BBS654
 Data Mining

Pinar Duygulu

Slides are adapted from
Nazli Ikizler

Why?

- Retailers now have massive databases full of transactional history
- Simply transaction date and list of items
- Is it possible to gain insights from this data?
- How are items in a database associated
- Association Rules predict members of a set given other members in the set

Why?

- Example Rules:
- 98% of customers that purchase tires get automotive services done
- Customers which buy mustard and ketchup also buy burgers
- Goal: find these rules from just transactional data
- Rules help with: store layout, buying patterns, add-on sales, etc

Association rule mining

- Proposed by Agrawal et al in 1993.
- It is an important data mining model studied extensively by the database and data mining community.
- Assume all data are categorical.
- No good algorithm for numeric data.
- Initially used for Market Basket Analysis to find how items purchased by customers are related.

$$
\text { Bread } \rightarrow \text { Milk } \quad[\text { sup }=5 \%, \text { conf }=100 \%]
$$

The model: data

- $I=\left\{i_{1}, i_{2}, \ldots, i_{m}\right\}$: a set of items.
- Transaction t :
- t a set of items, and $t \subseteq l$.
- Transaction Database T : a set of transactions $T=\left\{\mathrm{t}_{1}\right.$, $\left.\mathrm{t}_{2}, \ldots, \mathrm{t}_{\mathrm{n}}\right\}$.

Transaction data: supermarket data

- Market basket transactions:
t1: \{bread, cheese, milk\}
t2: \{apple, eggs, salt, yogurt\}
tn: \{biscuit, eggs, milk\}
- Concepts:
- An item: an item/article in a basket
- I: the set of all items sold in the store
- A transaction: items purchased in a basket; it may have TID (transaction ID)
- A transactional dataset: A set of transactions

Transaction data: a set of documents

- A text document data set. Each document is treated as a "bag" of keywords
doc1: Student, Teach, School
doc2: Student, School
doc3: Teach, School, City, Game
doc4: Baseball, Basketball
doc5: Basketball, Player, Spectator
doc6: Baseball, Coach, Game, Team
doc7: Basketball, Team, City, Game

Association Rule Mining

- Given a set of transactions, find rules that will predict the occurrence of an item based on the occurrences of other items in the transaction

Market-Basket transactions
Example of Association Rules

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

$$
\left.\begin{array}{l}
\quad \text { \{Diaper }\} \rightarrow\{\text { Beer }\}, \\
\{\text { Milk, Bread }\} \rightarrow\{\text { Eggs,Coke }\}, \\
\{\text { Beer, Bread }\} \rightarrow\{\text { Milk }\},
\end{array}\right] \text { Implication means co-occurrence, }
$$

Applications - (1)

- Items = products; baskets = sets of products someone bought in one trip to the store.
- Example application: given that many people buy beer and diapers together:
- Run a sale on diapers; raise price of beer.
- Only useful if many buy diapers \& beer.

Applications - (2)

- Baskets = sentences; items = documents containing those sentences.
- Items that appear together too often could represent plagiarism.

Applications - (3)

- Baskets = Web pages; items = words.
- Unusual words appearing together in a large number of documents, e.g., "Brad" and "Angelina," may indicate an interesting relationship.

Frequent Itemset

- Itemset
- A collection of one or more items
- Example: \{Milk, Bread, Diaper\}
- k-itemset
- An itemset that contains kitems
- Support count (σ)
- Frequency of occurrence of an itemset
- E.g. $\sigma(\{$ Milk, Bread,Diaper $\})=2$
- Support

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

- Fraction of transactions that contain an itemset
- E.g. $s(\{$ Milk, Bread, Diaper $\})=2 / 5$
- Frequent Itemset
- An itemset whose support is greater than or equal to a minsup threshold

Definition:Association Rule

- An implication expression of the form $X \rightarrow$ Y, where X and Y are itemsets
- Example:
$\{$ Milk, Diaper $\} \rightarrow\{$ Beer $\}$
\square Rule Evaluation Metrics

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

- Support (s)
- Fraction of transactions that contain both X and Y

Example:

$\{$ Milk, Diaper $\} \Rightarrow$ Beer

- Confidence (c)
- Measures how often items in Y appear in transactions that contain X

$$
\begin{aligned}
& s=\frac{\sigma(\text { Milk, Diaper, Beer })}{|\mathrm{T}|}=\frac{2}{5}=0.4 \\
& c=\frac{\sigma(\text { Milk, Diaper,Beer })}{\sigma(\text { Milk, Diaper })}=\frac{2}{3}=0.67
\end{aligned}
$$

Support and Confidence

- Support is important because
- A rule that has a low support may occur simply by chance
- A low support rule also is likely to be uninteresting from a business perspective because it may not be profitable
- Confidence measures the reliability of the rule

Association Rule Mining Task

- Given a set of transactions T , the goal of association rule mining is to find all rules having
- support \geq minsup threshold
- confidence \geq minconf threshold
- Brute-force approach:
- List all possible association rules
- Compute the support and confidence for each rule
- Prune rules that fail the minsup and minconf thresholds
\Rightarrow Computationally prohibitive!

