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Logical Agents

Fundamentals of Artificial Intelligence

Slides are mostly adapted from AIMA and MIT Open Courseware
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knowledge-based agents

agents that reason by operating on internal representations of 
knowledge 

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python, 

David J. Malan and Brian Yu

If it didn't rain, Harry visited Hagrid today. 
Harry visited Hagrid or Dumbledore today, but not both. 
Harry visited Dumbledore today. 

It rained today. 
Harry did not visit Hagrid today. 
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Introduction

• The representation of knowledge and the reasoning processes that bring 

knowledge to life are central to entire field of artificial intelligence

• Knowledge and reasoning are important to artificial agents because they 

enable successful behaviors that would be very hard to achieve otherwise (no 

piece in chess can be on two different squares at the same time)

• Knowledge and reasoning also play a crucial role in dealing with partially 

observable environments (inferring hidden states in diagnosing diseases, 

natural language understanding)

• Knowledge also allows flexibility. 



7

Wumpus World PEAS description

• Performance measure

– gold +1000, death -1000

– -1 per step, -10 for using the arrow

• Environment

– Squares adjacent to wumpus are smelly (stench)

– Squares adjacent to pit are breezy

– Glitter iff gold is in the same square

– Shooting kills wumpus if you are facing it

– Shooting uses up the only arrow

– Grabbing picks up gold if in same square

– Releasing drops the gold in same square

• Sensors: Stench, Breeze, Glitter, Bump, Scream

• Actuators: Left turn, Right turn, Forward, Grab, Release, 
Shoot
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Wumpus world characterization

• Fully Observable No – only local perception

• Deterministic Yes – outcomes exactly specified

• Episodic No – sequential at the level of actions

• Static Yes – Wumpus and Pits do not move

• Discrete Yes

• Single-agent? Yes – Wumpus is essentially a natural 

feature
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Exploring a wumpus world

[1,1] is OK

Because

Haven’t fallen into a pit

Haven’t been eaten by a Wumpus 

[1,2] and [2,1] are OK

Because

No stench

No breeze
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Exploring a wumpus world

We move to [1,2] and

Feel a Breeze
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Exploring a wumpus world
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Exploring a wumpus world
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Exploring a wumpus world
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Exploring a wumpus world
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Exploring a wumpus world
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Exploring a wumpus world
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Logic in general

• Logics are formal languages for representing information such that conclusions can be 

drawn

• Sentence: an assertion about the world in a knowledge representation language 

• Syntax defines the sentences in the language

• Semantics define the "meaning" of sentences;

– i.e., define truth of a sentence in a world

• E.g., the language of arithmetic

– x+2 ≥ y is a sentence; x2+y > {} is not a sentence

– x+2 ≥ y is true iff the number x+2 is no less than the number y

– x+2 ≥ y is true in a world where x = 7, y = 1

– x+2 ≥ y is false in a world where x = 0, y = 6
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Propositional Logic

Propiositions: Statements about the world

Propositional Symbols: represent a fact about the world
P  , Q  ,  R
It is raining
Harry wisited Hagrid today, etc

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python, 

David J. Malan and Brian Yu

Logical Connectives
¬ not
∧ and
∨ or 
→ implication 
↔ biconditional 
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Propositional Logic

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python, 

David J. Malan and Brian Yu

P : it is raining

~P : It is not raining

Both P and Q are true

Either of P or Q or both are true
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Propositional Logic

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python, 

David J. Malan and Brian Yu

If P is true Q is also true

If it is raining, I will be indoors

If it is raining but I am not indoors, 

then my original statement is not true

If P is false, then the statement does not 

make any claim

If it is not raining, I am not making any 

claim about whether I will be indoors or not

I will be indoors if and only if it is raining
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Model

assignment of a truth value to every propositional symbol (a "possible 
world")

P: It is raining. 

Q: It is a Tuesday. 

{P = false, Q = true} 

For n number of symbols there are 2^n possible models

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python, 

David J. Malan and Brian Yu
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Knowledge Base and Entailment

knowledge base 
a set of sentences known by a knowledge-based agent 

This information is used to come up with conclusions

Entailment 
α ⊨ β In every model in which sentence α is true, sentence β is also true.

