Knowledge representation and
Reasoning

Artificial Intelligence
Based on the books
AIMA (Russell and Norvig), MIT Open Courseware and KRR (Brachman and Levesque),
Slides are mostly adapted from
Stuart C. Shapiro (University of Buffalo), Tom Lenaerts (IRIDIA),
Milos Hauskrecht (U. Pittsburgh), Sanjeev Arora and Elad Hazan (Princeton U.)
Peter Lucas and Marcel van Gerven (Radboud University Nijmegen)

LOGIC log-ic
I'lajik/)

noun
noun: logic

1. reasoning conducted or assessed according to strict principles of validity.
"gxperience is a better guide to this than deduclive logic"
synonyms: reasoning, line of reasoning, rationale, argument, argumentation
"the logic of their argument"

- a particular system or codification of the principles of proof and inference.
“Arnstotelian logic®

Also basis of digital circuits in computer chips

Logle: anather thing that
penguins aren't very gooad at.

=
&
2]

AsBec F

Eesmsc

AsBeC

Ilhpd

Role of logic Iin Al

For 2000 years, people tried to codify “human reasoning” and came up
with logic.

* Most Al work until 1980s: Build machines that represent knowledge
and do reasoning via logic. “Rule based reasoning.”

a program has common sense if it automatically deduces for itself a
sufficiently wide class of immediate consequences of anything it is told
and what it already knows. . . In order for a program to be capable of
learning something it must first be capable of being told it. John
McCarthy, “Programs with Common Sense”, 1959.

Requirements for a knowledge based agent

* 1. “what it already knows” [McCarthy '59]
A knowledge base of beliefs.

« 2. “it must first be capable of being told” [McCarthy ’59]
A way to put new beliefs into the knowledge base.

» 3. “automatically deduces for itself a sufficiently wide
class of immediate consequences” [McCarthy "59]

A reasoning mechanism to derive new beliefs from ones
already in the knowledge base.

knowledge
engineering

\

Knowledge Base System

machine
learning

|

psychology

f

Knowledge System: a system that is ab-
le to solve problems in a domain using
knowledge of the domain and given goals

_/

!

modelling

knowledge
representation
and reasoning

\

languages
and systems

Early Knowledge Base Systems

« Much of Al involves building systems that are knowledge based
— Language understanding
— Planning
— Diagnosis
— EXxpert systems, etc.

« Expert system: use of a large collection of symbolic expert knowledge
to solve problems:

— E.A. Feigenbaum, B.G. Buchanan, J. Lederberg — Heuristic DENDRAL (1965):
contains knowledge from organic chemistry

— E.H. Shortliffe: MYCIN (1974-1979) — diagnostics of infectious diseases

— H.E. Pople, J.D. Myers: Internist-1 (1973-1982) — diagnosis in the big area of
Internal medicine

— D. Lenat: Cyc (1984-) — representation of common sense knowledge

Advantage of Knowledge Base Systems

Knowledge-based system most suitable for open-ended tasks

can structurally isolate reasons for particular behaviour

Good for

« explanation and justification
— “Because grass is a form of vegetation.”

 informability: debugging the KB
— “No the sky is not yellow. It's blue.”

« extensibility: new relations
— “Canaries are yellow.”

« extensibility: new applications
— returning a list of all the white things
— painting pictures

KR&R @ Brachman & Levesque 2005

What is knowledge?

Easier question: how do we talk about it?

We say “Jdohn knows that ..." and fill the blank with a proposition

— can be true / false, right/wrong

Contrast: “John fears that ...”

— same content, different attitude

Other forms of knowledge:
* know how, who, what, when, ...
» sensorimotor: typing, riding a bicycle
» affective: deep understanding

Belief: not necessarily true and/or held for appropriate reasons

and weaker yet: “John suspects that ...”

Here: no distinction o taking the world to be one
the main idea way and not another

KR &R @ Brachman & Levesque 2005

What Is representation?

Symbols standing for things in the world

+=P-
Q:n-

”JDhn” =h‘

"John loves Mary" ——p

first aid

WOIINECI

John

the proposition that
John loves Mary

Knowledge representation:

symbolic encoding of propositions believed

(by some agent)

KR&R

@ Brachman & Levesque 2005

What Is reasoning?

10

Manipulation of symbols encoding propositions to produce
representations of new propositions

Analogy: arithmetic =~ “1011" + 10" — “1107"
J U |

eleven two thirteen

L J’ . ‘ | 0 s _]_ .
ohn 1s I\a?[‘_aljg S > John 1s an adult
father male

I
.

