BBS654 Data Mining

Pinar Duygulu

Slides are adapted from Nazli Ikizler

1

Classification

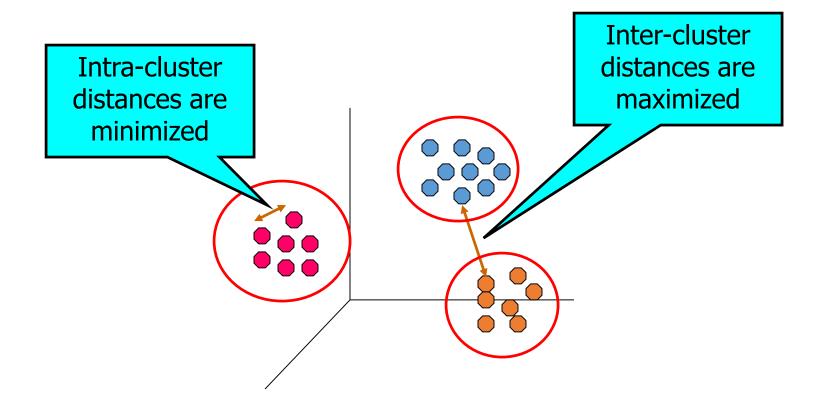
- Classification systems:
 - Supervised learning
 - Make a rational prediction given evidence
 - There are several methods for this
 - Useful when you have labeled data (or can get it)

Clustering

- Clustering systems:
 - Unsupervised learning
 - Detect patterns in unlabeled data
 - Useful when don't know what you're looking for
 - Requires data, but no labels
- Typical applications
 - As a stand-alone tool to get insight into data distribution
 - As a preprocessing step for other algorithms

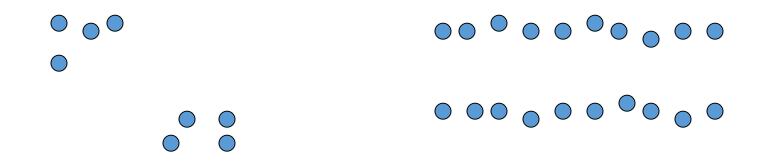
What is Cluster Analysis?

 Finding groups of objects such that the objects in a group will be similar (or related) to one another and different from (or unrelated to) the objects in other groups



Clustering

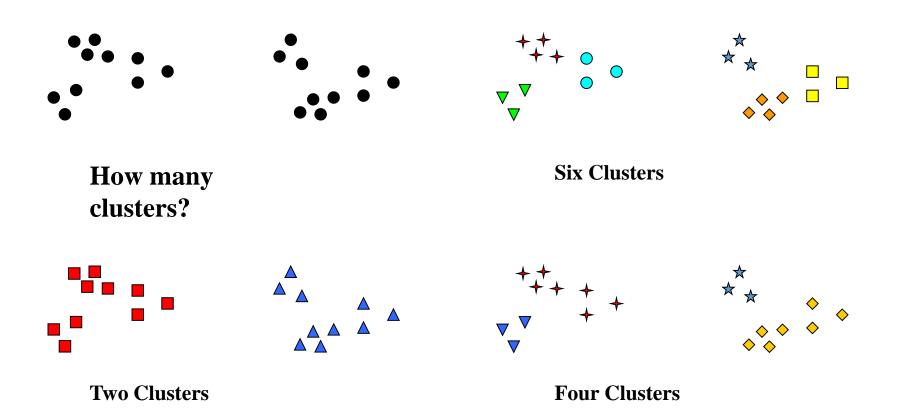
- Basic idea: group together similar instances
- Example: 2D point patterns



