BBS654 Data Mining

Pinar Duygulu

Slides are adapted from Nazli Ikizler

1

Classification: Basic Concepts

- Classification: Basic Concepts
- Decision Tree Induction
- Bayes Classification Methods
- Model Evaluation and Selection
- Techniques to Improve Classification Accuracy: Ensemble Methods
- Summary

Supervised vs. Unsupervised Learning

- Supervised learning (classification)
 - Supervision: The training data (observations, measurements, etc.) are accompanied by labels indicating the class of the observations : Data = (X,Y)
 - New data (X') is classified based on the training set
- Unsupervised learning (clustering)
 - The class labels of training data is unknown Data = (X)
 - Given a set of measurements, observations, etc. with the aim of establishing the existence of clusters in the data

Prediction Problems: Classification vs. Numeric Prediction

- Classification
 - predicts categorical class labels (discrete or nominal)
 - classifies data (constructs a model) based on the training set and the values (class labels) in a classifying attribute and uses it in classifying new data
- Numeric Prediction
 - models continuous-valued functions, i.e., predicts unknown or missing values
- Typical applications
 - Credit/loan approval:
 - Medical diagnosis: if a tumor is cancerous or benign
 - Fraud detection: if a transaction is fraudulent
 - Web page categorization: which category it is

Classification—A Two-Step Process

- Model construction: describing a set of predetermined classes
 - Each sample **X** is assumed to belong to a predefined class, as determined by the class label attribute **Y**
 - The set of tuples used for model construction is training set
 - The model is represented as classification rules, decision trees, or mathematical formulae
- Model usage: for classifying future or unknown objects (X^{test})
 - Estimate accuracy of the model
 - The known label of test sample is compared with the classified result from the model
 - Accuracy rate is the percentage of test set samples that are correctly classified by the model
 - Test set is independent of training set
 - If the accuracy is acceptable, use the model to classify new data (X^{new})

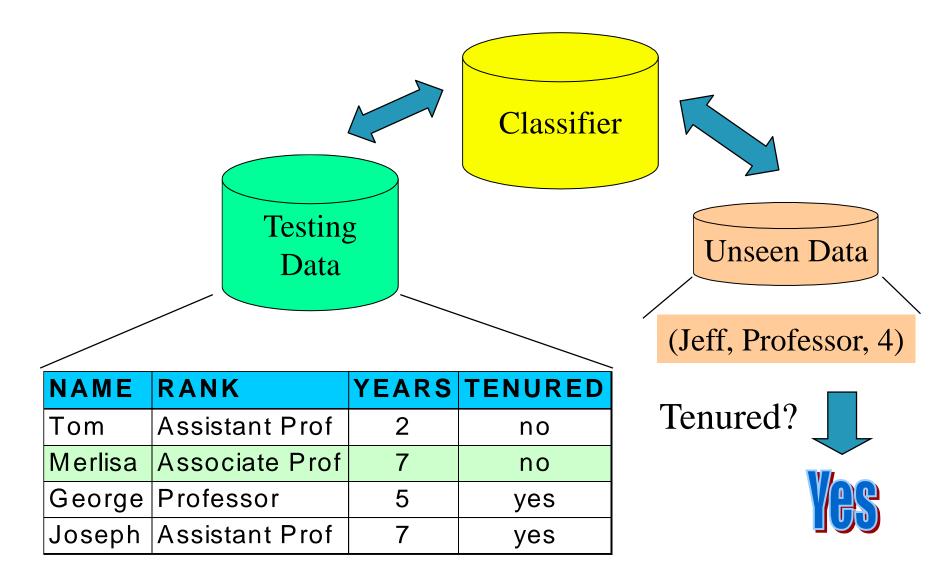
Process (1): Model Construction

NAME RANKYEARSTENUREDClassifierMikeAssistant Prof3no(Model)	
Miles Assistant Draf 2 (Model)	
Mike Assistant Prof 3 no (Model)	
Mary Assistant Prof 7 yes	
Bill Professor 2 yes	
Jim Associate Prof 7 yes IF rank = 'profes	scor'
IDAVE Assistant Prot 6 0 00 1	2801
DaveAssociate Prof0noOR years > 6AnneAssociate Prof3noTHEN tenured =	- 'vos'