If it a Tuesday in March then it entails that it is March

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python, 

David J. Malan and Brian Yu
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Inference

the process of deriving new sentences from old ones 

If it didn't rain, Harry visited Hagrid today. 
Harry visited Hagrid or Dumbledore today, but not both. 
Harry visited Dumbledore today. 

Harry did not visit Hagrid today. 
It rained today. 

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python, 

David J. Malan and Brian Yu
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Inference

P: It is a Tuesday. 
Q: It is raining. 
R: Harry will go for a run. 

KB: 
(P ∧ ¬Q) → R 
P 
¬Q 

Inference: 
R

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python, 

David J. Malan and Brian Yu
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Entailment

• Entailment means that one thing follows from another:

KB ╞ α

• Knowledge base KB entails sentence α if and only if α is 

true in all worlds where KB is true

– If α true then KB must also be true

– Entailment is a relationship between sentences (i.e., syntax) that is 

based on semantics
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Models

• Logicians typically think in terms of models, which are formally structured 

worlds with respect to which truth can be evaluated

• We say m is a model of a sentence α if α is true in m

• M(α) is the set of all models of α

• Then KB ╞ α iff M(KB)  M(α)

– E.g. KB = It is a Tuesday in March

α = It is March

Possible world – model 
m is a model of α – the sentence α is true in model m
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Model checking

To determine if KB ⊨ α:
• Enumerate all possible models.
• If in every model where KB is true, α is true, then KB entails α. 
• Otherwise, KB does not entail α. 

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python, 

David J. Malan and Brian Yu
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Entailment in the wumpus world

• Situation after detecting 
nothing in [1,1], moving 
right, breeze in [2,1]
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Wumpus models

3 Boolean choices  8 possible models 

for the adjacent squares [1,2], [2,2] and [3,1] to contain pits
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Wumpus models

• KB = wumpus-world rules + observations

• KB is false in any model in which [1,2] contains a 

pit, because there is no breeze in [1,1]

Consider possible models for KB assuming only pits
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Wumpus models

• Consider α1 = “[1,2] is safe” = “There is no pit in [1,2]”

• In every model KB is true α1 is also true

• KB ╞ α1, proved by model checking

• We can conclude that there is no pit in [1,2]
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Wumpus models

• Consider α2 = “[2,2] is safe” = “There is no pit in [2,2]”

• In some models in which KB is true α2 is false

• KB ╞/ α2

• We cannot conclude that there is no pit in [2,2]
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Wumpus world sentences

Let Pi,j be true if there is a pit in [i, j].

Let Bi,j be true if there is a breeze in [i, j].

Knowledge base includes:

R1:  P1,1       No pit in [1,1]

R2: B1,1       No breeze in [1.1]

R3: B2,1            Breeze in [2,1]

• "Pits cause breezes in adjacent squares"

R4: B1,1   (P1,2  P2,1)

R5: B2,1   (P1,1  P2,2  P3,1)

KB = R1  R2  R3  R4  R5
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Truth tables for inference R1:  P1,1       

R2: B1,1      

R3: B2,1          

R4: B1,1   (P1,2  P2,1)

R5: B2,1   (P1,1  P2,2  P3,1)

KB = R1  R2  R3  R4  R5

α1 =  P1,2 

α2 = P2,2 

α1 is true in all models that 

KB is true

α2 is true only in 

two models that KB is true, 

but false in the other one

• Decide whether KB╞ α

• First method: enumerate the models and 

check that α  is true in every model 

in which KB is true

• B1,1 B2,1, P1,1 , P1,2, P2,1, P2,2, P3,1

• 7 symbols : 27 = 128 possible models
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Example Problem
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Checking Interpretations

• Start by figuring out what set of interpretations make 

our original sentences true. 

• Then, if G is true in all those interpretations, it must 

be OK to conclude it from the sentences we started 

out with (our knowledge base). 