Mining Association Rules

$T I D$	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Rules:

\{Milk,Diaper\} \rightarrow \{Beer\} (s=0.4, c=0.67)
\{Milk,Beer\} \rightarrow \{Diaper\} (s=0.4, c=1.0)
\{Diaper,Beer\} \rightarrow \{Milk\} (s=0.4, c=0.67)
\{Beer\} \rightarrow \{Milk,Diaper\} ($s=0.4, \mathrm{c}=0.67$)
$\{$ Diaper $\} \rightarrow\{$ Milk,Beer $\}(s=0.4, c=0.5)$
\{Milk\} \rightarrow \{Diaper,Beer\} (s=0.4, c=0.5)

Observations:

- All the above rules are binary partitions of the same itemset:
\{Milk, Diaper, Beer\}
- Rules originating from the same itemset have identical support but can have different confidence
- Thus, we may decouple the support and confidence requirements

Mining Association Rules

- Two-step approach:

1. Frequent Itemset Generation

- Generate all itemsets whose support \geq minsup

2. Rule Generation

- Generate high confidence rules from each frequent itemset, where each rule is a binary partitioning of a frequent itemset
- Frequent itemset generation is still computationally expensive

Frequent Itemset Generation

Frequentifforempsetacheneration

- Each itemset in the lattice is a candidate frequent itemset
- Count the support of each candidate by scanning the database

Transactions

- Match each transaCtion against every candidate
- Complexity ~ $O(N M w)=>$ Expensive since $M=2^{d}$!!!

Computationnaluctemplexity

- Total number of itemsets $=2^{\text {d }}$
- Total number of possible association rules:

Frequent Itemset Generation Strategies

- Reduce the number of candidates (M)
- Complete search: $\mathrm{M}=2^{\text {d }}$
- Use pruning techniques to reduce M
- Reduce the number of transactions (N)
- Reduce size of N as the size of itemset increases
- Used by DHP and vertical-based mining algorithms
- Reduce the number of comparisons (NM)
- Use efficient data structures to store the candidates or transactions
- No need to match every candidate against every transaction

Reducing Number of Candidates
 - Apriori principle:

- If an itemset is frequent, then all of its subsets must also be frequent
- In other words, if an itemset is infrequent, all of its supersets must also be infrequent
- Apriori principle holds due to the following property of the support measure:

- This is known as the anti-monotone property of support

Illustrating Apriori Principle

Found to be Infrequent

Illustrating Apriori Principle

Item	Count
Bread	4
Coke	2
Milk	4
Beer	3
Diaper	4
Eggs	1

Items (1-itemsets)
Minimum Support $=3$

Itemset	Count	Pairs (2-itemsets) (No need to generate candidates involving Coke or Eggs)		
\{Bread,Milk	3			
\{Bread,Beer\}	2			
\{Bread,Diaper\}	3			
\{Milk,Beer\}	2			
\{Milk,Diaper\}	3			
\{Beer,Diaper\}	3			

If every subset is considered,
${ }^{6} \mathrm{C}_{1}+{ }^{6} \mathrm{C}_{2}+{ }^{6} \mathrm{C}_{3}=41$

Itemset	Count
\{Bread,Milk,Diaper \}	$\mathbf{3}$

With support-based pruning,
$6+6+1=13$

68\% decrease in processed subsets

Apriori Algorithm

- Method:
- Let k=1
- Generate frequent itemsets of length 1
- Repeat until no new frequent itemsets are identified
- Generate length $(k+1)$ candidate itemsets from length k frequent itemsets
- Prune candidate itemsets containing subsets of length k that are infrequent
- Count the support of each candidate by scanning the DB
- Eliminate candidates that are infrequent, leaving only those that are frequent

The Apriori Algorithm (Pseudo-Code)

C_{k} : Candidate itemset of size k
L_{k} : frequent itemset of size k
$L_{1}=\{$ frequent items $\} ;$
for ($k=1 ; L_{k}!=\varnothing ; k++$) do begin
$C_{k+1}=$ candidates generated from $L_{k} ;$
for each transaction t in database do
increment the count of all candidates in C_{k+1} that are contained in t
$L_{k+1}=$ candidates in C_{k+1} with min_support
end
return $\cup_{k} L_{k}$;