KR &R @ Brachman & Levesque 2005

Knowledge representation

11

Understanding, designing, and implementing ways of representing
Information in computers so that programs (agents) can use this
Information

* to derive information that is implied by 1it,

* to converse with people 1n natural languages,

* to decide what to do next

* to plan future activities,

* to solve problems in areas that normally require human expertise.

Reasoning

12

 Deriving information that is implied by the

Information already present is a form of reasoning.

« Knowledge representation schemes are useless
without the abilitv to reason with them.

Represent knowledge about the world.

* Reason with that knowledge.

Why reasoning?

Want knowledge to affect action
not do action 4 if sentence Pis in KB
but do action A4 if world believed in satisfies P

Difference:
P may not be explicitly represented

Need to apply what is known in general
to the particulars of a given situation

Example:

“Patient x is allergic to medication m.”

“Anybody allergic to medication m: is also
allergicto m".”

Is it OK to prescribe m' for x ?

Usually need more than just DB-style retrieval of facts in the KB

Sentences P, P,, ..., P, entail sentence P iff the truth of P is
implicit in the truth of P, P,, ..., P

M-
If the world is such that it satisfies the P, then it must also satisfy P.
- Applies to a variety of languages (languages with truth theories)

14

Natural Language

* A dime is better than a nickel. * A penny is better than a nothing.
Knowledge
* Anickel is better than a penny. * Nothing is better than world peace.
. Reasoning]
* Therefore, a dime is better than a penny. * Therefore, a penny is better than world peace.

Natural language is tricky!

Use of logic removes ambiguity (similar to computer languages);
but also makes system less flexible. (Will study more flexible versions later.)

Logic in the real world

15

« Encode information formally in web pages
« Business rules
« Airfare pricing

Airfare Pricing

16

« Ignore, for now, finding the
best itinerary

« Given an itinerary, what’s
the least amount we can
pay for it?

« Can’t just add up prices for
the flight legs; different
prices for different flights in
various combinations and
circumstances

Fare Restrictions

17

« Passenger under 2 or over 65

« Passenger accompanying someone paying full fare
« Doesn’t go through an expensive city

» No flights during rush hour

« Stay over Saturday night

« Layovers are legal

« Round-the-world itinerary that doesn’t backtrack

« Reqular two phase round-trip

« No flights on another airline

« This fare would not be cheaper than the standard
price

Ontology

18

« What kinds of things are there in the world?
« What are their properties and relations?

/Ontology is the science of\
something and of nothing,

of being and not-being, of
the thing and the mode of
the thing, of substance

f‘rhe Role of
Ontological

Engineering in
B2B Net

\and accident. ‘/
\

Leibniz

Markets

) 4

6.034 - Spring 03 « 9

Airfare Domain Ontology

19

« passenger

« flight

« City

» airport

» terminal

- flight segment (list of flights, to be flown all in one
"day”)

« itinerary (a passenger and list of flight segments)

« list

« number

Representing Properties

20

« Object P is red
* Red(P)
» Color(P, Red)
» color(P) = Red
* Property(P, Color, Red)

« All the blocks in stack S are the same color

3c. vb. In(b, S) - Color(b, c)
- All the blocks in stack S have the same properties

Vp. 3v.Vvb. In(b,S) - Property(b, p, v)

Basic Relations

21

« Age(passenger, number)

« Nationality(passenger, country)
« Wheelchair(passenger)

« Origin(flight, airport)

« Destination(flight, airport)

« Departure_Time(flight, number)
* Arrival_Time(flight, number)

« Latitude(city, number)

« Longitude(city, number)

« In_Country(city, country)

« In_City(airport, city)

« Passenger(itinerary, passenger)

Age(Fred, 47)
Nationality(Fred, US)
~Wheelchair(Fred)

« Flight_Segments(itinerary, passenger, segments)

- Nil
« cons(object,list) => list

22

Defined Relations

« Define complex relations in terms of basic ones
 Like using subroutines

vi. P(i) A Q(i) -> Qualifies 37(/)

» Implication rather than equivalence
» easier to specify definitions in pieces
Vi. R(7) AS(i) —» Qualifies 37(J)
» can’t use the other direction
Qualifies 37(i) » ?
* if you need it, write the equivalence

Vi. (P(7) ~Q()) v (R(7) AS(i)) « Qualifies 37(i)

- %i,a,p Passenger(i, p) ~ Age(p,a)~a <2 - InfantFare(i) —

Rules and Logic Programming

23

e Language of logic is extremely powerful.