6

6

Process (2): Using the Model in Prediction



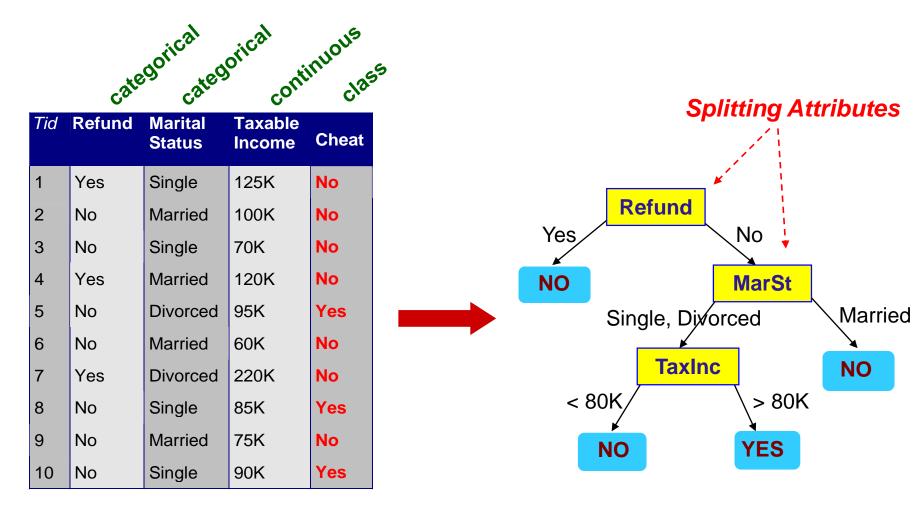
Examples of Classification Task

- Classifying credit card transactions as legitimate or fraudulent
- Classifying secondary structures of protein as alpha-helix, beta-sheet, or random coil
- Categorizing news stories as finance, weather, entertainment, sports, etc
- Classify contents of images (car, person, cat, etc.)

Classification Techniques

- Decision Tree based Methods
- Rule-based Methods
- Naïve Bayes and Bayesian Belief Networks
- Neural Networks
- Support Vector Machines
- and more...

Example of a Decision Tree

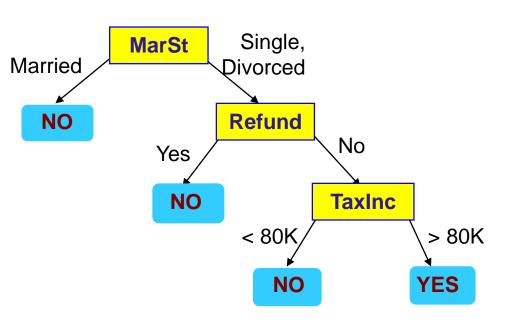


Model: Decision Tree

Training Data

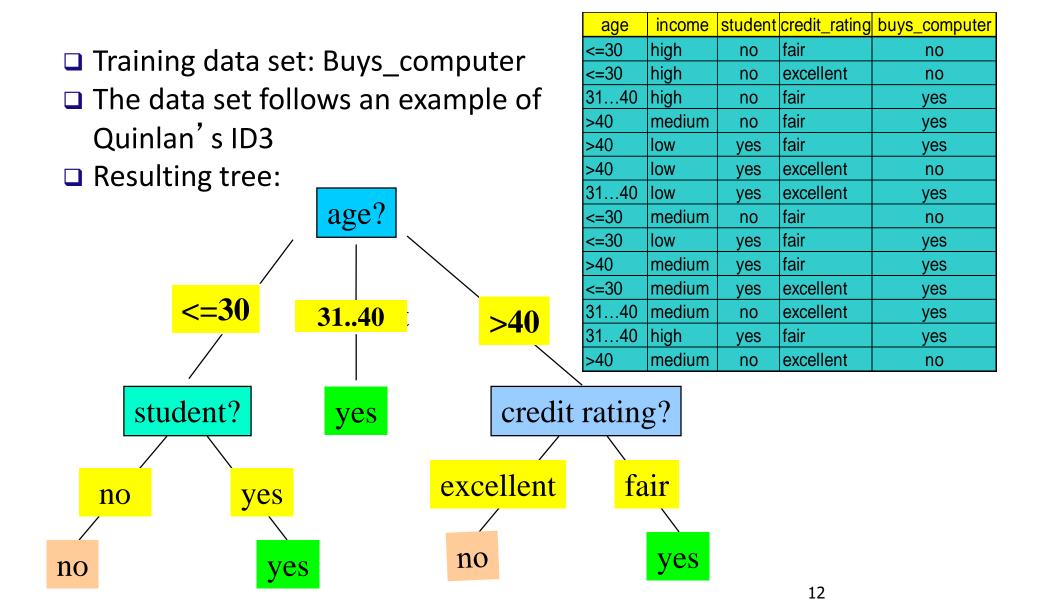
Another Example of Decision Tree

		rical	rical	JOUS
	cate	gorical cateo	conti	nuous class
Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes



There could be more than one tree that fits the same data!

Decision Tree Induction: An Example



Decision Tree Induction Algorithm

• Principle

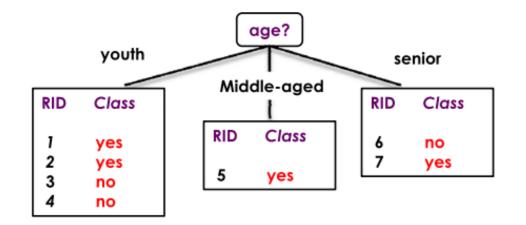
- Basic algorithm (adopted by ID3, C4.5 and CART): a greedy algorithm
- Tree is constructed in a *top-down recursive divide-and-conquer* manner

• Iterations

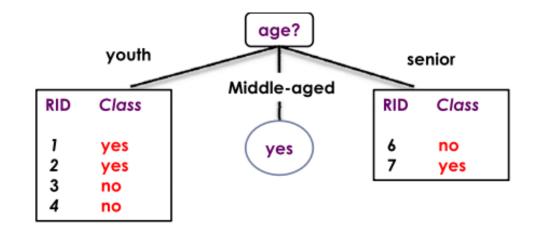
- At start, all the training tuples are at the root
- Tuples are partitioned recursively based on selected attributes
- Test attributes are selected on the basis of a heuristic or statistical measure (e.g, information gain)