The Apriori Algorithm—An Example

The Apriori Algorithm (Pseudo-Code)

C_{k} : Candidate itemset of size k L_{k} : frequent itemset of size k
$L_{1}=\{$ frequent items $\} ;$
for ($k=1 ; L_{k}!=\varnothing ; k++$) do begin
$C_{k+1}=$ candidates generated from L_{k};
for each transaction t in database do
increment the count of all candidates in C_{k+1} that are contained in t $L_{k+1}=$ candidates in C_{k+1} with min_support end
return $\cup_{k} L_{k}$;

Implementation of Apriori

- How to generate candidates?
- Step 1: self-joining L_{k}
- Step 2: pruning

Example of Candidates Generation

- Assume the items in L_{k} are listed in an order (e.g., alphabetical)
- $L_{3}=\{a b c, a b d, a c d, a c e, b c d\}$
- Self-joining: $L_{3}{ }^{*} L_{3}$
- abcd from abc and abd
- acde from acd and ace

Example of Candidates Generation

- $L_{3}=\{a b c, a b d, a c d, a c e, b c d\}$
- Self-joining: $L_{3}{ }^{*} L_{3}$
- abcd from abc and abd
- acde from acd and ace
- Pruning:

- acde is removed because ade is not in L_{3}
- $C_{4}=\{a b c d\}$

Brute-force method for generating candidates

Figure 6.6. A brute-force method for generating candidate 3 -itemsets.

$\mathrm{F}(\mathrm{k}-1) \times \mathrm{F}(1)$

Figure 6.7. Generating and pruning candidate k-itemsets by merging a frequent $(k-1)$-itemset with a frequent item. Note that some of the candidates are unnecessary because their subsets are infrequent.

$F(k-1) x F(k-1)$

Figure 6.8. Generating and pruning candidate k-itemsets by merging pairs of frequent $(k-1)$-itemsets.

Further Improvement of the Apriori Method

- Major computational challenges
- Multiple scans of transaction database
- Huge number of candidates
- Tedious workload of support counting for candidates
- Improving Apriori: general ideas
- Reduce passes of transaction database scans
- Shrink number of candidates
- Facilitate support counting of candidates

Reducing Number of Comparisons
 - Candidate counting:

- Scan the database of transactions to determine the support of each candidate itemset
- To reduce the number of comparisons, store the candidates in a hash structure
- Instead of matching each transaction against every candidate, match it against candidates contained in the hashed buckets

Transactions Hash Structure

How to Count Supports of Candidates?

- Why counting supports of candidates a problem?
- The total number of candidates can be very huge
- One transaction may contain many candidates
- Method:
- Candidate itemsets are stored in a hash-tree
- Leaf node of hash-tree contains a list of itemsets and counts
- Interior node contains a hash table
- Subset function: finds all the candidates contained in a transaction

Subset Operation - Support Counting

Given a transaction t , what are the possible subsets of size 3?

Transaction, t

Generate Hash Tree

Suppose you have 15 candidate itemsets of length 3:
$\{145\},\{124\},\{457\},\{125\},\{458\},\{159\},\{136\},\{234\},\{567\},\{345\},\{356\},\{35$ 7\}, $\{689\},\{367\},\{368\}$

You need:

- Hash function
- Max leaf size: max number of itemsets stored in a leaf node (if number of candidate itemsets exceeds max leaf size, split the node)

Subset Operation Using Hash Tree

Subset Operation Using Hash Tree

Subset Operation Using Hash Tree

Factors Affecting Complexity

- lowering support threshold results in more frequent itemsets
- this may increase number of candidates and max length of frequent itemsets
- Dimensionality (number of items) of the data set
- more space is needed to store support count of each item
- if number of frequent items also increases, both computation and I/O costs may also increase
- Size of database
- Since Apriori makes multiple passes, run time of algorithm may increase with number of transactions
- Average transaction width
- transaction width increases with denser data sets
- This may increase max length of frequent itemsets and traversals of hash tree (number of subsets in a transaction increases with its width)

Compact Representation of Frequent Itemsets

- Some itemsets are redundant because they have identigal support as their supersets

$$
=3 \times \sum_{k=1}^{10}\binom{10}{k}
$$

- Number of frequent itemsets
- It is useful to identify a small representative set of itemsets from which all other frequent itemsets can be derived
- Need a compact representation

Maximal Frequent Itemset

An itemset is maximal frequent if none of its immediate supersets is frequent

Maximal Frequent Itemsets

- They form the smallest set of itemsets from which all frequent itemsets can be derived
- Practical if an efficient algorithm exists to explicitly find the maximal frequent itemsets without having to enumerate all their subsets
- They don't include the support information

Closed Itemset

- Provide a minimal representation without losing their support information
- An itemset is closed if none of its immediate supersets has the same support as the itemset

Maximal vs Closed Itemsets

TID	Items
1	ABC
2	ABCD
3	BCE
4	ACDE
5	DE

Maximal vs Closed Frequent Itemsets

Why are closed patterns interesting?