- What could "similar" mean?
 - One option: small (squared) Euclidean distance

dist
$$(x, y) = (x - y)^{\top} (x - y) = \sum_{i} (x_i - y_i)^2$$

Notion of a Cluster can be Ambiguous



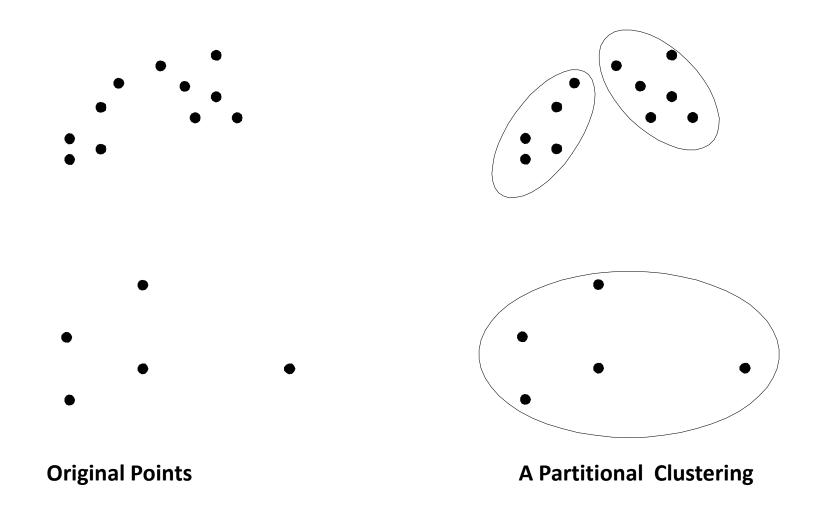
Quality: What Is Good Clustering?

- A good clustering method will produce high quality clusters
 - high <u>intra-class</u> similarity: cohesive within clusters
 - low <u>inter-class</u> similarity: <u>distinctive</u> between clusters
- The <u>quality</u> of a clustering method depends on
 - the similarity measure used by the method
 - its implementation, and
 - Its ability to discover some or all of the hidden patterns

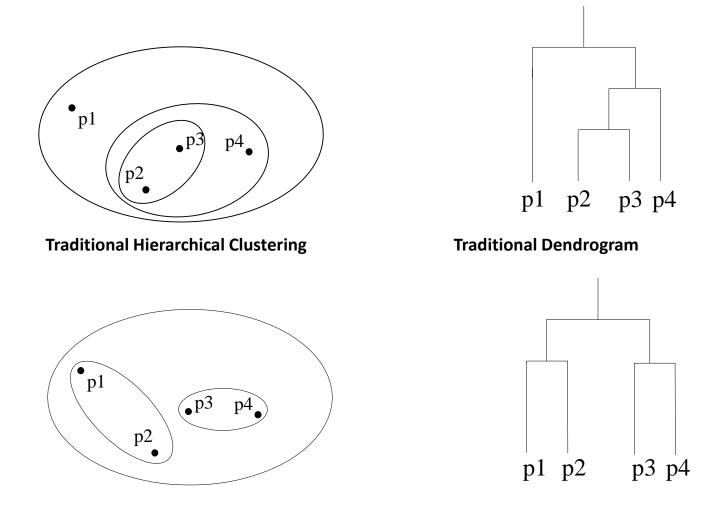
Types of Clusterings

- A clustering is a set of clusters
- Important distinction between hierarchical and partitional sets of clusters
- Partitional Clustering
 - A division data objects into non-overlapping subsets (clusters) such that each data object is in exactly one subset
- Hierarchical clustering
 - A set of nested clusters organized as a hierarchical tree

Partitional Clustering



Hierarchical Clustering



Non-traditional Hierarchical Clustering

Non-traditional Dendrogram

Clustering Algorithms

- K-means and its variants
- Hierarchical clustering
- Density-based clustering

K-means Clustering

- Partitional clustering approach
- Each cluster is associated with a centroid (center point)
- Each point is assigned to the cluster with the closest centroid
- Number of clusters, K, must be specified
- The basic algorithm is very simple
 - 1: Select K points as the initial centroids.
 - 2: repeat
 - 3: Form K clusters by assigning all points to the closest centroid.
 - 4: Recompute the centroid of each cluster.
 - 5: **until** The centroids don't change