• Stopping conditions

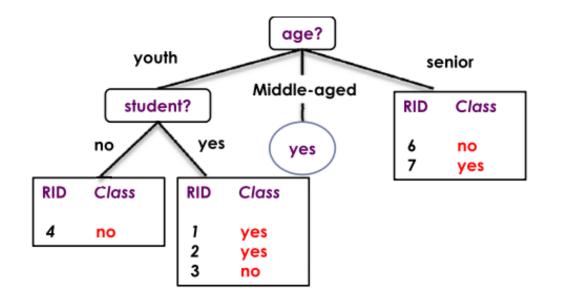
- All samples for a given node belong to the same class
- There are no remaining attributes for further partitioning majority voting is employed for classifying the leaf
- There are no samples left



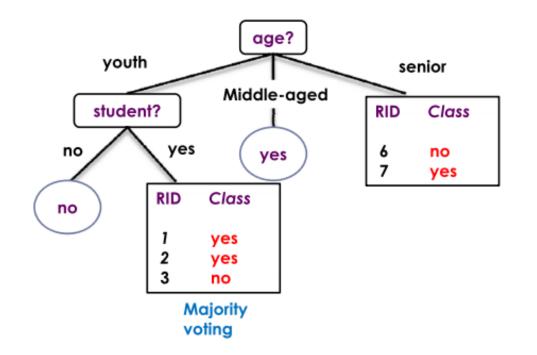
RID	age	student	credit-rating	Class: buys_computer
1	youth	yes	fair	yes
2	youth	yes	fair	yes
3	youth	yes	fair	no
4	youth	no	fair	no
5	middle-aged	no	excellent	yes
6	senior	yes	fair	no
7	senior	yes	excellent	yes



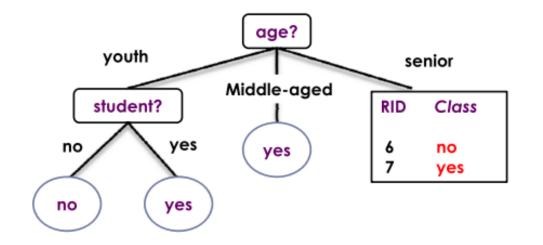
RID	age	student	credit-rating	Class: buys_computer
1	youth	yes	fair	yes
2	youth	yes	fair	yes
3	youth	yes	fair	no
4	youth	no	fair	no
5	middle-aged	no	excellent	yes
6	senior	yes	fair	no
7	senior	yes	excellent	yes



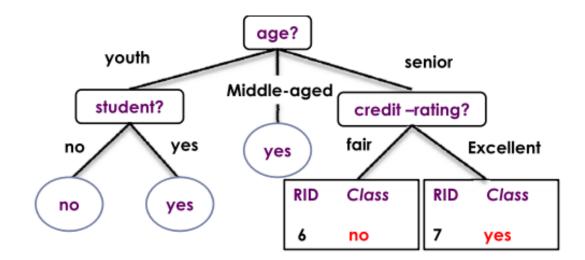
RID	age	student	credit-rating	Class: buys_computer
1	youth	yes	fair	yes
2	youth	yes	fair	yes
3	youth	yes	fair	no
4	youth	no	fair	no
5	middle-aged	no	excellent	yes
6	senior	yes	fair	no
7	senior	yes	excellent	yes



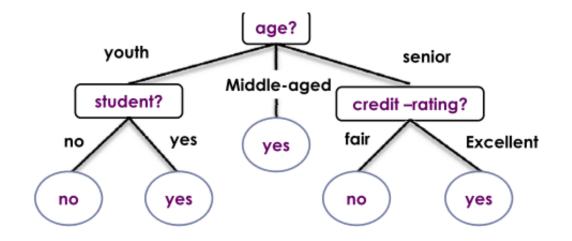
RID	age	student	credit-rating	Class: buys_computer
1	youth	yes	fair	yes
2	youth	yes	fair	yes
3	youth	yes	fair	no
4	youth	no	fair	no
5	middle-aged	no	excellent	yes
6	senior	yes	fair	no
7	senior	yes	excellent	yes



RID	age	student	credit-rating	Class: buys_computer
1	youth	yes	fair	yes
2	youth	yes	fair	yes
3	youth	yes	fair	no
4	youth	no	fair	no
5	middle-aged	no	excellent	yes
6	senior	yes	fair	no
7	senior	yes	excellent	yes



RID	age	student	credit-rating	Class: buys_computer
1	youth	yes	fair	yes
2	youth	yes	fair	yes
3	youth	yes	fair	no
4	youth	no	fair	no
5	middle-aged	no	excellent	yes
6	senior	yes	fair	no
7	senior	yes	excellent	yes



RID	age	student	credit-rating	Class: buys_computer
1	youth	yes	fair	yes
2	youth	yes	fair	yes
3	youth	yes	fair	no
4	youth	no	fair	no
5	middle-aged	no	excellent	yes
6	senior	yes	fair	yes
7	senior	yes	excellent	no

Tree Induction

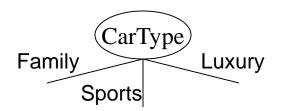
- Greedy strategy.
 - Split the records based on an attribute test that optimizes certain criterion.
- Issues
 - Determine how to split the records
 - How to specify the attribute test condition?
 - How to determine the best split?
 - Determine when to stop splitting

How to Specify Test Condition?