- Closed patterns and their frequencies alone are sufficient representation for all the frequencies of all frequent patterns
- Proof: Assume a frequent itemset X :
- X is closed $\rightarrow s(X)$ is known
- X is not closed \rightarrow
$s(X)=\max \{s(Y) \mid Y$ is closed and X subset of $Y\}$

Maximal vs Closed Itemsets

Alternative Algorithm - FP growth

FP-Growth: Frequent Pattern-Growth

- FP-tree is a compressed representation of the input data
- Adopts a divide and conquer strategy
- Compress the database representing frequent items into a frequent -pattern tree or FP-tree
\rightarrow Retains the itemset association information
- If FP-tree is small enough to fit the memory, this will allow to extract frequent itemsets directly in memory

Example: FP-Growth

- The first scan of data is the same as Apriori
- Derive the set of frequent 1itemsets
- Let min-sup=2
- Generate a set of ordered items

Item ID	Support count
12	7
11	6
13	6
14	2
15	2

Transactional Database

TID	List of item IDS
T100	$\mathrm{I} 1, \mathrm{I} 2, \mathrm{I} 5$
T200	$\mathrm{I} 2, \mathrm{I} 4$
T300	$\mathrm{I} 2, \mathrm{I} 3$
T400	$\mathrm{I} 1, \mathrm{I} 2, \mathrm{I} 4$
T500	$\mathrm{I} 1, \mathrm{I} 3$
T600	$\mathrm{I} 2, \mathrm{I} 3$
T700	$\mathrm{I} 1, \mathrm{I} 3$
T800	$\mathrm{I} 1, \mathrm{I} 2, \mathrm{I} 3, \mathrm{I} 5$
T900	$\mathrm{I} 1, \mathrm{I} 2, \mathrm{I} 3$

Construct the FP-Tree

Transactional Database

TID	Items	TID	Items	TID	Items
T100	$\mathrm{I} 1, \mathrm{I} 2, \mathrm{I} 5$	T400	$\mathrm{I} 1, \mathrm{I} 2, \mathrm{I} 4$	T700	$\mathrm{I} 1, \mathrm{I} 3$
T200	$\mathrm{I} 2, \mathrm{I} 4$	T500	$\mathrm{II}, \mathrm{I} 3$	T800	$\mathrm{I} 1, \mathrm{I} 2, \mathrm{I} 3, \mathrm{I} 5$
T300	$\mathrm{I} 2, \mathrm{I} 3$	T600	$\mathrm{I} 2, \mathrm{I} 3$	T900	$\mathrm{I} 1, \mathrm{I} 2, \mathrm{I} 3$

- Create a branch for each transaction
- Items in each transaction are processed in order

Item ID	Support count
I2	7
I1	6
I3	6
14	2
15	2

1- Order the items T100: $\{12,11,15\}$
2 - Construct the first branch:
<12:1>, <11:1>,<15:1>

Construct the FP-Tree

Transactional Database					
TID	Items	TID	Items	TID	Items
T100	$\mathrm{I} 1, \mathrm{I} 2, \mathrm{I} 5$	T400	$\mathrm{II}, \mathrm{I} 2, \mathrm{I} 4$	T700	$\mathrm{I} 1, \mathrm{I} 3$
T200	$\mathrm{I} 2, \mathrm{I} 4$	T500	$\mathrm{II}, \mathrm{I} 3$	T800	$\mathrm{I} 1, \mathrm{I} 2, \mathrm{I} 3, \mathrm{I} 5$
T300	$\mathrm{I} 2, \mathrm{I} 3$	T600	$\mathrm{I} 2, \mathrm{I} 3$	T900	$\mathrm{I} 1, \mathrm{I} 2, \mathrm{I} 3$

- Create a branch for each transaction
- Items in each transaction are processed in order

Item ID	Support count
I2	7
I1	6
I3	6
14	2
15	2

1- Order the items T200: $\{12,14\}$
2 - Construct the second branch:
<12:1>, l4:1