K-Means

Objective function

•
$$J = \sum_{j=1}^{k} \sum_{C(i)=j} ||x_i - c_j||^2$$

- Total within-cluster variance
- Re-arrange the objective function

•
$$J = \sum_{j=1}^{k} \sum_{i} w_{ij} ||x_i - c_j||^2$$

•
$$w_{ij} \in \{0,1\}$$

- $w_{ij} = 1$, if x_i belongs to cluster j; $w_{ij} = 0$, otherwise
- Looking for:
 - The best assignment w_{ij}
 - The best center c_j

Solution of K-Means

$$J = \sum_{j=1}^{k} \sum_{i} w_{ij} ||x_i - c_j||^2$$

• Iterations

- Step 1: Fix centers c_j , find assignment w_{ij} that minimizes J• => $w_{ij} = 1$, $if ||x_i - c_j||^2$ is the smallest
- Step 2: Fix assignment w_{ij}, find centers that minimize J
 => first derivative of J = 0

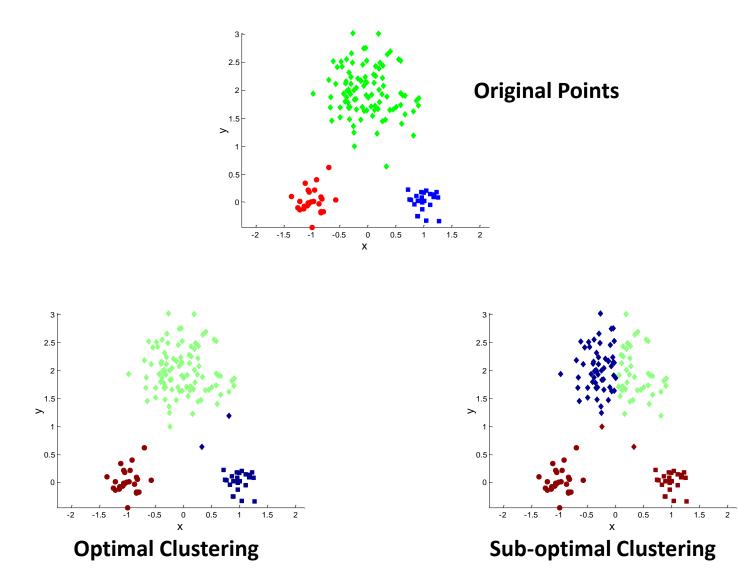
• =>
$$\frac{\partial J}{\partial c_j} = -2 \sum_i w_{ij} (x_i - c_j) = 0$$

• => $c_j = \frac{\sum_i w_{ij} x_i}{\sum_i w_{ij}}$
• Note $\sum_i w_{ij}$ is the total number of objects in cluster j

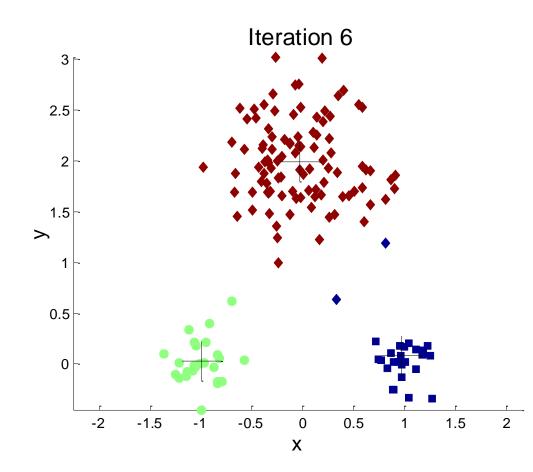
K-means Clustering – Details

- Initial centroids are often chosen randomly.
 - Clusters produced vary from one run to another.
- The centroid is (typically) the mean of the points in the cluster.
- 'Closeness' is measured by Euclidean distance, cosine similarity, correlation, etc.
- K-means will converge for common similarity measures
- Most of the convergence happens in the first few iterations.
 - Often the stopping condition is changed to 'Until relatively few points change clusters'
- Complexity is O(n * K * I * d)
 - n = number of points, K = number of clusters,
 I = number of iterations, d = number of attributes