• In a universe with only three variables, there are 8 

possible interpretations in total. 
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Checking Interpretations

• Only one of these interpretations 

makes all the sentences in our 

knowledge base true: 

• S = true, H = true, G = true. 
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Checking Interpretations

• it's easy enough to check that G 

is true in that interpretation, so it 

seems like it must be reasonable 

to draw the conclusion that the 

lecture will be good. 
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Computing entailment

Model checking

Truth table enumeration

For n symbols the time complexity is O(2^n)

Need a smarter way to do inference
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Entailment and Proof
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Proof
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Rules of ınference

• KB ├i α = sentence α can be derived from KB by a 

procedure  i (an inference algorithm)

• If we generalize it to any two sentences α and β

• α ├ β means that β is derived from α by an 

inference

• The alternative notation:

α premise

β conclusion
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Inference Rules

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python, 

David J. Malan and Brian Yu
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Inference Rules

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python, 

David J. Malan and Brian Yu
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Inference Rules

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python, 

David J. Malan and Brian Yu
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Inference Rules

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python, 

David J. Malan and Brian Yu
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Inference Rules

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python, 

David J. Malan and Brian Yu
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Inference Rules

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python, 

David J. Malan and Brian Yu
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Inference Rules

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python, 

David J. Malan and Brian Yu
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Search Problem

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python, 

David J. Malan and Brian Yu

• initial state 
• actions 
• transition model 
• goal test 
• path cost function 
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Theorem Proving

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python, 

David J. Malan and Brian Yu

• initial state: starting knowledge base 
• actions: inference rules 
• transition model: new knowledge base after inference 
• goal test: check statement we're trying to prove 
• path cost function: number of steps in proof 
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Example
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Example
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Example
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Example
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Example
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Example
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Logical equivalence



63

Example from Wumpus World

R1:  P1,1       

R2: B1,1      

R3: B2,1          

R4: B1,1   (P1,2  P2,1)

R5: B2,1   (P1,1  P2,2  P3,1)

KB = R1  R2  R3  R4  R5

Prove α1 =  P1,2 



64

Example from Wumpus World

R1:  P1,1       

R2: B1,1      

R3: B2,1          

R4: B1,1   (P1,2  P2,1)

R5: B2,1   (P1,1  P2,2  P3,1)

R6 : B1,1   (B1,1  (P1,2  P2,1)) ((P1,2  P2,1)  B1,1)   Biconditional elimination
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Example from Wumpus World

R1:  P1,1       

R2: B1,1      

R3: B2,1          

R4: B1,1   (P1,2  P2,1)

R5: B2,1   (P1,1  P2,2  P3,1)

R6 : B1,1   (B1,1  (P1,2  P2,1)) ((P1,2  P2,1)  B1,1)   Biconditional elimination

R7 : ((P1,2  P2,1)  B1,1)  And Elimination
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Example from Wumpus World

R1:  P1,1       

R2: B1,1      

R3: B2,1          

R4: B1,1   (P1,2  P2,1)

R5: B2,1   (P1,1  P2,2  P3,1)

R6 : B1,1   (B1,1  (P1,2  P2,1)) ((P1,2  P2,1)  B1,1)   Biconditional elimination

R7 : ((P1,2  P2,1)  B1,1)  And Elimination

R8: ( B1,1   (P1,2  P2,1)) Equivalence for contrapositives
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Example from Wumpus World

R1:  P1,1       

R2: B1,1      

R3: B2,1          

R4: B1,1   (P1,2  P2,1)

R5: B2,1   (P1,1  P2,2  P3,1)

R6 : B1,1   (B1,1  (P1,2  P2,1)) ((P1,2  P2,1)  B1,1)   Biconditional elimination

R7 : ((P1,2  P2,1)  B1,1)  And Elimination

R8: ( B1,1   (P1,2  P2,1)) Equivalence for contrapositives

R9:  (P1,2  P2,1) Modus Ponens with R2 and R8
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Example from Wumpus World

R1:  P1,1       

R2: B1,1      

R3: B2,1          

R4: B1,1   (P1,2  P2,1)

R5: B2,1   (P1,1  P2,2  P3,1)

R6 : B1,1   (B1,1  (P1,2  P2,1)) ((P1,2  P2,1)  B1,1)   Biconditional elimination

R7 : ((P1,2  P2,1)  B1,1)  And Elimination

R8: ( B1,1   (P1,2  P2,1)) Equivalence for contrapositives

R9:  (P1,2  P2,1) Modus Ponens with R2 and R8

R10:  P1,2   P2,1 De Morgan’s Rule
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Example from Wumpus World