Construct the FP-Tree

Transactional Database					
TID	Items	TID	Items	TID	Items
T100	$\mathrm{I} 1, \mathrm{I} 2, \mathrm{I} 5$	T400	$\mathrm{II}, \mathrm{I} 2, \mathrm{I} 4$	T700	$\mathrm{I} 1, \mathrm{I} 3$
T200	$\mathrm{I} 2, \mathrm{I} 4$	T500	$\mathrm{II}, \mathrm{I} 3$	T800	$\mathrm{I} 1, \mathrm{I} 2, \mathrm{I} 3, \mathrm{I} 5$
T300	$\mathrm{I} 2, \mathrm{I} 3$	T600	$\mathrm{I} 2, \mathrm{I} 3$	T900	$\mathrm{I} 1, \mathrm{I} 2, \mathrm{I} 3$

- Create a branch for each 1- Order the items T300: \{I2,I3\} transaction

2 - Construct the third branch:

- Items in each transaction are <12:2>, <13:1> processed in order

Item ID	Support count
I2	7
I1	6
I3	6
14	2
15	2

Construct the FP-Tree

Transactional Database					
TID	Items	TID	Items	TID	Items
T100	$\mathrm{I} 1, \mathrm{I} 2, \mathrm{I} 5$	T400	$\mathrm{I} 1, \mathrm{I} 2, \mathrm{I} 4$	T700	$\mathrm{I} 1, \mathrm{I} 3$
T200	$\mathrm{I} 2, \mathrm{I} 4$	T500	$\mathrm{I} 1, \mathrm{I} 3$	T800	$\mathrm{I} 1, \mathrm{I} 2, \mathrm{I} 3, \mathrm{I} 5$
T300	$\mathrm{I} 2, \mathrm{I} 3$	T600	$\mathrm{I} 2, \mathrm{I} 3$	T900	$\mathrm{I} 1, \mathrm{I} 2, \mathrm{I} 3$

- Create a branch for each 1- Order the items T400: \{I2,I1,I4\} transaction
- Items in each transaction are processed in order

Item ID	Support count
I2	7
I1	6
I3	6
14	2
15	2

Construct the FP-Tree

Transactional Database					
TID	Items	TID	Items	TID	Items
T100	$\mathrm{I} 1, \mathrm{I} 2, \mathrm{I} 5$	T400	$\mathrm{I} 1, \mathrm{I} 2, \mathrm{I} 4$	T700	$\mathrm{I} 1, \mathrm{I} 3$
T200	$\mathrm{I} 2, \mathrm{I} 4$	T500	$\mathrm{I} 1, \mathrm{I} 3$	T800	$\mathrm{I} 1, \mathrm{I} 2, \mathrm{I} 3, \mathrm{I} 5$
T300	$\mathrm{I} 2, \mathrm{I} 3$	T600	$\mathrm{I} 2, \mathrm{I} 3$	T900	$\mathrm{I} 1, \mathrm{I} 2, \mathrm{I} 3$

- Create a branch for each 1- Order the items T400: $\{11,13\}$ transaction

2- Construct the fifth branch:

- Items in each transaction are <11:1>, <13:1> processed in order

Item ID	Support count
I2	7
I1	6
I3	6
14	2
15	2

Construct the FP-Tree

Transactional Database

TID	Items	TID	Items	TID	Items
T100	$\mathrm{I} 1, \mathrm{I} 2, \mathrm{I} 5$	T400	$\mathrm{II}, \mathrm{I} 2, \mathrm{I} 4$	T700	$\mathrm{I} 1, \mathrm{I} 3$
T200	$\mathrm{I} 2, \mathrm{I} 4$	T500	$\mathrm{I} 1, \mathrm{I} 3$	T800	$\mathrm{I} 1, \mathrm{I} 2, \mathrm{I} 3, \mathrm{I} 5$
T300	$\mathrm{I} 2, \mathrm{I} 3$	T600	$\mathrm{I} 2, \mathrm{I} 3$	T900	$\mathrm{I} 1, \mathrm{I} 2, \mathrm{I} 3$

Item ID	Support count
I2	7
I1	6
I3	6
14	2
15	2

Construct the FP-Tree

The problem of mining frequent patterns in databases is transformed to that of mining the FP-tree

Construct the FP-Tree

-Occurrences of 15 : < $12,11,15\rangle$ and $<12,11,13,15>$
-Two prefix Paths <12, 11: $1>$ and $<12,11,13$: $1>$
-Conditional FP tree contains only <12: 2, 11:2>, 13 is no \dagger considered because its support count of 1 is less than the minimum support count.
-Frequent patterns $\{12,15: 2\},\{11,15: 2\},\{12,11,15: 2\}$