e Say what's true, not how to use it.
« VY x,vy (3 z Parent(x,z) A Parent(z,y)) + GrandParent(x,y)

« Given parents, find grandparents
- Given grandparents, find parents

e But, resolution theorem-provers are too inefficient!
e To regain practicality:

« Limit the language

« Simplify the proof algorithm

e Rule-Based Systems
e Logic Programming

Horn Clauses

24

e A clause is Horn if it has at most one positive

literal
¢« =P,Vv..v=P,VvQ(Rule)
. Q (Fact)

o= PiM LN Py (Consistency Constraint)
e We will not deal with Consistency Constraints
* Rule Notation
*P;A..AP,—>Q (Logic)
« If P, ... P, ThenQ (Rule-Based System)
«.Q = Py, ooy P (Prolog)
e P, are called antecedents (or body)
e Q is called the consequent (or head)

Limitations

25

e Cannot conclude negation
P -Q
« - PVv-0Q: Consistency constraint
« - P : Consistency constraint

e Cannot conclude (or assert) disjunction
*PyAP, 2 Q,VQ,
*Q; VQ;

« These are not Horn

Inference: Backchaining

26

e To "prove” a literal C
« Push C and an Ans literal on a stack
« Repeat until stack only has Ans literal or no
actions available.
- Pop literal L off of stack
- Choose [with backup] a rule (or fact) whose
consequent unifies with L
- Push antecedents (in order) onto stack

- Apply unifier to entire stack
- Rename variables on stack

- If no match, fail [backup to last choice]

Backchaining and Resolution

27

¢ Backchaining is just resolution
* To prove C (propositional case)
« Negate C = - C
« Find rule-P,v..v-P,vC
» Resolvetoget - P, v ..V~ P,
« Repeat for each negative literal

* First order case introduces unification but otherwise
the same.

Proof Strategy

28

¢ Depth-First search for a proof
* Order matters
« Rule order
-try ground facts first
-then rules in given order
« Antecedent order
- |left to right
* More predictable, like a program, less like logic

Example

29

s wn -

Father (A,B) ; ground fact

Mother(B,C) ; ground fact
GrandP(?x,?z) : - Parent (?x,?y) ,Parent (?y,?z)
Parent (?x,?y) : - Father(?x,?y)

Parent(?x,?y) : - Mother (?x,?y)

Example

30

1.
2.
3.
4.
5.

Father (A, ,B) i ground fact
Mother (B,C) ; ground fact
GrandP(?x,?z) : - Parent(?x,?y) ,Parent(?y,?z)

Parent(?x,?y) : - Father(?x,?y)
Parent(’x,?y) : - Mother (?x,7y)

Prove:
GrandP (?g,C), Ans(?g)

Example

31

vdas W -

.

Father (A,B) ; ground fact

Mother (B,C) ; ground fact
GrandP(?x,?z) : - Parent(?x,?y) ,Parent(?y,?z)
Parent (?x,?y) : - Father(?x,?y)

Parent (?x,?y) : - Mother (?x,?%y)

Prove:
GrandP(?g,C), Ans(?qg)
(3,?x/2q9,22/C; 2y=>?Y,.,?29=>7q,]
Parent(?qg,,?y,), Parent(?y,,C), Ans(?g,)
[4,2x/29,,2y/?¥,; ?¥,7>7Y¥,,79,77q,]
Father(?g,,?y,), Parent(?y,,C), Ans(?g,)
[1,?q9,/A,?y,/B]
Parent (B,C), Ans(A)
{4,?x/B,?y/C)
Father(B,C), Ans(A)
<fail>

Example

32

s W =

Father (A, ,B) ; ground fact

Mother(B,C) ; ground fact
GrandP(?x,?z) : - Parent (?x,?%y) ,Parent(?y,?z)
Paront (?x,?y) : = Father (?x,?y)

Parent (?x,?y) : - Mother (?x,7y)

Prove:
GrandP(?g,C), Ans(?g)
(3,?x/?g9,?z/C; y=>?y,,?2g=>7g,]
Parent (?g,,?y,), Parent(?y,,C), Ans(?q,)
[4,72x/7q,.2y/?Y,: ?¥,=>?Y..,79,=>79,]
Father(?g,,?y,), Parent(?y,,C), Ans(?g,)
(1,?g9,/A,?y,/B)
Parent(B,C), Ans(A)
[4,?x/B,?y/C)
Father (B8,C), Ans(A)
<fail>
[5,?x/B,?y/C]
Mother(B,C), Ans(A)
(2]
Ans (A)