- Depends on attribute types
 - Nominal
 - Ordinal
 - Continuous
- Depends on number of ways to split
 - 2-way split
 - Multi-way split

Splitting Based on Categorical Attributes

• Multi-way split: Use as many partitions as distinct values.



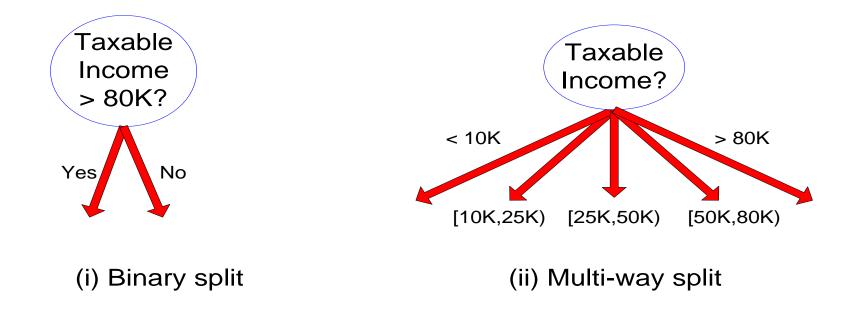
• Binary split: Divides values into two subsets. Need to find optimal partitioning.



Splitting Based on Continuous Attributes

- Different ways of handling
 - Discretization to form an ordinal categorical attribute
 - Static discretize once at the beginning
 - Dynamic ranges can be found by equal interval bucketing, equal frequency bucketing (percentiles), or clustering.
 - Binary Decision: (A < v) or $(A \ge v)$
 - consider all possible splits and finds the best cut
 - can be more compute intensive

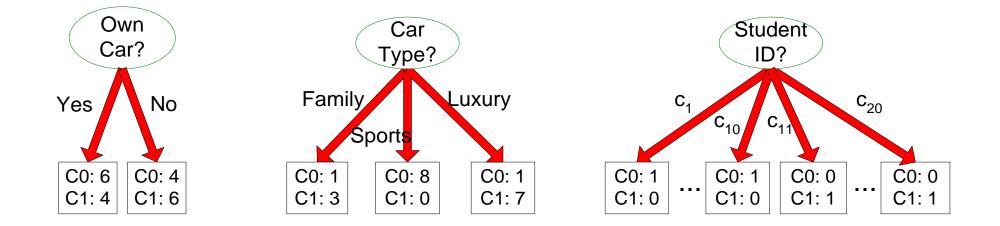
Splitting Based on Continuous Attributes



How to determine the Best Split

Before Splitting: 10 records of class 0,

10 records of class 1



Which test condition is the best?

How to determine the Best Split

- Greedy approach:
 - Nodes with homogeneous class distribution are preferred
- Need a measure of node impurity:

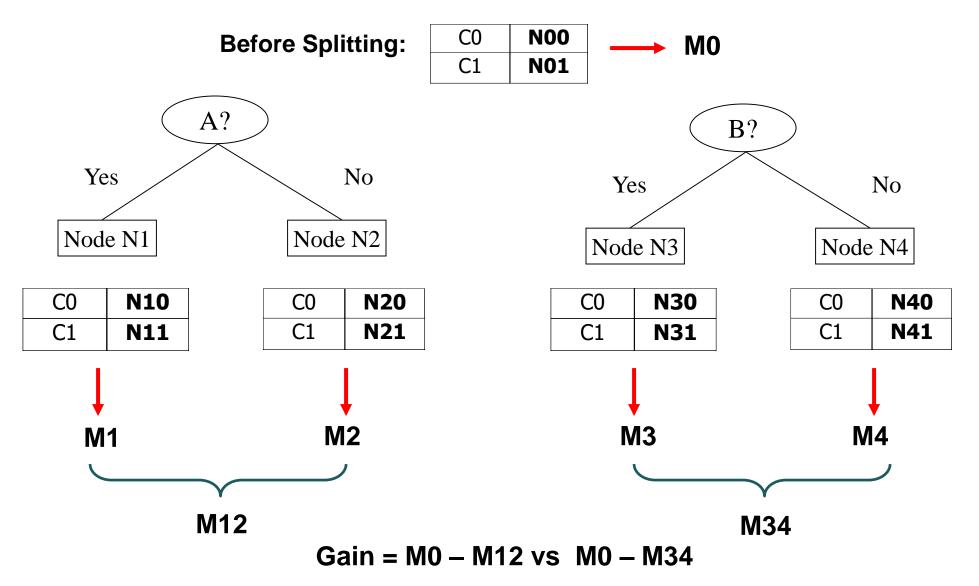
Non-homogeneous, High degree of impurity Homogeneous, Low degree of impurity

Measures of Node Impurity

- Gini Index
- Information Gain
- Misclassification error

Choose attributes to split to achieve minimum impurity

How to Find the Best Split



Measure of Impurity: GINI

(CART, IBM IntelligentMiner) • Gini Index for a given node t :

$$GINI(t) = 1 - \sum_{j} [p(j | t)]^{2}$$

(NOTE: p(j | t) is the relative frequency of class j at node t).