Two different K-means Clusterings

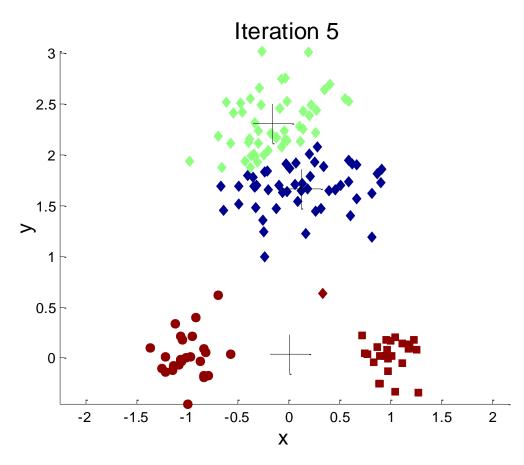


Importance of Choosing Initial Centroids



17

Importance of Choosing Initial Centroids



Evaluating K-means Clusters

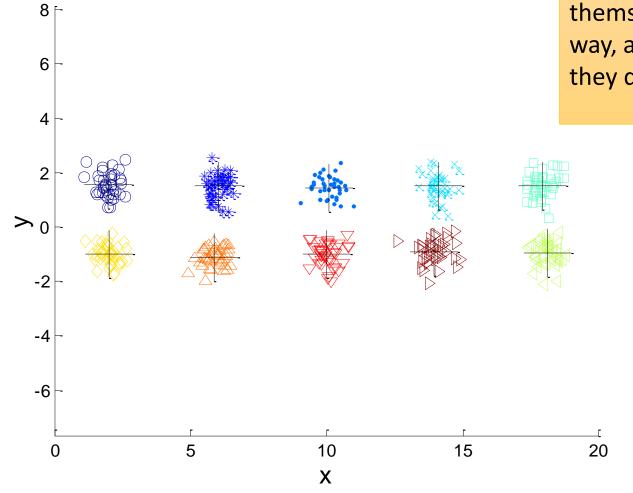
- Most common measure is Sum of Squared Error (SSE)
 - For each point, the error is the distance to the nearest cluster
 - To get SSE, we square these errors and sum them.

$$SSE = \sum_{i=1}^{K} \sum_{x \in C_i} dist^2(m_i, x)$$

- *x* is a data point in cluster *C*_i and *m*_i is the representative point for cluster *C*_i
 - can show that *m_i* corresponds to the center (mean) of the cluster
- Given two clusters, we can choose the one with the smallest error
- One easy way to reduce SSE is to increase K, the number of clusters
 - A good clustering with smaller K can have a lower SSE than a poor clustering with higher K

10 Clusters Example

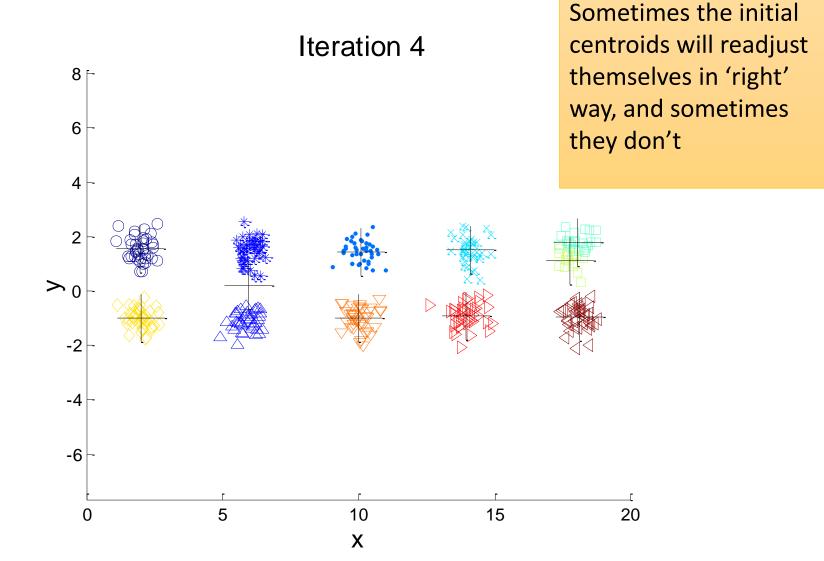
Sometimes the initial centroids will readjust themselves in 'right' way, and sometimes they don't



Iteration 4

Starting with two initial centroids in one cluster of each pair of clusters

10 Clusters Example



Starting with some pairs of clusters having three initial centroids, while other have only one.

