}
F{vq.%) Mi?g.%y) Fis,c) M(3,C)
FiA.B) M(8.C) FIA.B) M(B,.C)
rg/A, ryi/n ] I Fasl l

6.034 - Spring 03 # 31

33




Relations not Functions
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1,
2.
3.
4.
5.

Father(A,B) ; ground fact
Mother(B,C) ; ground fact

GrandP(?x,?z) :- Parent(?x,?y) ,Parent(?y,?z)

Parent(?x,?y):~ Father(?x,?y)
Parent(?x,?y) :~- Mother (?x,?y)

Prove:
GrandP(A,?£f), Ans(?f)

(3,?2x/A,22/2£; 2y=>?y,,2£=37£,]
Parent (A,?y,), Parent(?y,,?f,), Ans(?f,)
[4,2x/A,2y/?y,; 2¥,=>?Y,,2£,=>7£,)
Father(A,?y,), Parent(?y,,?f,), Ans(?f,)
(1,2y,/B; 2£,=5?£,)
Parent (B,?f,), Ans(?f,)
(4,2x/B,?y/?£,; 2£,=57£,)
Father(B,?f,), Ans(?f))
<fail>
(5,?x/B,2y/2£,; 2£,=2£,)
Mother(B,?£f,), Ans(?f,)
[2,?£,/C)
Ans (C)




Order Revisited
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e Given

parent (A, B)

parent(B8,C)

ancestor(?x,%7z) :~- parent(?x,?z)

ancestor(?x,72) '~ parent(?7x,7y), ancestor(?y,?7z2)

Prove:
ancestor(?x,C), Ans(?x)

AU

*  Ans(A)
e How about:
1, parent(A,B)

2. parent(B,C)

3. ancestor(?x,?7z) :- ancestor|(?y,?z), parent(?x,?y)
4. eucualor(?x,7z) .~ paceal(?a,?z)

o Prove:

ancestor(?x,C), Ans(?x)

. <error: stack overflow>

e Clauses examined top to bottom and literals left to right.
This is not logic!




Logic Programming
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e So far, noct much like programming

e But, this framework can be used as the basis of a
general purpose programming language

* Prolog is the most widely used logic programming
language
e For example:
« Gnu Prolog http://www.gnu.org/software/prolog/prolog.html|
« SWI Prolog http://www.swi-prolog.org/
« SICStus Prolog http://www sics.se/sicstus/
« Visual PI’O|OQ http://www.visual-prolog.com/

.
-
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