- Maximum $(1 1/n_c)$ when records are equally distributed among all classes, implying least interesting information
- Minimum (0.0) when all records belong to one class, implying most interesting information

C1	0	C1	1	C1	2	C1	3
C2	6	C2	5	C2	4	C2	3
Gini=	0.000	Gini=0.278		Gini=	0.444	Gini=	0.500

Examples for computing GINI

$$GINI(t) = 1 - \sum_{j} [p(j | t)]^{2}$$

C1	0
C2	6

P(C1) = 0/6 = 0	P(C2) = 6/6 = 1
Gini = 1 – P(C1) ²	$^{2} - P(C2)^{2} = 1 - 0 - 1 = 0$

C1	1
C2	5

$$P(C1) = 1/6$$
 $P(C2) = 5/6$
Gini = 1 - (1/6)² - (5/6)² = 0.278

C1	2
C2	4

$$P(C1) = 2/6$$
 $P(C2) = 4/6$
Gini = 1 - (2/6)² - (4/6)² = 0.444

Splitting Based on GINI

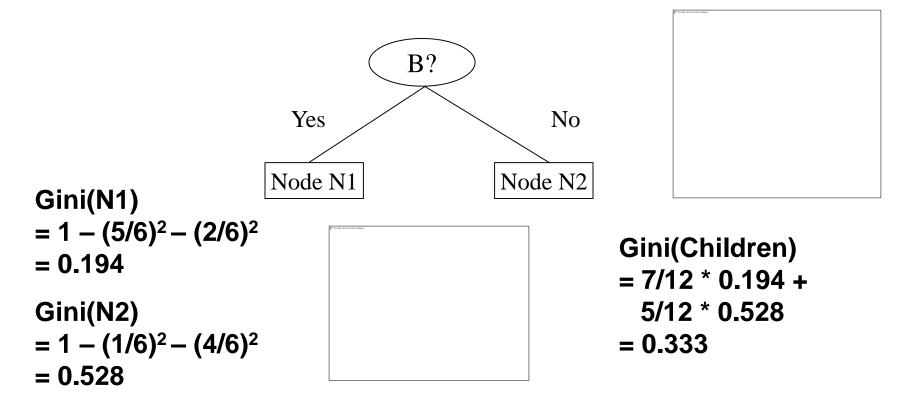
- Used in CART, SLIQ, SPRINT.
- When a node p is split into k partitions (children), the quality of split is computed as,

$$GINI_{split} = \sum_{i=1}^{k} \frac{n_i}{n} GINI(i)$$

where, n_i = number of records at child i, n = number of records at node p.

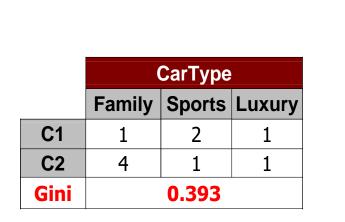
Binary Attributes: Computing GINI Index

- Splits into two partitions
- Effect of Weighing partitions:
 - Larger and Purer Partitions are sought for.



Categorical Attributes: Computing Gini Index

- For each distinct value, gather counts for each class in the dataset
- Use the count matrix to make decisions



Multi-way split

Two-way split (find best partition of values)

	CarT	уре		CarType						
	{Sports, Luxury}	{Family}		{Sports}	{Family, Luxury}					
C1	3	1	C1	2	2					
C2	2	4	C2	1	5					
Gini	0.4	00	Gini	0.4	419					

Continuous Attributes: Computing Gini Index...

- For efficient computation: for each attribute,
 - Sort the attribute on values
 - Linearly scan these values, each time updating the count matrix and computing gini index
 - Choose the split position that has the least gini index

	Cheat	No No			No No Y			Ye	s Yes		s	Ye	′es N		lo N		No N		0	No			
-		Taxable Income																					
Sorted Values		60 70		75		5	85		90		95		100		120		125		220				
Split Positions	3	5	55 6		5	72		80		8	87		92		97		0	12	122		72	230	
		<=	>	<=	>	<=	×	<=	×	<=	>	<=	>	<=	×	<=	>	<=	>	<=	×	<=	<
	Yes	0	3	0	3	0	3	0	3	1	2	2	1	3	0	3	0	3	0	3	0	3	0
	No	0	7	1	6	2	5	3	4	3	4	3	4	3	4	4	3	5	2	6	1	7	0
	Gini	0.4	20	0.400		0.3	0.375 0		43	0.417		0.400		<u>0.300</u>		0.343		0.375		0.400		00 0.420	

Attribute Selection Measure: Information Gain (ID3/C4.5)