Solutions to Initial Centroids Problem

- Multiple runs
 - Helps, but probability is not on your side
- Sample and use hierarchical clustering to determine initial centroids
- Select more than k initial centroids and then select among these initial centroids
 - Select most widely separated
- Postprocessing
- Bisecting K-means
 - Not as susceptible to initialization issues

Bisecting K-means

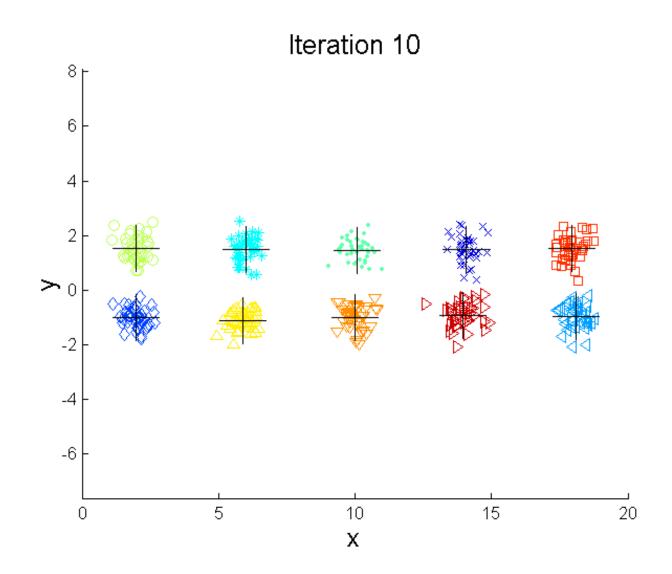
- Bisecting K-means algorithm
 - Variant of K-means that can produce a partitional or a hierarchical clustering

1: Initialize the list of clusters to contain the cluster containing all points.

2: repeat

- 3: Select a cluster from the list of clusters
- 4: for i = 1 to number_of_iterations do
- 5: Bisect the selected cluster using basic K-means
- 6: end for
- 7: Add the two clusters from the bisection with the lowest SSE to the list of clusters.
- 8: until Until the list of clusters contains K clusters

