Logical Agents

Fundamentals of Artificial Intelligence

Slides are mostly adapted from AIMA and MIT Open Courseware




knowledge-based agents

agents that reason by operating on internal representations of
knowledge

If it didn't rain, Harry visited Hagrid today.
Harry visited Hagrid or Dumbledore today, but not both.
Harry visited Dumbledore today.

It rained today.
Harry did not visit Hagrid today.

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu



Introduction

« The representation of knowledge and the reasoning processes that bring
knowledge to life are central to entire field of artificial intelligence

« Knowledge and reasoning are important to artificial agents because they
enable successful behaviors that would be very hard to achieve otherwise (no
piece in chess can be on two different squares at the same time)

« Knowledge and reasoning also play a crucial role in dealing with partially
observable environments (inferring hidden states in diagnosing diseases,
natural language understanding)

« Knowledge also allows flexibility.




Wumpus World PEAS description

« Performance measure
— gold +1000, death -1000
— -1 per step, -10 for using the arrow
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— Squares adjacent to wumpus are smelly (stench)s
— Squares adjacent to pit are breezy — ——
— Glitter iff gold is in the same square 2 R S
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— Shooting kills wumpus if you are facing it
— Shooting uses up the only arrow hﬁ?
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— Grabbing picks up gold if in same square 1 2 3 ]
— Releasing drops the gold in same square

« Sensors: Stench, Breeze, Glitter, Bump, Scream

« Actuators: Left turn, Right turn, Forward, Grab, Release,
Shoot




Wumpus world characterization

Fully Observable No — only local perception
Deterministic Yes — outcomes exactly specified
Episodic No — sequential at the level of actions
Static Yes — Wumpus and Pits do not move
Discrete Yes

Single-agent? Yes — Wumpus is essentially a natural
feature




Exploring a wumpus world

[1,1] is OK

Because

Haven’t fallen into a pit

Haven’t been eaten by a Wumpus

oK

OK OK

[1,2] and [2,1] are OK
Because

No stench

No breeze




Exploring a wumpus world
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We move to [1,2] and
Feel a Breeze

oK




Exploring a wumpus world
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Exploring a wumpus world
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Exploring a wumpus world
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Exploring a wumpus world
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Exploring a wumpus world
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Exploring a wumpus world
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Logic in general

« Logics are formal languages for representing information such that conclusions can be
drawn

* Sentence: an assertion about the world in a knowledge representation language

« Syntax defines the sentences in the language

« Semantics define the "meaning" of sentences;
— 1.e., define truth of a sentence in a world

« E.g., the language of arithmetic
— Xx+2 >y is asentence; x2+y > {} is not a sentence
— x+2 >y is true iff the number x+2 is no less than the number y
— x1+2 >y istrue in a world where x =7,y =1

— x12 >y s false in a world where x =0,y =6




Propositional Logic

18

Propiositions: Statements about the world

Propositional Symbols: represent a fact about the world
P,Q, R

It is raining

Harry wisited Hagrid today, etc

Logical Connectives
- not

A and

V or

- implication

— biconditional

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu



Propositional Logic

s o ro

P it is raining Both P and Q are true

~P : It is not raining
r(v

P | 0 | PvO
Either of P or Q or both are true

Slide credit : HarvardX CS50AICS50's Introduction to
David J. Malan and Brian Yu




Propositional Logic

Implication (—)

R

Biconditional (<)

Cr [ o [reo

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,
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If P is true Q is also true
If it is raining, | will be indoors

If it Is raining but | am not indoors,

then my original statement Is not true

If P is false, then the statement does not
make any claim

If it IS not raining, | am not making any
claim about whether | will be indoors or not

| will be indoors if and only if it is raining

David J. Malan and Brian Yu



Model
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assignment of a truth value to every propositional symbol (a "possible
world")

P: It is raining.
Q: It is a Tuesday.
{P = false, Q = true}

For n number of symbols there are 2*n possible models

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu
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Knowledge Base and Entailment

knowledge base
a set of sentences known by a knowledge-based agent

This information is used to come up with conclusions

Entailment
a = B In every model in which sentence a is true, sentence 8 is also true.

If it a Tuesday in March then it entails that it is March

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,
David J. Malan and Brian Yu




Inference
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the process of deriving new sentences from old ones

If it didn't rain, Harry visited Hagrid today.
Harry visited Hagrid or Dumbledore today, but not both.
Harry visited Dumbledore today.

Harry did not visit Hagrid today.
It rained today.

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu



Inference
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P: It is a Tuesday.
Q: It is raining.
R: Harry will go for a run.

KB:

(PA-Q) >R
P

-Q

Inference:
R

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu



Entaillment
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« Entailment means that one thing follows from another:
KB Fa
« Knowledge base KB entails sentence a if and only if a is
true in all worlds where KB s true

— |If a true then KB must also be true

— Entailment is a relationship between sentences (i.e., syntax) that is
based on semantics




Models
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 Logicians typically think in terms of models, which are formally structured
worlds with respect to which truth can be evaluated

« We say mis a model of a sentence o if a is true in m

* M(a) is the set of all models of a

« ThenKB Fa iff M(KB)  M(a)
— E.g. KB =Itis aTuesday in March
o = It 1s March

Possible world — model
m 1s a model of a — the sentence o 1s true 1n model m




Model checking
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To determine if KB E a:

e Enumerate all possible models.

e |[f in every model where KB is true, a is true, then KB entails a.
e Otherwise, KB does not entail .