R1:  P1,1       

R2: B1,1      

R3: B2,1          

R4: B1,1   (P1,2  P2,1)

R5: B2,1   (P1,1  P2,2  P3,1)

R6 : B1,1   (B1,1  (P1,2  P2,1)) ((P1,2  P2,1)  B1,1)   Biconditional elimination

R7 : ((P1,2  P2,1)  B1,1)  And Elimination

R8: ( B1,1   (P1,2  P2,1)) Equivalence for contrapositives

R9:  (P1,2  P2,1) Modus Ponens with R2 and R8

R10:  P1,2   P2,1 De Morgan’s Rule

R11:  P1,2 And Elimination
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Monotonicity

• The set of entailed sentences can only increase as 

information is added to the knowledge base

• If 

• KB╞ α 

• Then 

• KB  β╞ α
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Inference

• KB ├i α = sentence α can be derived from KB by a procedure  i (an inference 

algorithm)

• Soundness: i is sound if whenever KB ├i α, it is also true that KB╞ α

• An inference algorithm that derives only entailed sentences is sound or truth 

preserving (model checking is a sound procedure)

– If the system proves that something is true, then it is really true. The system 

doesn’t derive contradictions

• Completeness: i is complete if whenever KB╞ α, it is also true that KB ├i α 

• An inference algorithm is complete if it can derive any sentence that is entailed

– If something is really true, it can be proven using the system. The system can be 

used to derive all the true statements one by one

• If KB is true in the real world then any sentence α derived from KB by a sound 

inference procedure is also true in real world 

– The conclusions of the reasoning process are guaranteed to be true in any world 

in which the premises are true
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Inference

• An unsound inference procedure essentially makes things up as it goes 

along – it announces the discovery of non-existent needles

• For completeness, a systematic examination can always decide 

whether the needle is in the haystack which is finite

Cartoon illustrations by John P. Weiss

All consequences of a KB is a haystack

α is a needle

Entailment 

The needle being in the haystack

Inference 

Finding the needle

https://johnpweiss.com/email-newsletter
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Semantics and Inference

• Interpretation: establishing a correspondence between sentences and 

facts

• Compositional: the meaning of a sentence is a function of the 

meaning of its parts

• A sentence is TRUE under a particular interpretation if the state of 

the affairs it represents is the case

• S1,2 would be true 

– under the interpretation 

“there is a stench in [1,2]”

– on this Wumpus world 
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Validity and satisfiability

A sentence is valid if it is true in all models,

e.g. “There is a stench at [1,1] or there is not a stench at [1,1]” 

Valid sentences are also called as tautologies

Every valid sentence is equivalent to True

A sentence is satisfiable if it is true in some model 

e.g. “There is a Wumpus at [1,2]”

If a sentence is true in a model m, then we say m satisfies the sentence, 
or a model of the sentence

A sentence is unsatisfiable if it is true in no models

e.g. “There is a wall in front of me and there is no wall in front of 
me”
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Truth tables for connectives

Most sentences are sometimes true:

e.g. P  Q

Some sentences are always true (valid)

e.g.  P  P 

Some sentences are never true (unsatisfiable)

e.g.  P  P 
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Validity and Inference
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Logical equivalence

Two sentences are logically equivalent iff they are true in same models: 

α ≡ ß iff α╞ β and β╞ α
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Examples
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Satisfiability

• Related to constraint satisfaction

• Given a sentence S, try to find an interpretation i 

where S is true

• Analogous to finding an assignment of values to 

variables such that the constraint hold

• Example problem: scheduling nurses in a hospital

– Propositional variables represent for example that Nurse1 

is working on Tuesday at 2

– Constraints on the schedule are represented using logical 

expressions over the variables

• Brute force method: enumerate all interpretations 

and check
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Validity and Inference

premises  conclusion 
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Recall

• Logical Inference creates new sentences that 

logically follow from a set of sentences in KB

• An inference rule is sound if every sentence X it 

produces when operating on a KB logically 

follows from the KB

• An inference rule is complete if it can produce 

every expression that logically follows from (is 

entailed by) the KB
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Resolution