1. FIAB)
2. M)
Proof Tree : ciwra:- somrmooyra
4. P(Pn. %) i~ F(?x.%)
S, P(7s,%y):i- M("™w.%)
P (79.C)
¢ Prove:
CP (7g.C), Ans{?g)
v p"'l”’l" "".OC’. M.(?"’
. F(?q,.%y,). P(?y,.Cl. Ans(7g,)
L rs.c., M.(M
¢ F(8.C), AnsiA)
. <fall>
—— ¢ MBS, AMslAN)
Py} pn,.C) X Ans (A}
F{vq.%) Mi?g.%y) Fis,c) M(3,C)
FiA.B) M(8.C) FIA.B) M(B,.C)
rg/A, ryi/n] I Fasl l

6.034 - Spring 03 # 31

33

Relations not Functions

34

1,
2.
3.
4.
5.

Father(A,B) ; ground fact
Mother(B,C) ; ground fact

GrandP(?x,?z) :- Parent(?x,?y) ,Parent(?y,?z)

Parent(?x,?y):~ Father(?x,?y)
Parent(?x,?y) :~- Mother (?x,?y)

Prove:
GrandP(A,?£f), Ans(?f)

(3,?2x/A,22/2£; 2y=>?y,,2£=37£,]
Parent (A,?y,), Parent(?y,,?f,), Ans(?f,)
[4,2x/A,2y/?y,; 2¥,=>?Y,,2£,=>7£,)
Father(A,?y,), Parent(?y,,?f,), Ans(?f,)
(1,2y,/B; 2£,=5?£,)
Parent (B,?f,), Ans(?f,)
(4,2x/B,?y/?£,; 2£,=57£,)
Father(B,?f,), Ans(?f))
<fail>
(5,?x/B,2y/2£,; 2£,=2£,)
Mother(B,?£f,), Ans(?f,)
[2,?£,/C)
Ans (C)

Order Revisited

35

e Given

parent (A, B)

parent(B8,C)

ancestor(?x,%7z) :~- parent(?x,?z)

ancestor(?x,72) '~ parent(?7x,7y), ancestor(?y,?7z2)

Prove:
ancestor(?x,C), Ans(?x)

AU

* Ans(A)
e How about:
1, parent(A,B)

2. parent(B,C)

3. ancestor(?x,?7z) :- ancestor|(?y,?z), parent(?x,?y)
4. eucualor(?x,7z) .~ paceal(?a,?z)

o Prove:

ancestor(?x,C), Ans(?x)

. <error: stack overflow>

e Clauses examined top to bottom and literals left to right.
This is not logic!

Logic Programming

36

e So far, noct much like programming

e But, this framework can be used as the basis of a
general purpose programming language

* Prolog is the most widely used logic programming
language
e For example:
« Gnu Prolog http://www.gnu.org/software/prolog/prolog.html|
« SWI Prolog http://www.swi-prolog.org/
« SICStus Prolog http://www sics.se/sicstus/
« Visual PI’O|OQ http://www.visual-prolog.com/

.
-

	Slide 1: Knowledge representation and Reasoning
	Slide 2
	Slide 3: Role of logic in AI
	Slide 4: Requirements for a knowledge based agent
	Slide 5: Knowledge Base System
	Slide 6: Early Knowledge Base Systems
	Slide 7: Advantage of Knowledge Base Systems
	Slide 8: What is knowledge?
	Slide 9: What is representation?
	Slide 10: What is reasoning?
	Slide 11: Knowledge representation
	Slide 12: Reasoning
	Slide 13: Why reasoning?
	Slide 14: Natural Language
	Slide 15: Logic in the real world
	Slide 16: Airfare Pricing
	Slide 17: Fare Restrictions
	Slide 18: Ontology
	Slide 19: Airfare Domain Ontology
	Slide 20: Representing Properties
	Slide 21: Basic Relations
	Slide 22: Defined Relations
	Slide 23: Rules and Logic Programming
	Slide 24: Horn Clauses
	Slide 25: Limitations
	Slide 26: Inference: Backchaining
	Slide 27: Backchaining and Resolution
	Slide 28: Proof Strategy
	Slide 29: Example
	Slide 30: Example
	Slide 31: Example
	Slide 32: Example
	Slide 33
	Slide 34: Relations not Functions
	Slide 35: Order Revisited
	Slide 36: Logic Programming