Construct the FP-Tree

Item ID	Support count
12	7
11	6
13	6
14	2
15	2

TID	Conditional Pattern Base	Conditional FP-tree
15	$\{\{12,11: 1\},\{12,11,13: 1\}\}$	$<12: 2,11: 2>$
14	$\{\{12,11: 1\},\{12,1\}\}$	$<12: 2>$
13	$\{\{12,11: 2\},\{12: 2\},\{11: 2\}\}$	$<12: 4,11: 2>,<11: 2>$
11	$\{12,4\}$	$<12: 4>$

Construct the FP-Tree

Item ID	Support count
12	7
11	6
13	6
14	2
15	2

TID	Conditional FP-tree	Frequent Patterns Generated
15	<12:2,11:2>	\{I2,15:2\}, \{11,15:2\},\{12,11,15:2\}
14	<12:2>	\{12,14:2\}
13	<12:4,11:2>, <11:2>	$\{12,13: 4\},\{11,13: 4\},\{12,11,13: 2\}$
11	<12:4>	\{12,11:4\}

FP-growth properties

- FP-growth transforms the problem of finding long frequent patterns to searching for shorter once recursively and the concatenating the suffix
- It uses the least frequent suffix offering a good selectivity
- It reduces the search cost
- If the tree does not fit into main memory, partition the database
- Efficient and scalable for mining both long and short frequent patterns

Mining Association Rules

Two-step approach:

1. Frequent Itemset Gene

Generate all itemsets whose support \geq minsup
2. Rule Generation

- Generate high confidence rules from each frequent itemset, where each rule is a binary partitioning of a frequent itemset

Re-Definition: Association Rule

Let D be database of transactions

- e.g.:	Transaction ID	Items
2000	A, B, C	
	1000	A, C
	4000	A, D
	5000	B, E, F

- Let / be the set of items that appear in the database, e.g., $I=\{A, B, C, D, E, F\}$
- A rule is defined by $X \rightarrow Y$, where $X \subset I, Y \subset I$, and $\mathrm{X} \cap \mathrm{Y}=\varnothing$
- e.g.: $\{B, C\} \rightarrow\{A\}$ is a rule

Generating Association Rules

- Once the frequent itemsets have been found, it is straightforward to generate strong association rules that satisfy:
\rightarrow minimum Support
\rightarrow minimum confidence
- Relation between support and confidence:

\rightarrow Support_count $(A \cup B)$ is the number of transactions containing the itemsets $A \cup B$
\rightarrow Support_count (A) is the number of transactions containing the itemset A.

Generating Association Rules

- For each frequent itemset L, generate all non empty subsets of L
- For every no empty subset S of L, output the rule:

$$
S \Rightarrow(L-S)
$$

If (support_count(L)/support_count(S)) >= min_conf

Example

\rightarrow Suppose the frequent Itemset

L=\{11, $2,, 15\}$
\rightarrow Subsets of L are: $\{11,12\}$,
$\{11, \mid 5\},\{12,15\},\{11\},\{12\},\{15\}$
\rightarrow Association rules:
$11 \wedge I 2 \Rightarrow I 5 \quad$ confidence $=2 / 4=50 \%$
$I 1 \wedge I 5 \Rightarrow I 2 \quad$ confidence $=2 / 2=100 \%$
$I 2 \wedge I 5 \Rightarrow I 1 \quad$ confidence $=2 / 2=100 \%$
$11 \Rightarrow I 2 \wedge I 5 \quad$ confidence $=2 / 6=33 \%$
I2 \Rightarrow I 1 ^I5 confidence=2/7=29\%
$I 5 \Rightarrow I 2 \wedge I 2 \quad$ confidence $=2 / 2=100 \%$
Transactional Database

TID	List of item IDS
T100	$\mathrm{I} 1, \mathrm{I} 2, \mathrm{I} 5$
T200	$\mathrm{I} 2, \mathrm{I} 4$
T300	$\mathrm{I} 2, \mathrm{I} 3$
T400	$\mathrm{I} 1, \mathrm{I} 2, \mathrm{I} 4$
T500	$\mathrm{I} 1, \mathrm{I} 3$
T600	$\mathrm{I} 2, \mathrm{I} 3$
T700	$\mathrm{I} 1, \mathrm{I} 3$
T800	$\mathrm{I} 1, \mathrm{I} 2, \mathrm{I} 3, \mathrm{I} 5$
T900	$\mathrm{I} 1, \mathrm{I} 2, \mathrm{I} 3$