P: ltisa Tuesday. @: ltisraining. R: Harry will go for a run.
KB: (PAr—Q)—R P —0
Query: R

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu



Entailment in the wumpus world
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» Situation after detecting
nothing in [1,1], moving
right, breeze in [2,1]




Wumpus models

3 Boolean choices = 8 possible models
for the adjacent squares [1,2], [2,2] and [3,1] to contain pits

S




Wumpus models
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Consider possible models for KB assuming only pits

' .

« KB = wumpus-world rules + observations

« KB is false in any model in which [1,2] contains a
0It, because there iIs no breeze in [1,1]




Wumpus models

@
- 1@

* Consider o = “[1,2] 1s safe” = “There 1s no pit in [1,2]”
 Inevery model KB is true o, is also true

« KB [ o,, proved by model checking

« We can conclude that there is no pitin [1,2]




Wumpus models
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Consider a, = “[2,2] 1s sate” = “There 1s no pitin [2,2]”
In some models in which KB is true a, Is false

KB F a,

We cannot conclude that there is no pit in [2,2]




Wumpus world sentences
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Let P;; be true if there is a pitin [i, J].

Let B;; be true if there Is a breeze in [i, J].

Knowledge base includes:

Rl1: - Py, Nopitin[1,1]
R2: -B,; No breezein[1.1]
R3:B,, Breeze in [2,1]

"Pits cause breezes in adjacent squares"

RA:B ;< (Pi,VvPy)
R5:B,; & (Py;VvPy,vPs)

KB=R1. R2. R3.R4 . R5

oK

P
B OK ﬂ BGS OK
e
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Truth tables for inference
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. R2: —B
« Decide whether KB [ o H
First method he models and o e
. Irst method: enumerate the models an |
| . R4 By, &  (Prpv Py
check that o is true in every model R5:B,; &  (PyyvPy,vPsy)

in which KB is true

* B11By1, P11y Pio Pt Pog Pay
« 7 symbols: 27 =128 possible models

Bi1 | Byy | Py | Pop | Poy | Pos | P31 | KB a
false| false | false | false | false | false | false | false | true
false | false | false | false | false | false | true | false | true
false| true | false | false | false | false | false | false | true
false | true | false | false| false| false| true | true | true
false | true | false | false| false | true | false | true | true
false | true | false | false| false | true | true | true | true
false | true | false | false| true | false| false | false | true

true | true | true | true | true | true | true | false | false

KB=R1A R2A R3AR4 A RS

a2 = P,,

al 1s true 1n all models that

KB is true

a2 is true only in
two models that KB s true,

but false in the other one




Example Problem
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Imagine we knew that:

e [f today is sunny, then Tomas will be happy
(S—+H)

e [f Tomas is happy, the lecture will be good
(H=G)

 Today is sunny (S)

Should we conclude that the lecture will be good?




Checking Interpretations
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Start by figuring out what set of interpretations make
our original sentences true.

Then, if G is true in all those interpretations, it must
be OK to conclude it from the sentences we started
out with (our knowledge base).

In a universe with only three variables, there are 8
possible interpretations in total.

||| ||+~

-ﬂ-hﬁﬁ-h-hnﬁi

"ﬂﬁ"hﬁ"ﬁﬁ"ﬁﬂm




Checking Interpretations
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» Only one of these interpretations
makes all the sentences in our
knowledge base true:

e S =true, H=true, G = true.

S|H|G|S—»H |H=»G |S
Lt t t
£ X 1|t f t
£ ¥ |t ¥ t t
t |F |F |Ff t t
B R t f
g |t |¥F |t f f
|17 [t | t f
. |¥ ¥t t f




Checking Interpretations
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it's easy enough to check that G
IS true in that interpretation, so it
seems like it must be reasonable
to draw the conclusion that the
lecture will be good.

S|IH[G|S—H |[H=G |S |G
t |t |t |t t t |t
t |t |f |t f t |f
G ol t t |t
t (f |f |f t B |
A A E t fot
f |t |f|t f f |f
$ ¥ [t |t t fo|t
f|f |f |t t f |f

good
lecture!
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Computing entaillment '
p g [ ,KB entails :>[ S J

.t

interpretations

A knowledge base (KB) entails a sentence S iff every
interpretation that makes KB true also makes S
true

interpretations

e enumerate all interpretations
e select those in which all elements of KB are true

e check to see if S is true in all of those
interpretations

Model checking
Truth table enumeration
For n symbols the time complexity is O(2”n)
Need a smarter way to do inference
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Entailment and Proof

A proof is a way to test whether a KB entails a
sentence, without enumerating all possible
interpretations '

proof

[ KB entails :>( @ J

Ids Ids

lnterpretati@i subset interpretations




Proof
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* Proof is a sequence of sentences
e First ones are premises (KB)

e Then, you can write down on the next line the result
of applying an inference rule to previous lines

e When S is on a line, you have proved S from KB

e If inference rules are sound, then any S you can
prove from KB is entailed by KB

o If inference rules are complete, then any S that is
entailed by KB can be proved from KB




Rules of inference
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KB |—i o = sentence o can be derived from KB by a
procedure 1 (an inference algorithm)

If we generalize it to any two sentences o and [3
o |— B means that [ Is derived from o by an

Inference
e The alternative notation:
o premise

B conclusion
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Inference Rules

Modus Ponens

If it is raining, then Harry is inside.