- Select the attribute with the highest information gain
- Let p_i be the probability that an arbitrary tuple in D belongs to class C_i, estimated by |C_{i, D}|/|D|
- Expected information (entropy) needed to classify a tuple in D:

$$Info(D) = -\sum_{i=1}^{m} p_i \log_2(p_i)$$

Information needed (after using A to split D into v partitions) to classify D: $Info_{+}(D) = \sum_{j=1}^{v} \frac{|D_{j}|}{|D_{j}|} \times I(D_{+})$

Information gained by branching on attribute A

$$Gain(A) = Info(D) - Info_A(D)$$

36

Gain Ratio for Attribute Selection (C4.5)

- Information gain measure is biased towards attributes with a large number of values
- C4.5 (a successor of ID3) uses gain ratio to overcome the problem (normalization to information gain)

$$SplitInfo_{A}(D) = -\sum_{j=1}^{\nu} \frac{|D_{j}|}{|D|} \times \log_{2}(\frac{|D_{j}|}{|D|})$$

- GainRatio(A) = Gain(A)/SplitInfo(A)
- Ex. SplitInfo_A(D) = $-\frac{4}{14} \times \log_2(\frac{4}{14}) \frac{6}{14} \times \log_2(\frac{6}{14}) \frac{4}{14} \times \log_2(\frac{4}{14}) = 0.926$ • gain_ratio(income) = 0.029/0.926 = 0.031
- The attribute with the maximum gain ratio is selected as the splitting attribute

38

Comparison of Attribute Selection Methods

- The three measures return good results but
 - Information gain:
 - biased towards multivalued attributes
 - Gain ratio:
 - tends to prefer unbalanced splits in which one partition is much smaller than the others
 - Gini index:
 - biased to multivalued attributes
 - has difficulty when # of classes is large
 - tends to favor tests that result in equal-sized partitions and purity in both partitions

39

Decision Tree Based Classification

- Advantages:
 - **Easy** to construct/implement
 - Extremely **fast** at classifying unknown records
 - Models are easy to interpret for small-sized trees
 - Accuracy is comparable to other classification techniques for many simple data sets
 - Tree models make no assumptions about the distribution of the underlying data : nonparametric
 - Have a built-in feature selection method that makes them immune to the presence of useless variables

Decision Tree Based Classification

- Disadvantages
 - Computationally expensive to train
 - Some decision trees can be overly complex that do not generalise the data well.
 - Less expressivity: There are concepts that are hard to learn because decision trees do not express them easily, such as XOR relation

Overfitting and Tree Pruning

- **Overfitting:** An induced tree may overfit the training data
 - Too many branches, some may reflect anomalies due to noise or outliers
 - Poor accuracy for unseen samples
- Two approaches to avoid overfitting
 - **Prepruning:** Halt tree construction early—do not split a node if this would result in the goodness measure falling below a threshold
 - Difficult to choose an appropriate threshold
 - Postpruning: Remove branches from a "fully grown" tree—get a sequence of progressively pruned trees
 - Use a set of data different from the training data to decide which is the "best pruned tree"

42

Bayesian Classification: Why?

- <u>A statistical classifier</u>: performs *probabilistic prediction, i.e.,* predicts class membership probabilities
- <u>Foundation</u>: Based on Bayes' Theorem.
- <u>Performance</u>: A simple Bayesian classifier, *naïve Bayesian classifier*, has comparable performance with decision tree and selected neural network classifiers
- Incremental: Each training example can incrementally increase/decrease the probability that a hypothesis is correct — prior knowledge can be combined with observed data

43

Bayes' Theorem: Basics

- Bayes' Theorem: $P(H|\mathbf{X}) = \frac{P(\mathbf{X}|H)P(H)}{P(\mathbf{X})}$
 - Let **X** be a data sample (*"evidence"*): class label is unknown
 - Let H be a hypothesis that X belongs to class C
 - Classification is to determine P(H|X), (i.e., *posteriori probability):* the probability that the hypothesis holds given the observed data sample X
 - P(H) (*prior probability*): the initial probability
 - E.g., X will buy computer, regardless of age, income, ...
 - P(X): probability that sample data is observed
 - P(X|H) (likelihood): the probability of observing the sample X, given that the hypothesis holds
 - E.g., Given that **X** will buy computer, the prob. that X is 31..40, medium income

Example of Bayes Theorem

- Given:
 - A doctor knows that meningitis causes stiff neck 50% of the time
 - Prior probability of any patient having meningitis is 1/50,000
 - Prior probability of any patient having stiff neck is 1/20
- If a patient has stiff neck, what's the probability he/she has meningitis?

$$P(M \mid S) = \frac{P(S \mid M)P(M)}{P(S)} = \frac{0.5 \times 1/50000}{1/20} = 0.0002$$

Prediction Based on Bayes' Theorem

 Given training data X, posteriori probability of a hypothesis H, P(H|X), follows the Bayes' theorem

$$P(H|\mathbf{X}) = \frac{P(\mathbf{X}|H)P(H)}{P(\mathbf{X})}$$

Informally, this can be viewed as

posteriori = likelihood x prior/evidence

- Predicts X belongs to C_i iff the probability P(C_i | X) is the highest among all the P(C_k | X) for all the k classes
- Practical difficulty: It requires initial knowledge of many probabilities, involving significant computational cost