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python, 

David J. Malan and Brian Yu
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Resolution

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python, 

David J. Malan and Brian Yu
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Resolution

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python, 

David J. Malan and Brian Yu
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Resolution

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python, 

David J. Malan and Brian Yu
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Resolution

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python, 

David J. Malan and Brian Yu



95

Resolution

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python, 

David J. Malan and Brian Yu
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Resolution

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python, 

David J. Malan and Brian Yu
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Resolution

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python, 

David J. Malan and Brian Yu
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Resolution

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python, 

David J. Malan and Brian Yu
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Resolution

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python, 

David J. Malan and Brian Yu
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Resolution

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python, 

David J. Malan and Brian Yu
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Resolution

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python, 

David J. Malan and Brian Yu
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Resolution

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python, 

David J. Malan and Brian Yu
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Resolution

• Resolution is a sound and complete inference procedure

• If β is True, since we know that ¬ β ˅ γ holds, it must be 

the case that γ is true

• If β is false, then since we know that ɑ ˅ β holds, it must 

be the case that ɑ is true

• So either ɑ or γ is true 
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Resolution

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python, 

David J. Malan and Brian Yu
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Resolution

or equivalently
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Soundness of the resolution inference rules

• An inference rule is sound if the conclusion is true 

in all cases where the premises are true
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Generalized resolution rule

• Where P1 and ¬ P1 are complementary literals
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Proof with resolution

Given the following hypotheses:

1.If it rains, Joe brings his umbrella 

(r -> u)

2.If Joe has an umbrella, he doesn't get wet 

(u -> NOT w)

3.If it doesn't rain, Joe doesn't get wet 

(NOT r -> NOT w)

prove that Joes doesn't get wet (NOT w)
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Proof with resolution

We first convert each hypothesis into disjunctions

1.r -> u 

(NOT r OR u)

2.u -> NOT w

(NOT u OR NOT w)

3.NOT r -> NOT w 

(r OR NOT w)
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Proof with resolution

We then use resolution on the hypotheses to 

derive the conclusion (NOT w):

1. NOT r OR u Premise 

2. NOT u OR NOT w Premise

3. r OR NOT w Premise

4. NOT r OR NOT w L1, L2, resolution

5. NOT w OR NOT w L3, L4, resolution

6. NOT w L5,  idempotence
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Resolution covers many cases
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Rewrite

P ≡ P ˅ False

¬P ≡ False ˅ ¬P

Apply resolution (P and ¬ P are complementary literals)

P ˅ False

False ˅ ¬P

False ˅ False False ˅ False ≡ False
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Resolution

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python, 

David J. Malan and Brian Yu
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Resolution

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python, 

David J. Malan and Brian Yu



116

Resolution

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python, 

David J. Malan and Brian Yu
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Resolution

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python, 

David J. Malan and Brian Yu
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Resolution

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python, 

David J. Malan and Brian Yu
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Resolution

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python, 

David J. Malan and Brian Yu



120

Resolution

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python, 

David J. Malan and Brian Yu
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Recall

A sentence is valid if it is true in all models,

KB ╞ α if and only if (KB  α) is valid

A sentence is unsatisfiable if it is true in no models

α  is valid iff  α is unsatisfiable, 

KB ╞ α if and only if (KB α) is unsatisfiable

(KB  α) is  equivalent to (KB ˅ α )

 (KB  α) is  equivalent to (KB α )
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Proof by contradiction using resolution

1. NOT r OR u Premise 

2. NOT u OR NOT w Premise 

3. r OR NOT w Premise 

4. w Negation of conclusion 

5. NOT r OR NOT w L1, L2, resolution 

6. NOT w OR NOT w L3, L5, resolution 

7. NOT w L6, idempotence

8. FALSE L4, L7, resolution
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Conjunctive Normal form
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Converting to CNF
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CNF Conversion Example
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Resolution
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Example
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Example
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Example
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The power of false
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Example
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Example
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Conversion to CNF

Givem

B1,1  (P1,2  P2,1)

B1,1

Prove: P1,2

1. Eliminate , replacing α  β with (α  β)(β  α).

(B1,1  (P1,2  P2,1))  ((P1,2  P2,1)  B1,1)