It Is raining.

Harry is inside.

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,
David J. Malan and Brian Yu




Inference Rules
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And Elimination

Harry is friends with Ron and Hermione.

Harry is friends with Hermione.

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu
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Inference Rules

Double Negation Elimination

It is not true that Harry did not pass the test.

Harry passed the test.

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,
David J. Malan and Brian Yu
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Inference Rules

Implication Elimination

If it is raining, then Harry is inside.

It is not raining or Harry is inside.

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,
David J. Malan and Brian Yu
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Inference Rules

Biconditional Elimination

it is raining if and only if Harry is inside.

If it is raining, then Harry is inside,
and if Harry is inside, then it is raining.

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,
David J. Malan and Brian Yu
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Inference Rules

De Morgan's Law

It Is not true that both
Harry and Ron passed the test.

Harry did not pass the test
or Ron did not pass the test.

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,
David J. Malan and Brian Yu




Distributive Property
(@n(Bvy)

(@np)v (any)
(@v (FAy)

(@ v p) n(avy)

David J. Malan and Brian Yu

eniigence with Python,



Search Problem
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e initial state

e actions

e transition model
e goal test

e path cost function

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu



Theorem Proving
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e initial state: starting knowledge base

e actions: inference rules

e transition model: new knowledge base after inference
e goal test: check statement we're trying to prove

e path cost function: number of steps in proof

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu
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Example
Some inference rules:
Prove S
Step | Formula Derivation
. a— a - a

1 [PAQ Given i - B anp

2 |P=R Given P s GAD :
Mcdus Modus And- And-

3 (QAR)—=+S | Given ponens tolens introduction  elimination
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Example
Some inference rules:
Prove S

Step | Formula Derivation

a— B a - a
1 |PAQ Given a - p B anp

- A @

2 |PsR Given ; R SR

Modus Modus And- And-
3 (QAR)—=S |[Given ponens tolens introduction  elimination
4 P 1 And-Elim
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Example
Some inference rules:
Prove S
Step | Formula Derivation
y a— a [ a
1 [PAQ Given & - B B ahp
2 |PR Given P T %AB .
Mad Mod And- And-
3 (QAR)—=S |Given po‘:\e‘:\ss to(;erl:: introc?uction elimi:ation
4 P 1 And-Elim
5 |R 4,2 Modus Ponens
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Example
Some inference rules:
Prove S

Step | Formula Derivation

a— B a - o
1 |[PAQ Given o - B B anp

B ol aAP @

2 P=+R Given

Mecdus Modus And- And-
3 (Q A R} - S Given ponens tolens introduction elimination
4 P 1 And-Elim
5 |[R 4,2 Modus Ponens
B (Q 1 And-Elim
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Example
Some inference rules:
Prove S5

Step | Fermula Derivation

a— B a - o
1 |PAQ Given o - B B anp

B ol aAP @

3 PR Given

Modus Modus And- And-
3 {q A Fl] 55 Given ponens tolens introduction elimination
4 P 1 And-Elim
5 |[R 4,2 Modus Ponens
6 Q 1 And-Elim
7 |QAR 5,6 And-Intro
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Example
Some inference rules:
Prove S

Step | Formula Derivation

a— B a - o
1 |PAQ Given a - B B anp

B k' aAP «

! PR Given

Mcdus Modus And- And-
g (Q A R} = S Given ponens tolens introduction  elimination
4 P 1 And-Elim
5 |R 4,2 Modus Ponens
€ Q 1 And-Elim
7 |QAR 5,6 And-Intro
g |S 7,3 Modus Ponens




Logical equivalence
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(N B) = (BN «) commutativity of A
(aV @) = (BVa) commutativity of V
(@ AB)A7y) = (aA(BA7y)) associativity of A
(avB)Vy) = (aV(BVy)) associativity of
—(—a) = a double-negation elimination
(@ = B) = (-8 = —a) contraposition
(¢ = ) = (-~ V [3) implication elimination
(@ & ) = ((a = B)A(B = «)) biconditional elimination
(A f) = (maV —~fF) de Morgan
—-(ﬂ:"u’ B) = (maA—f3) de Morgan
(@A (BVY) = ((anp)V(aAy)) distributivity of A over V
(aV(BAY) = ((aVB)A(aVy)) distributivity of V over A




Example from Wumpus World
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RI: =Py,

R2: —B,

R3: By,

RA:B;; & (PyaVv Py
R5:B,; & (Py1vPy;vP3)
KB=R1A R2A R3AR4 A R5

Prove al =— Py,




Example from Wumpus World
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RI: =Py,

R2: -B, ,

R3:B,,

RA:B;; & (PyaVv Py

R5:B,; & (Py1vPy;vP3)

R6:B;, <& (Byy=(PyoVvPyy)) APy, v Pyy) = By y) Biconditional elimination




Example from Wumpus World
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R1:
R2:
R3:
R4.
R5:

R6
R7

- Py

—B;

BZ,l

Bis <  (PaVvPy)

B,y & (Py1VvPy,vPs)