Classification Is to Derive the Maximum Posteriori

- Let D be a training set of tuples and their associated class labels, and each tuple is represented by an n-D attribute vector X = (x₁, x₂, ..., x_n)
- Suppose there are *m* classes C₁, C₂, ..., C_m.
- Classification is to derive the maximum posteriori, i.e., the maximal P(C_i | X)
- This can be derived from Bayes' theorem

$$P(C_i | \mathbf{X}) = \frac{P(\mathbf{X} | C_i) P(C_i)}{P(\mathbf{X})}$$

• Since P(X) is constant for all classes, only $P(C_i | \mathbf{X}) = P(\mathbf{X} | C_i) P(C_i)$

needs to be maximized

Naïve Bayes Classifier

• A simplified assumption: attributes are conditionally independent (i.e., no dependence relation between attributes): $P(\mathbf{X} | C_i) = \prod_{i=1}^{n} P(x_i | C_i) = P(x_i | C_i) \times P(x_i | C_i) \times P(x_i | C_i)$

$$P(\mathbf{X} | C_i) = \prod_{k=1}^{n} P(x_k | C_i) = P(x_1 | C_i) \times P(x_2 | C_i) \times \dots \times P(x_n | C_i)$$

- This greatly reduces the computation cost: Only counts the class distribution
- If A_k is categorical, P(x_k|C_i) is the # of tuples in C_i having value x_k for A_k divided by |C_{i, D}| (# of tuples of C_i in D)
- If A_k is continous-valued, $P(x_k | C_i)$ is usually computed based on Gaussian distribution with a mean $\mu = \frac{1}{\sqrt{2\pi\sigma}} e^{\frac{2}{2\sigma^2}}$ and and deviation σ $g(x, \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma}} e^{\frac{2}{2\sigma^2}}$

and
$$P(\mathbf{x}_k | C_i)$$
 is $P(\mathbf{X} | C_i) = g(x_k, \mu_{C_i}, \sigma_{C_i})$

Example Case: Naïve Bayesian Classifier Training Data

Class:

C1:buys_computer = 'yes' C2:buys_computer = 'no'

New Data:

X = (age <=30, Income = medium, Student = yes Credit_rating = Fair)

age	income	student	credit_rating	_com
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

```
Given X (age=youth, income=medium, student=yes, credit=fair)
Maximize P(X|Ci)P(Ci), for i=1,2
```

First step: Compute P(C) The prior probability of each class can be computed based on the training tuples:

P(buys_computer=yes)=9/14=0.643

P(buys_computer=no)=5/14=0.357

Given X (age=youth, income=medium, student=yes, credit=fair) Maximize P(X|Ci)P(Ci), for i=1,2

Second step: compute P(X|Ci)

P(**X|buys_computer=yes**)= P(age=youth|buys_computer=yes)x

P(income=medium|buys_computer=yes) x
P(student=yes|buys_computer=yes)x
P(credit_rating=fair|buys_computer=yes)
= 0.044

P(age=youth|buys_computer=yes)=0.222

P(income=medium|buys_computer=yes)=0.444

P(student=yes|buys_computer=yes)=6/9=0.667

P(credit_rating=fair|buys_computer=yes)=6/9=0.667

Given X (age=youth, income=medium, student=yes, credit=fair) Maximize P(X|Ci)P(Ci), for i=1,2

Second step: compute P(X|Ci) P(X|buys_computer=no)= P(age=youth|buys_computer=no)x P(income=medium|buys_computer=no) x P(student=yes|buys_computer=no) x P(credit_rating=fair|buys_computer=no) = 0.019 P(age=youth|buys_computer=no)=3/5=0.666 P(income=medium|buys_computer=no)=2/5=0.400 P(student=yes|buys_computer=no)=1/5=0.200 P(credit_rating=fair|buys_computer=no)=2/5=0.400

Given X (age=youth, income=medium, student=yes, credit=fair) Maximize P(X|Ci)P(Ci), for i=1,2

We have computed in the first and second steps:

P(buys_computer=yes)=9/14=0.643 P(buys_computer=no)=5/14=0.357 P(X|buys_computer=yes)= 0.044 P(X|buys_computer=no)= 0.019

Third step: compute P(X|Ci)P(Ci) for each class P(X|buys_computer=yes)P(buys_computer=yes)=0.044 x 0.643=0.028 P(X|buys_computer=no)P(buys_computer=no)=0.019 x 0.357=0.007 The naïve Bayesian Classifier predicts X belongs to class ("buys_computer = yes")

Avoiding the O-Probability Problem

- If one of the conditional probability is zero, then the entire expression becomes zero
- Probability estimation:

Original :
$$P(A_i | C) = \frac{N_{ic}}{N_c}$$

Laplace : $P(A_i | C) = \frac{N_{ic} + 1}{N_c + c}$
m - estimate : $P(A_i | C) = \frac{N_{ic} + mp}{N_c + m}$
c: number of classes
p: prior probability
m: parameter

Naïve Bayes (Summary)

• Advantage

- Robust to isolated noise points
- Handle missing values by ignoring the instance during probability estimate calculations
- Robust to irrelevant attributes