If the minimum confidence $=70 \%$

Rule Generation

- Given a frequent itemset L, find all non-empty subsets $f \subset L$ such that $f \rightarrow L-f$ satisfies the minimum confidence requirement
- If $\{A, B, C, D\}$ is a frequent itemset, candidate rules:

$A B C \rightarrow D$,	$A B D \rightarrow C$,	$A C D \rightarrow B$,	$B C D \rightarrow A$,
$A \rightarrow B C D$,	$B \rightarrow A C D$,	$C \rightarrow A B D$,	$D \rightarrow A B C$
$A B \rightarrow C D$,	$A C \rightarrow B D$,	$A D \rightarrow B C$,	$B C \rightarrow A D$,
$B D \rightarrow A C$,	$C D \rightarrow A B$,		

- If $|\mathrm{L}|=\mathrm{k}$, then there are $2^{\mathrm{k}}-2$ candidate association rules (ignoring L $\rightarrow \varnothing$ and $\varnothing \rightarrow \mathrm{L}$)

Rule Generation

- How to efficiently generate rules from frequent itemsets?
- In general, confidence does not have an anti-monotone property $c(A B C \rightarrow D)$ can be larger or smaller than $c(A B \rightarrow D)$
- But confidence of rules generated from the same itemset has an antimonotone property
- e.g., $L=\{A, B, C, D\}$:

$$
\mathrm{c}(\mathrm{ABC} \rightarrow \mathrm{D}) \geq \mathrm{c}(\mathrm{AB} \rightarrow \mathrm{CD}) \geq \mathrm{c}(\mathrm{~A} \rightarrow \mathrm{BCD})
$$

- Confidence is anti-monotone w.r.t. number of items on the RHS of the rule

Rule Generation for Apriori Algorithm
 Lattice of rules

Rule Generation for Apriori Algorithm

- Candidate rule is generated by merging two rules that share the same prefix in the rule consequent
- join(CD $=>A B, B D=>A C)$
would produce the candidate rule $D=>A B C$
- Prune rule $D=>A B C$ if its
 subset $A D=>B C$ does not have high confidence

Problems with the association mining

- Single minsup: It assumes that all items in the data are of the same nature and/or have similar frequencies.
- Not true: In many applications, some items appear very frequently in the data, while others rarely appear.
E.g., in a supermarket, people buy food processor and cooking pan much less frequently than they buy bread and milk.

Effect of Support Distribution

- Many real data sets h

Support distribution of a retail data set

Rare Item Problem

- If the frequencies of items vary a great deal, we will encounter two problems
- If minsup is set too high, those rules that involve rare items will not be found.
- To find rules that involve both frequent and rare items, minsup has to be set very low. This may cause combinatorial explosion because those frequent items will be associated with one another in all possible ways.
- Using a single minimum support threshold may not be effective

Multiple minsups model

- The minimum support of a rule is expressed in terms of minimum item supports (MIS) of the items that appear in the rule.
- Each item can have a minimum item support.
- By providing different MIS values for different items, the user effectively expresses different support requirements for different rules.

Minsup of a rule

- Let MIS(i) be the MIS value of item i. The minsup of a rule R is the lowest MIS value of the items in the rule.
- I.e., a rule $R: \quad a_{1}, a_{2}, \ldots, a_{k} \rightarrow a_{k+1}, \ldots, a_{r}$ satisfies its minimum support if its actual support is \geq

$$
\min \left(\operatorname{MIS}\left(a_{1}\right), \operatorname{MIS}\left(a_{2}\right), \ldots, \operatorname{MIS}\left(a_{r}\right)\right)
$$

An Example

- Consider the following items:
bread, shoes, clothes
The user-specified MIS values are as follows:
$\operatorname{MIS}($ bread $)=2 \% \quad$ MIS(shoes $)=0.1 \%$
MIS(clothes) $=0.2 \%$
The following rule doesn't satisfy its minsup:
clothes \rightarrow bread [sup=0.15\%,conf =70\%]
The following rule satisfies its minsup:

$$
\text { clothes } \rightarrow \text { shoes [sup=0.15\%,conf }=70 \% \text {] }
$$

Pattern Evaluation

- Association rule algorithms tend to produce too many rules
- many of them are uninteresting or redundant
- Redundant if $\{A, B, C\} \rightarrow\{D\}$ and $\{A, B\} \rightarrow\{D\}$ have same support \& confidence
- Interestingness measures can be used to prune/rank the derived patterns
- In the original formulation of association rules, support \& confidence are the only measures used