By (Byy=> (P vP,y9)) APy, Vv Pyy) = By ) Biconditional elimination
: ((Py, v Py;) = By ;) And Elimination




Exam
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R1:
R2:
R3:
R4.
R5:

R6
R7
R38

ple from Wumpus World
— Py
—By
BZ,l
Bis <  (PaVvPy)

Bys & (Pyi VP,V Pgy)
By (Byy=> (P vP,y9)) APy, Vv Pyy) = By ) Biconditional elimination
: ((Py, v Py;) = By ;) And Elimination

. (—= By = — (P, v P,4)) Equivalence for contrapositives




Example from Wumpus World
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R1:
R2:
R3:
R4.
R5:
R6 :
R7 .
R8:
RO9:

- Py

=By,

B,

By (PyaVvPyy)

B,y & (PyiVvPyvPsy)

B, < (Byi= (P VvPyy)) AP, Vv P,) = By,;) Biconditional elimination
(P15 v P,1) = By;) And Elimination

(= By = — (P, v P,,)) Equivalence for contrapositives

— (P15, v P, ;) Modus Ponens with R2 and R8
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Example from Wumpus World

RI: =Py,

R2: —B, ,

R3: B,,

RA:B;; < (P Vv Py)
R5:B,; &  (PyyVvP,,vP;s))

R6:B;, <& (Byy=(PyoVvPyy)) APy, v Pyy) = By y) Biconditional elimination

R7:((Py,vP,) = Byy) And Elimination
R8: (= By = — (P, Vv Pyy)) Equivalence for contrapositives
R9: — (P, v P,) Modus Ponens with R2 and R8

R10: =Py, A =Py, De Morgan’s Rule
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Example from Wumpus World

RI: =Py,

R2: —B, ,

R3: B,,

RA:B;; < (P Vv Py)
R5:B,; &  (PyyVvP,,vP;s))

R6:B;, <& (Byy=(PyoVvPyy)) APy, v Pyy) = By y) Biconditional elimination

R7:((Py,vP,) = Byy) And Elimination

R8: (= By = — (P, Vv Pyy)) Equivalence for contrapositives
R9: — (P, v P,) Modus Ponens with R2 and R8
R10: =Py, A =Py, De Morgan’s Rule

R11: - P, And Elimination




Monotonicity
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* The set of entailed sentences can only increase as
Information Is added to the knowledge base

o If

. KB|=a

* Then

- KB ABEa
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Inference

- KB |—i o = sentence o can be derived from KB by a procedure i (an inference
algorithm)

- Soundness: i is sound if whenever KB F, a, it is also true that KB F a

« An inference algorithm that derives only entailed sentences is sound or truth
preserving (model checking is a sound procedure)

— If the system proves that something is true, then it is really true. The system
doesn’t derive contradictions

« Completeness: i is complete if whenever KB F a, it is also true that KB ;o
« An inference algorithm is complete if it can derive any sentence that is entailed

— If something is really true, it can be proven using the system. The system can be
used to derive all the true statements one by one

« If KB is true in the real world then any sentence a derived from KB by a sound
Inference procedure is also true in real world

— The conclusions of the reasoning process are guaranteed to be true in any world
In which the premises are true
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Inference

All consequences of a KB is a haystack
o 18 a needle

Entallment

The needle being in the haystack
Inference

Finding the needle

« An unsound inference procedure essentially makes things up as it goes

along — it announces the discovery of non-existent needles

« For completeness, a systematic examination can always decide

whether the needle is in the haystack which is finite

Cartoon illustrations by


https://johnpweiss.com/email-newsletter

Semantics and Inference

facts

Interpretation: establishing a correspondence between sentences and

« Compositional: the meaning of a sentence is a function of the

meaning of its parts

4

- Asentence Is TRUE under a particular inte_
the affairs it represents is the case

* S;,would be true 1
— under the interpretation
“there 1s a stench in [1,2]”
— on this Wumpus world

‘:5:': 5T e
Sench =

]
i
3

AN

)

PIT

\

PIT

i

‘u)
B
.

§ SSSS
Slench =

\n)

b

(H
I.,I".

¢l

START

PIT

Y

)
i

1




Validity and satisfiability
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A sentence is valid if it is true in all models,
e.g. “There 1s a stench at [1,1] or there 1s not a stench at [1,1]”

Valid sentences are also called as tautologies
Every valid sentence Is equivalent to True

A sentence is satisfiable 1f 1t 1s true in some model
e.g. “There 1s a Wumpus at [1,2]”

If a sentence Is true in a model m, then we say m satisfies the sentence,
or a model of the sentence

A sentence is unsatisfiable if it is true in no models
e.g. “There 1s a wall 1n front of me and there is no wall in front of

29

me




Truth tables for connectives
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P Q -P |PAQ|PVQ|P = QP & (@
false| false| true | false | false | true true
false| true | true | false | true | true false
true | false| false| false | true | false false
true | true | false| true | true true true

Most sentences are sometimes true:
e.g.PAQ

Some sentences are always true (valid)

eg.—-Pv P
Some sentences are never true (unsatisfiable)
eg.—-PA P




Validity and Inference
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Validity and inference cont.