• Disadvantage

- Independence assumption may not hold for some attribute. Practically, dependencies exist among variables
 - Use other techniques such as Bayesian Belief Networks (BBN)

Model Evaluation and Selection

- Evaluation metrics: How can we measure accuracy? Other metrics to consider?
- Use validation test set of class-labeled tuples instead of training set when assessing accuracy
- Methods for estimating a classifier's accuracy:
 - Holdout method, random subsampling
 - Cross-validation
 - Bootstrap
- Comparing classifiers:
 - Confusion matrices
 - Cost-benefit analysis and ROC Curves

Classifier Evaluation Metrics: Confusion Matrix

Confusion Matrix:

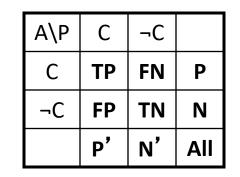
Actual class\Predicted class	C ₁	- C ₁	
C ₁	True Positives (TP)	False Negatives (FN)	
¬ C ₁	False Positives (FP)	True Negatives (TN)	

Example of Confusion Matrix:

Actual class\Predicted	buy_computer	buy_computer	Total
class	= yes	= no	
buy_computer = yes	6954	46	7000
buy_computer = no	412	2588	3000
Total	7366	2634	10000

- Given *m* classes, an entry, *CM*_{i,j} in a confusion matrix indicates # of tuples in class *i* that were labeled by the classifier as class *j*
- May have extra rows/columns to provide totals

Classifier Evaluation Metrics: Accuracy, Error Rate, Sensitivity and Specificity



- Classifier Accuracy, or recognition rate: percentage of test set tuples that are correctly classified Accuracy = (TP + TN)/All
- Error rate: 1 accuracy, or Error rate = (FP + FN)/All

- Class Imbalance Problem:
 - One class may be *rare*, e.g. fraud, or HIV-positive
 - Significant majority of the negative class and minority of the positive class
 - Sensitivity: True Positive recognition rate
 - Sensitivity = TP/P
 - Specificity: True Negative recognition rate
 - Specificity = TN/N

Classifier Evaluation Metrics: Precision and Recall, and F-measures

- Precision: exactness what % of tuples that the classifier labeled as positive are actually positive
- **Recall:** completeness what % of positive tuples did the classifier label as positive?
- Perfect score is 1.0
- Inverse relationship between precision & recall
- **F measure (F**₁ or **F-score)**: harmonic mean of precision and recall,

$$precision = \frac{TP}{TP + FP}$$

$$recall = \frac{TP}{TP + FN}$$

$$= \frac{2 \times precision \times recall}{precision + recall}$$

Classifier Evaluation Metrics: Example

Actual Class\Predicted class	cancer = yes	cancer = no	Total	Recognition(%)
cancer = yes	90	210	300	30.00 (sensitivity
cancer = no	140	9560	9700	98.56 (specificity)
Total	230	9770	10000	96.40 (accuracy)

Precision = 90/230 = 39.13%

Recall = 90/300 = 30.00%

Receive operating characteristics curve

- It is commonly called the ROC curve.
- It is a plot of the true positive rate (TPR) against the false positive rate (FPR).
- True positive rate:

$$TPR = \frac{TP}{TP + FN}$$

• False positive rate:

$$FPR = \frac{FP}{TN + FP}$$

Model Selection: ROC Curves

- **ROC** (Receiver Operating Characteristics) curves: for visual comparison of classification models
- The area under the ROC curve is a measure of the accuracy of the model
- The closer to the diagonal line (i.e., the closer the area is to 0.5), the less accurate is the model

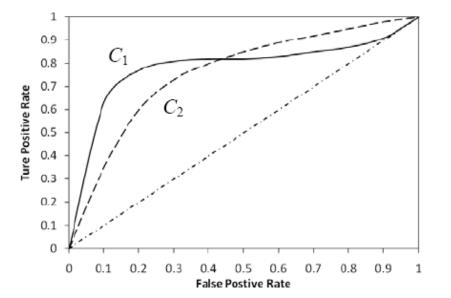


Fig. 3.8. ROC curves for two classifiers $(C_1 \text{ and } C_2)$ on the same data

- Vertical axis represents the true positive rate
- Horizontal axis rep. the false positive rate
- The plot also shows a diagonal line
- A model with perfect accuracy will have an area of 1.0

Evaluating Classifier Accuracy: Holdout & Cross-Validation Methods

Holdout method

- Given data is randomly partitioned into two independent sets
 - Training set (e.g., 2/3) for model construction
 - Test set (e.g., 1/3) for accuracy estimation
- <u>Random sampling</u>: a variation of holdout
 - Repeat holdout k times, accuracy = avg. of the accuracies obtained
- **Cross-validation** (*k*-fold, where k = 10 is most popular)
 - Randomly partition the data into k mutually exclusive subsets, each approximately equal size
 - At *i*-th iteration, use D_i as test set and others as training set
 - <u>Leave-one-out</u>: k folds where k = # of tuples, for small sized data
 - **<u>*Stratified cross-validation</u>**: folds are stratified so that class dist. in each fold is approx. the same as that in the initial data