2. Eliminate , replacing α  β with α β.

(B1,1  P1,2  P2,1)  ((P1,2  P2,1)  B1,1)

3. Move  inwards using de Morgan's rules and double-negation:

(B1,1  P1,2  P2,1)  ((P1,2  P2,1)  B1,1)

4. Apply distributivity law ( over ) and flatten:

(B1,1  P1,2  P2,1)  (P1,2  B1,1)  (P2,1  B1,1)
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Resolution example

• KB = (B1,1  (P1,2 P2,1))  B1,1             α = P1,2
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Resolution algorithm

• Proof by contradiction, i.e., show KBα unsatisfiable
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Horn Clauses

• Horn Form (restricted)

KB = conjunction of Horn clauses

Horn clause = 

proposition symbol (conjunction of symbols)  symbol

P1   P2   …..  Pn  Q 

where Pi and Q are nonnegated atoms

– E.g., C  (B  A)  (C  D  B)

• When Q is False we get a sentence that is equivalent to

 P1   P2  …..   Pn

• When n=1 and p1 is True we get True   Q

which is  equivalent to Q
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Forward and backward chaining

• Modus Ponens (for Horn Form): complete for Horn KBs

α1, … ,αn, α1  …  αn  β

β

• Can be used with forward chaining or backward chaining.

• These algorithms are very natural and run in linear time
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Forward chaining

• Idea: fire any rule whose premises are satisfied in the KB,

– add its conclusion to the KB, until query is found
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Forward chaining algorithm

• Forward chaining is sound and complete for Horn KB
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Forward chaining example



146

Forward chaining example
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Forward chaining example
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Forward chaining example
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Forward chaining example
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Forward chaining example
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Forward chaining example



152

Forward chaining example
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Proof of completeness

• FC derives every atomic sentence that is entailed by KB

1. FC reaches a fixed point where no new atomic 

sentences are derived

2. Consider the final state as a model m, assigning 

true/false to symbols

3. Every clause in the original KB is true in m

a1  …  ak  b

4. Hence m is a model of KB

5. If KB╞ q, q is true in every model of KB, including m
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Backward chaining

Idea: work backwards from the query q:

to prove q by BC,

check if q is known already, or

prove by BC all premises of some rule concluding q

Avoid loops: check if new subgoal is already on the goal 

stack

Avoid repeated work: check if new subgoal

1. has already been proved true, or

2. has already failed
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Backward chaining example
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Backward chaining example
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Backward chaining example
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Backward chaining example
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Backward chaining example
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Backward chaining example
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Backward chaining example
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Backward chaining example
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Backward chaining example
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Backward chaining example
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Forward vs. backward chaining

• FC is data-driven, automatic, unconscious processing,

– e.g., object recognition, routine decisions

• May do lots of work that is irrelevant to the goal 

• BC is goal-driven, appropriate for problem-solving,

– e.g., Where are my keys? How do I get into a PhD 
program?

• Complexity of BC can be much less than linear in size of KB
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Summary

• Logical agents apply inference to a knowledge base to derive new 

information and make decisions

• Basic concepts of logic:

– syntax: formal structure of sentences

– semantics: truth of sentences wrt models

– entailment: necessary truth of one sentence given another

– inference: deriving sentences from other sentences

– soundness: derivations produce only entailed sentences

– completeness: derivations can produce all entailed sentences

• Wumpus world requires the ability to represent partial and negated 

information, reason by cases, etc.

• Resolution is complete for propositional logic

Forward, backward chaining are linear-time, complete for Horn clauses

• Propositional logic lacks expressive power
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Proof methods

• Application of inference rules

– Legitimate (sound) generation of new sentences from old

– Proof = a sequence of inference rule applications

Can use inference rules as operators in a standard search algorithm

– Typically require transformation of sentences into a normal form

• Model checking

– truth table enumeration (always exponential in n)

– improved backtracking, e.g., Davis--Putnam-Logemann-Loveland 

(DPLL)

– heuristic search in model space (sound but incomplete)

e.g., min-conflicts-like hill-climbing algorithms
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Resolution as a complete inference
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