P H Py H (PvHYN-H ||(PVvHYNH) =P
Fualse Faise False False True
Fualse True Trute False True
True Failse Trite True True
True True True False True

Figure 6.10 Truth table showing validity of a complex sentence

- I 1< > 1P

Fussell Stuant, Norvig Peter, Artificial Intelligence: A Modem Approach, 1993
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Logical equivalence

(N B) = (BN «) commutativity of A
(aV @) = (BVa) commutativity of V
(@ AB)A7y) = (aA(BA7y)) associativity of A
(avB)Vy) = (aV(BVy)) associativity of
—(—a) = a double-negation elimination
(@ = B) = (-8 = —a) contraposition
(¢ = ) = (-~ V [3) implication elimination
(@ & ) = ((a = B)A(B = «)) biconditional elimination
(A f) = (maV —~fF) de Morgan
—-(ﬂ:"u’ B) = (maA—f3) de Morgan
(@A (BVY) = ((anp)V(aAy)) distributivity of A over V
(aV(BAY) = ((aVB)A(aVy)) distributivity of V over A

Two sentences are logically equivalent iff they are true in same models:
a=BiffaBandpFa




Examples

86

Sentence Valid?

Interpretation that make
sen:ence’s truth value = f

smoke —+ smoke
valid

}

@40-u~s+ﬂﬂ}

smoke Vv
-smoke

smoke — fire satisfiable,

not valid

satisfiable,
not valid

contrapositive

(s+f)=(-f>-s) tVald

} valid

bvdv (b d)
bvdv-bvd

smoke=¢t, fire=f

s=ff=t
Ss—o+f=t,~s—o>-~f=f




Satisfiability
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« Related to constraint satisfaction

« Glven a sentence S, try to find an interpretation |
where S Is true

 Analogous to finding an assignment of values to
variables such that the constraint hold

« Example problem: scheduling nurses in a hospital

— Propositional variables represent for example that Nursel
IS working on Tuesday at 2

— Constraints on the schedule are represented using logical
expressions over the variables
« Brute force method: enumerate all interpretations
and check




Validity and Inference
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premises = conclusion

Validity and inference cont.

P H Py H (PvHYN-H ||(PVvHYNH) =P
Fualse Faise False False True
Fualse True Trute False True
True Failse Trite True True
True True True False True

Fussell Stuant, Norvig Peter, Artificial Intelligence: A Modem Approach, 1993

Figure 6.10 Truth table showing validity of a complex sentence

[<]

<

> 1D
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 Logical Inference creates new sentences that
logically follow from a set of sentences in KB

« An inference rule is sound If every sentence X it
produces when operating on a KB logically
follows from the KB

* An inference rule is complete If it can produce
every expression that logically follows from (is
entailed by) the KB




Resolution

(Ron is in the Great Hall) v (Hermione is in the library)

Ron is not in the Great Hall

Hermione is in the library

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu



Resolution

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,
David J. Malan and Brian Yu




Resolution

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,
David J. Malan and Brian Yu




Resolution

(Ron is in the Great Hall) v (Hermione is in the library)

(Ron is not in the Great Hall) v (Harry is sleeping)

(Hermione is in the library) v (Harry is sleeping)

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,
David J. Malan and Brian Yu




Resolution

Pv O
PV R

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,
David J. Malan and Brian Yu




Resolution

PvQOrv Qv ..v(Ony
—“PVvR;vRV..VR,

OrvQOrv..vVOVRI VRV ..VRy

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,
David J. Malan and Brian Yu




Resolution

clause

a disjunction of literals

egd.PvOVvR

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,
David J. Malan and Brian Yu




Resolution

conjunctive normal form

logical sentence that is a conjunction of
clauses

egd. AvBvOaADv—E)YnFvG)

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,
David J. Malan and Brian Yu




Resolution

Conversion to CNF

e Eliminate biconditionals
eturn (a« pyinto(a— p)a (f— a)

e Eliminate implications
e turn (a— p)INto—a v p

e Move — inwards using De Morgan's Laws
e e.g.turn ~(a A p) INtO ~a v =p

e Use distributive law to distribute v wherever possible

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu



Resolution

Conversion to CNF

(Pv(Q)—R
ﬁ(P Y, Q) v R eliminate implication
(_'P N\ _'Q) v R De Morgan's Law

(ﬁP \% R) A (_'Q \% R) distributive law

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,
David J. Malan and Brian Yu




Resolution

Pv QO
—Pv R

(QVR)

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu



Resolution

PvQOvs$
“PvRvS

(OVvSVRVYS)

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu



Resolution

PvQOvs$
“PvRvS

(QVRVS)

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu
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Resolution

Resolution Is a sound and complete inference procedure

aVvB-apvy

oVYy

If B is True, since we know that — § V vy holds, it must be
the case that y Is true

If B is false, then since we know that a Vv 3 holds, 1t must
be the case that a 1s true

So either a or vy Is true
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Resolution

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu
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Resolution

avp,-=pvy

ovVYy
or equivalently
o =8 f=7 avp.p=y
e = avNy

Example:

o. “The weather is dry”
B: “The weather is rainy”

v: “l carry an umbrella”
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Soundness of the resolution inference rules

* An Inference rule iIs sound if the conclusion is true
In all cases where the premises are true