Application of Interestingness Measure

Computing Interestingness Measure

- Given a rule $X \rightarrow Y$, information needed to compute rule interestingness can be obtained from a contingency table

Contingency table for $\mathrm{X} \rightarrow \mathrm{Y}$

Drawback of Confidence

	Coffee	Coffee	
Tea	15	5	20
$\overline{\text { Tea }}$	75	5	80
	90	10	100

Association Rule: Tea \rightarrow Coffee

Confidence $=P($ Coffee \mid Tea $)=0.75$
but P (Coffee) $=0.9$
\Rightarrow Although confidence is high, rule is misleading
$\Rightarrow \mathrm{P}($ Coffee \mid Tea $)=0.9375$

Statistical-based Measures

- Measures that take into account statistical dependence

$$
\begin{aligned}
& \text { Lift }=\frac{P(Y \mid X)}{P(Y)} \\
& \text { Interest }=\frac{P(X, Y)}{P(X) P(Y)} \\
& P S=P(X, Y)-P(X) P(Y) \\
& \phi-\text { coefficient }=\frac{P(X, Y)-P(X) P(Y)}{\sqrt{P(X)[1-P(X)] P(Y)[1-P(Y)]}}
\end{aligned}
$$

Example: Lift/Interest

	Coffee	Coffee	
Tea	15	5	20
$\overline{\text { Tea }}$	75	5	80
	90	10	100

Association Rule: Tea \rightarrow Coffee

Confidence $=P($ Coffee \mid Tea $)=0.75$
but P (Coffee) $=0.9$
\Rightarrow Lift $=0.75 / 0.9=0.8333$ (<1, therefore is negatively associated)

Subjective Interestingness Measure

- Objective measure:
- Rank patterns based on statistics computed from data
- e.g., 21 measures of association (support, confidence, Laplace, Gini, mutual information, Jaccard, etc).
- Subjective measure:
- Rank patterns according to user's interpretation
- A pattern is subjectively interesting if it contradicts the expectation of a user (Silberschatz \& Tuzhilin)
- A pattern is subjectively interesting if it is actionable (Silberschatz \& Tuzhilin)

+ Pattern expected to be frequent
- Pattern expected to be infrequent
\square Pattern found to be frequent
Pattern found to be infrequent
+ Expected Patterns
- \quad Unexpected Patterns
- Need to combine expectation of users with evidence from data (i.e., extracted patterns)

Extra

Illustration

Candidate
1-Itemsets

Figure 6.5. Illustration of frequent itemset generation using the Apriori algorithm.

Association Rule Discovery: Hash tree

Hash Function

Association Rule Discovery: Hash tree

Hash Function

Association Rule Discovery: Hash tree

Hash Function
Candidate Hash Tree

FP-growth Algorithm

- Use a compressed representation of the database using an FP-tree
- Once an FP-tree has been constructed, it uses a recursive divide-andconquer approach to mine the frequent itemsets

FP-tree construction

After reading TID=1:

TID	Items
1	$\{A, B\}$
2	$\{B, C, D\}$
3	$\{A, C, D, E\}$
4	$\{A, D, E\}$
5	$\{A, B, C\}$
6	$\{A, B, C, D\}$
7	$\{B, C\}$
8	$\{A, B, C\}$
9	$\{A, B, D\}$
10	$\{B, C, E\}$

After reading TID=2:

D:1

FP-Tree Connstruction
 Transaction

TID	Items
1	$\{A, B\}$
2	$\{B, C, D\}$
3	$\{A, C, D, E\}$
4	$\{A, D, E\}$
5	$\{A, B, C\}$
6	$\{A, B, C, D\}$
7	$\{B, C\}$
8	$\{A, B, C\}$
9	$\{A, B, D\}$
10	$\{B, C, E\}$

Header table

Item	Pointer
A	\cdots
B	\cdots
C	$\cdots \cdots$
D	$\cdots \cdots$
E	$\cdots-\cdots$

Database

FP-growth

Conditional Pattern base for D:

$$
\begin{gathered}
P=\{(\mathrm{A}: 1, \mathrm{~B}: 1, \mathrm{C}: 1), \\
(\mathrm{A}: 1, \mathrm{~B}: 1), \\
\\
(\mathrm{A}: 1, \mathrm{C}: 1), \\
(\mathrm{A}: 1), \\
\\
\\
(\mathrm{B}: 1, \mathrm{C}: 1)\}
\end{gathered}
$$

Recursively apply FP-growth on P

Frequent Itemsets found (with sup >1):
AD, BD, CD , ACD, BCD