Rules of inference for propositional logic

oL 63 ¥ o P B vy oL\ Y
Falsze False Falsze False True Falsze
Fal=ze False Ti1ue False True T1ue
Falsze True Falze True False Falsze
Falsze Tiue True Tirue Tirue Tiue
Tiue False Falsze Tiue True Ti1ue
Tiue False True Tiue Tiue Tiue
T1ue True Falze True False T1ue
Tirue Tiue Tr1ue Tiue Tiue Tiue

Figure 6.14 A truth table demonstrating the soundness of the
resolution inference rule. We have underlined the rows
where both premises are true. < <1 1 B

Russell Stuart. Norvig Peter. Artificial Intelligence: A Modem Approach. 1995
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Generalized resolution rule

-P, vP,v..VvP,

——P,vQ,v..vQ,

—Resolvent: P, v.. vP v Q,v..vQ_

 Where P1 and — P1 are complementary literals




Proof with resolution
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Given the following hypotheses:
1.1f it rains, Joe brings his umbrella
(r -> u)

2.1Tf Joe has an umbrella, he doesn't get wet
(u->NOT w)

3.1f 1t doesn't rain, Joe doesn't get wet
(NOT r -> NOT w)

prove that Joes doesn't get wet (NOT w)
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Proof with resolution

We first convert each hypothesis into disjunctions
1.r->u
(NOT r OR u)

2.U->NOTw
(NOT u OR NOT w)

3.NOTr->NOT w
(r ORNOT w)




Proof with resolution
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We then use resolution on the hypotheses to
derive the conclusion (NOT w):

. NOT
. NOT

OO0l WN P

. NOT r OR u Premise
. NOT u OR NOT w Premise
. OR NOT w Premise

" r OR NOT w L1, L2, resolution
" w OR NOT w L3, L4, resolution

. NOT

"w L5, idempotence
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Resolution covers many cases

* Modes Ponens

— from P and P — Q derive Q
— from P and — P v Q derive Q

* Chaining
— from P —> Qand Q > R dertive P> R
— from (- PvQ)and (- Q v R) derive —wP v R

* (Contradiction detection
— from P and — P derive false

— from P and — P derive the empty clause (=false)
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Rewrite
P=PV False
—P = False vV —P

Apply resolution (P and — P are complementary literals)

PV False
False vV —P

False vV False False vV False = False
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Properties of the resolution rule:
e Sound
e Complete (yields to a complete inference algorithm).

The resolution rule forms the basis for a family of complete
inference algorithms.

Resolution rule is used to either confirm or refute a sentence
but it cannot be used to enumerate true sentences.




Resolution

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu



Resolution

Inference by Resolution

e To determine if KB = a:
e Check if (KB A —a) is a contradiction?
e [f so, then KB Ea.

e Otherwise, no entailment.

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu



Resolution

Inference by Resolution

e TOo determine if KB F a:
e Convert (KB A —a) to Conjunctive Normal Form.

e Keep checking to see if we can use resolution to
produce a new clause.

e |f ever we produce the empty clause (equivalent
to False), we have a contradiction, and KB E a.

e Otherwise, iIf we can’t add new clauses, no
entailment.

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,
David J. Malan and Brian Yu




Resolution

Inference by Resolution

Does (A v B)a (=B v ) a(—C)entail 47

(AvB)YA(B v CO)A(—C) A (—A)

(AdvB) (BvC(C) (7€) (74)

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu



Resolution

Inference by Resolution

Does (A v B)a (=B v C)a(—C)entail 47

AvB)YA(BvVCO)A(CO)A(—A)

(AvB) (BvC(C) (7€) (C4) (B

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu



Resolution

Inference by Resolution

Does (A4 v B)Aa(—Bv () (—C)entail 47

AVvB)A(CBVO)A(CCC)A(A)

AvB) (BvC) (O (A) (B) @)

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,
David J. Malan and Brian Yu




Resolution

Inference by Resolution

Does (A v B)a(™Bv C)a(—C)entail 47

AvB)A(TBvO)ACC)A(A)

UVB) CBvO) (O (A (B) ) ()

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,
David J. Malan and Brian Yu
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A sentence is valid if it 1s true in all models,
KB [ a if and only if (KB = a) is valid
A sentence Is unsatisfiable Iif 1t i1s true in no models

o 1s valid iff — a IS unsatisfiable,
(KB = a) 1s equivalent to (KB V o)

— (KB = a) is equivalent to (KB A—a )

KB |= a 1f and only 1if (KB A—a) 1s unsatisfiable
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Inference procedures based on resolution work by using the
principle of proof by contradiction:

To show that KB |=a we show that (KB A -a) is unsatisfiable




Proof by contradiction using resolution
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O NOOhE WD E

NOT r OR u Premise

NOT u OR NOT w Premise

r OR NOT w Premise

w Negation of conclusion

NOT r OR NOT w L1, L2, resolution
NOT w OR NOT w L3, L5, resolution
NOT w L6, idempotence

FALSE L4, L7, resolution
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Resolution can be applied only to disjunctions of literals. How
can it lead to a complete inference procedure for all
propositional logic?

Turns out any knowledge base can be expressed as a
conjunction of disjunctions (conjunctive normal form, CNF).

E.g.,(Av-B)A(Bv-Cv-D)




Conjunctive Normal form
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¢ Conjunctive normal form (CNF) formulas:

(AvBv-O)ABvDIA(A)A(BVO)
e (AvBv-() is a clause, which is a disjunction
of literals
e A, B, and - C are literals, each of which is a
variable or the negation of a variable.

e Each clause is a requirement that must be
satisfied and can be satisfied in multiple ways

» Every sentence in propositional logic can be
written in CNF
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Converting to CNF

1. Eliminate arrows using definitions
2. Drive in negations using De Morgan’s Laws

~(pV@)=-gA-p
~(PAQ)=—9V-p
3. Distribute or over and

Av(BAC)=(AvB)A(AVv()

4. Every sentence can be converted to CNF, but it
may grow exponentially in size
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CNF Conversion Example

(AvB) > (C —>D)
1. Eliminate arrows

A AvBYv(-CvD)

2. Drive in negations

3. Distribute
—Av-CvD)ABv-CvD)
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Resolution

» Resolution rule:
aVv]
PVy
aVvy
e Resolution refutation:
e Convert all sentences to CNF
o Negate the desired conclusion (converted to CNF)
e Apply resolution rule until either
- Derive false (a contradiction)
- Can't apply any more
e Resolution refutation is sound anc complete

e If we derive a contradiction, then the conclusion follows
from the axioms

 If we can't apply any more, then the conclusion cannot be
proved from the axioms.
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Prove R

2IP=2R

Step Derivation
1 |[PvQ Given

2 -PvR |Given

3 [-QvR |Given

i - R Negated

conclusion




Example
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Prove R

1|PvQ

2|P=+R

3]1Q—=R

1 Given

2 |[-PvR |Given

3 [-QVvR [Given

4 |-R Negated
conclusion

5 |QVR 1,2

6 (=P 2,4

7 (-Q 34

8 |R 5,7

S

4,8
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Example

Prove R
1/1PvQ -PvR |Given
5P R -QVvR |Given
- R Negated
3]Q+R conclusion
5 IQVR 1.2
o |3 2,4
S 0. 3,4
false v R s IR 5.7
- R v false 9 |s 48

false v false




The power of false
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Prove 2

1

P

2

- P

Step | Formula | Derivation

1 P Given

2 - P Given

3 - Z Negated
conclusion

4 . 1,2

Note that (P A - P) = Z is valid

Any conclusion follows from a contradiction — and so
strict logic systems are very brittle.
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Example

Convert to CNF

Prove R 2 (;("P‘(S)Q)SQ

1 [(P-Q)=Q y s 44

2 |[(P—->P)—=R : fg:g;A(quQ)
3|(R=S)—=-(S—-Q)

e ~(-PVP)VR
e (PA-P)VR
e (PVYR)A(=PVR)

“(«RvS)v-(-SvQ)
(RA=S)V(SA-Q)
(RYS)A(-SVS)A(RV-Q)A (=S v=Q)
(RYvS)A(Rv-Q)A (S v=-Q)




Example

136

Prove R

1{(P-Q)=Q

2|(P=P)—=R

(R—=S)
—+-(S-+Q)

1 PvQ

? PvR

3 -PVR

4 RvS

5 Rv-Q

6 -Sv-Q

7 - R Neg
8 S 4,7

9 - Q 6,8

10 |p 1,9

11 [R 3,10

12

7,11
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Conversion to CNF

Givem

Biy & (P VvPyy) _

—B; P

Prove: P, ° °K
|Ioi_sox W

1. Eliminate <, replacing a < B with (a0 = BA(B = a).

(B11= (PioVvPy)) A((Prov Pyy) = Byy)

2. Eliminate =, replacing a = B with —av f.
(_'51,1 VP,V P2,1) A (_'(Pl,z Vv I:)2,1) Vv B1,1)

3. Move — inwards using de Morgan's rules and double-negation:
(—By1 VP vPy ) A((=PoA=P, 1) VB )

4. Apply distributivity law (A over v) and flatten:
(—B11V P12V Py) A(=Pv Big) A (=P v By )




Resolution example
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* KB=(B;; < (P1,vP,1) A= By,

‘ P,V B, - B,V P,V P,

B B1,1V PL:V WE

_'P1,1V Bl,l

P

LV Py P 1| !_' B, P,VB,

Pl,lv Pz.l\\a”r _'Pl.l

- P, |
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Resolution algorithm

 Proof by contradiction, i.e., show KBA—o unsatisfiable

function PL-RESOLUTION(KB, a) returns true or false

clauses + the set of clauses in the CNF representation of KB N —«
new++{ }
loop do
for each C;, C; in clauses do
resolvents + PL-RESOLVE(C;, C5)
if resolvents contains the empty clause then return true
new « new |J resolvents
if new C clauses then return false
clauses + clauses | new
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Horn Clauses

« Horn Form (restricted)
KB = conjunction of Horn clauses

Horn clause =
proposition symbol (conjunction of symbols) = symbol

Pl AP2 A....APN=Q
where PI and Q are nonnegated atoms

—-Eg,CA(B=A)A(CAD=B)

* When Q Is False we get a sentence that is equivalent to

 When n=1 and pl is True we get True = Q

which is equivalent to Q
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Forward and backward chaining

* Modus Ponens (for Horn Form): complete for Horn KBs
Oy ... 50, Oy A ... N0, = [

B

 Can be used with forward chaining or backward chaining.
» These algorithms are very natural and run in linear time
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Forward chaining

* ldea: fire any rule whose premises are satisfied in the KB,
— add its conclusion to the KB, until query Is found

P = Q@

LANM = P P
BAL = M E}\
ANP = L M
ANB = L




Forward chaining algorithm
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* Fo

function PL-FC-ENTAILS? (KB, ¢) returns true or false
local variables: count, a table, indexed by clause, initially the number of premises
inferred, a table, indexed by symbol, each entry initially false
agenda, a list of symbols, initially the symbols known to be true

while agenda is not empty do
p+— Pop(agenda)
unless inferred[p] do
inferred[p] + true
for each Horn clause ¢ in whose premise p appears do
decrement count|c|
if count[c] = 0 then do
if HEAD[¢| = ¢ then return true
Puse(HEAD[¢], agenda)
return false
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Forward chaining example

P = @
LAM = P Q
BANL = M

AANP = L 1
ANB = L
A

B
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Forward chaining example

P = @
LAM = P Q
BANL = M

AANP = L 1
ANB = L
A

B
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Forward chaining example

P = @
LAM = P Q
BANL = M

AANP = L 1
ANB = L
A

B
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Forward chaining example

P = @
LAM = P Q
BANL = M

AANP = L 1
ANB = L
A

B
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Forward chaining example

P = @
LANM = P
BANL = M
AANP = L
ANB = L
A

B
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Forward chaining example

P = @
LANM = P
BANL = M
AANP = L
ANB = L
A

B
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Forward chaining example

P = @
LANM = P
BANL = M
AANP = L
ANB = L
A

B
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Forward chaining example

P = @
LANM = P
BANL = M
AANP = L
ANB = L
A

B
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Proof of completeness

« FC derives every atomic sentence that is entailed by KB

1. FC reaches a fixed point where no new atomic
sentences are derived

2. Consider the final state as a model m, assigning
true/false to symbols

3. Every clause in the original KB Is true in m
A ...A Qb
4. Hence mis a model of KB
5. ITKB |=q, q Is true in every model of KB, including m
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Backward chaining

Idea: work backwards from the query q:
to prove g by BC,
check if g i1s known already, or
prove by BC all premises of some rule concluding g

Avoid loops: check If new subgoal Is already on the goal
stack

Avoid repeated work: check If new subgoal
1. has already been proved true, or
2. has already failed
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Backward chaining example

P = Q@
LANM = P
BANL = M
AANP = L
ANB = L
A

B
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Backward chaining example

P = Q@
LANM = P
BANL = M
AANP = L
ANB = L
A

B
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Backward chaining example

P = Q@
LANM = P
BANL = M
AANP = L
ANB = L
A

B
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Backward chaining example

P = Q@
LANM = P
BANL = M
AANP = L
ANB = L
A

B
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Backward chaining example

P = Q@
LANM = P
BANL = M
AANP = L
ANB = L
A

B
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Backward chaining example

P = Q@
LANM = P
BANL = M
AANP = L
ANB = L
A

B
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Backward chaining example

P = Q@
LANM = P
BANL = M
AANP = L
ANB = L
A

B
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Backward chaining example

P = Q@
LANM = P
BANL = M
AANP = L
ANB = L
A

B
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Backward chaining example

P = Q@
LANM = P
BANL = M
AANP = L
ANB = L
A

B
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Backward chaining example

P = Q@
LANM = P
BANL = M
AANP = L
ANB = L
A

B
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Forward vs. backward chaining

FC Is data-driven, automatic, unconscious processing,
— e.gd., object recognition, routine decisions

May do lots of work that Is Irrelevant to the goal

BC i1s goal-driven, appropriate for problem-solving,

—e.g., Where are my keys? How do | get into a PhD
program?

Complexity of BC can be much less than linear in size of KB
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Summary

Logical agents apply inference to a knowledge base to derive new
Information and make decisions

Basic concepts of logic:
— syntax: formal structure of sentences
— semantics: truth of sentences wrt models
— entailment: necessary truth of one sentence given another
— Inference: deriving sentences from other sentences
— soundness: derivations produce only entailed sentences
— completeness: derivations can produce all entailed sentences

« Wumpus world requires the ability to represent partial and negated
Information, reason by cases, etc.

» Resolution is complete for propositional logic
Forward, backward chaining are linear-time, complete for Horn clauses

- Propositional logic lacks expressive power
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Proof methods

 Application of inference rules
— Legitimate (sound) generation of new sentences from old

— Proof = a sequence of inference rule applications
Can use inference rules as operators in a standard search algorithm

— Typically require transformation of sentences into a normal form

* Model checking
— truth table enumeration (always exponential in n)

— Improved backtracking, e.g., Davis--Putnam-Logemann-Loveland
(DPLL)

— heuristic search in model space (sound but incomplete)
e.g., min-conflicts-like hill-climbing algorithms
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Resolution as a complete inference

» To prove KB F a, assume KB A — a and derive a
contradiction

« Rewrite KB A — a as a conjunction of clauses,
or disjunctions of literals

— Conjunctive normal form (CNF)

- Keep applying resolution to clauses that contain
complementary literals and adding resulting clauses
to the list

— If there are no new clauses to be added, then KB does not entail a

— |f two clauses resolve to form an empty clause, we have a
contradiction and KB F a

The process: 1. convert KB A -a to CNF
2. resolution rule is applied to the resulting clauses.
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