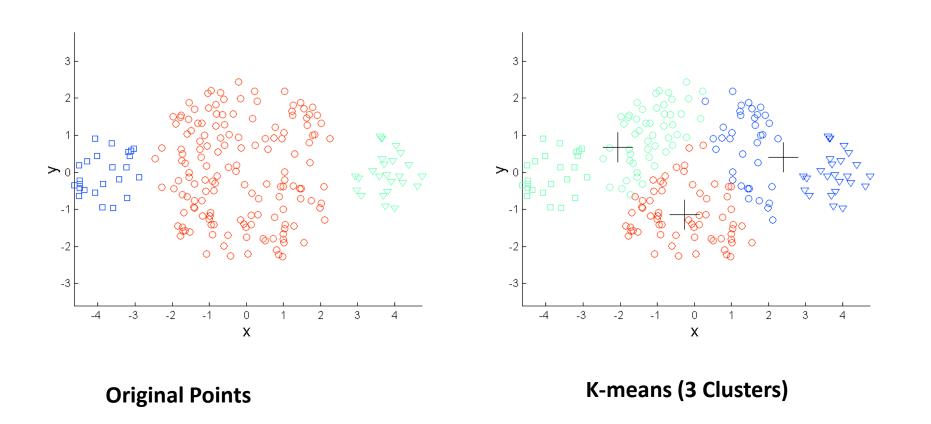
Bisecting K-means Example



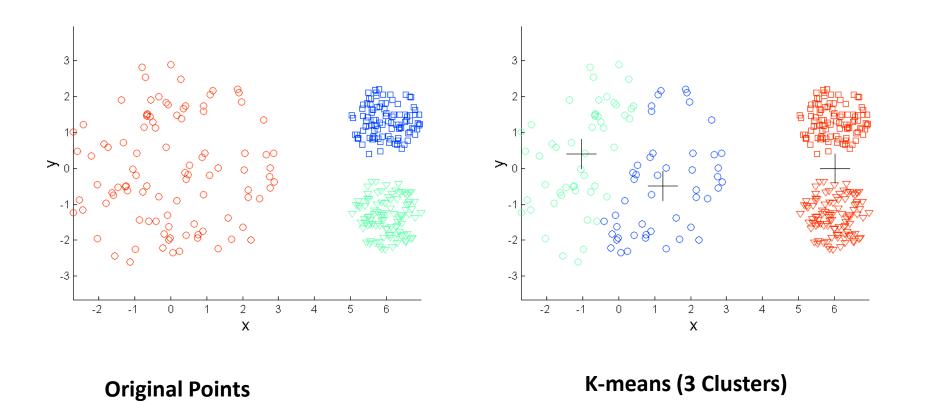
Limitations of K-means

- K-means has problems when clusters are of differing
 - Sizes
 - Densities
 - Non-globular shapes
- K-means has problems when the data contains outliers.

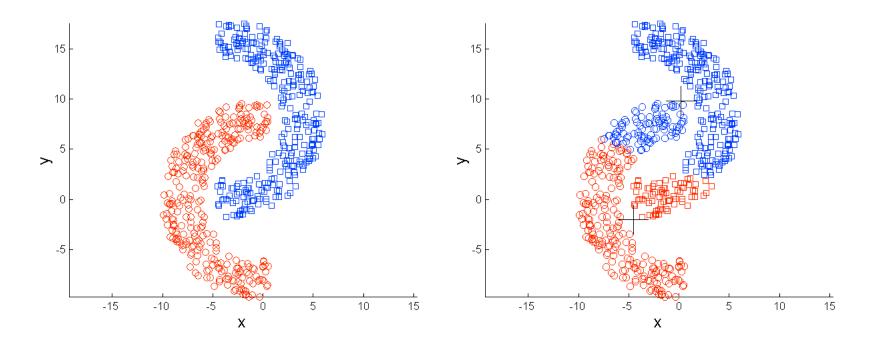
Limitations of K-means: Differing Sizes



Limitations of K-means: Differing Density



Limitations of K-means: Non-globular Shapes

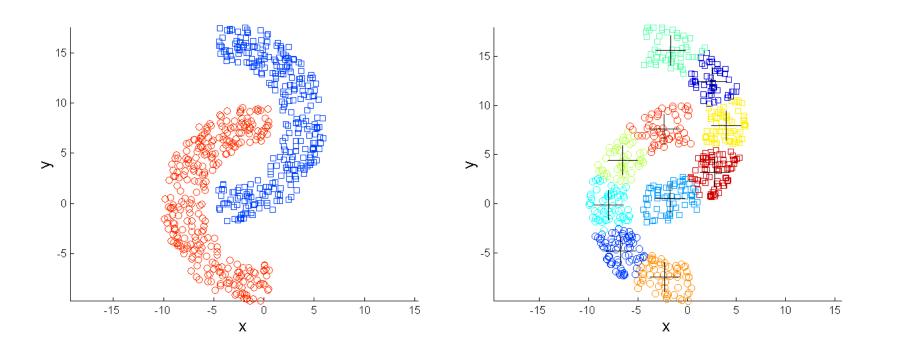


Original Points

K-means (2 Clusters)

One solution is to use many clusters. Find parts of clusters, but need to put together.

Overcoming K-means Limitations



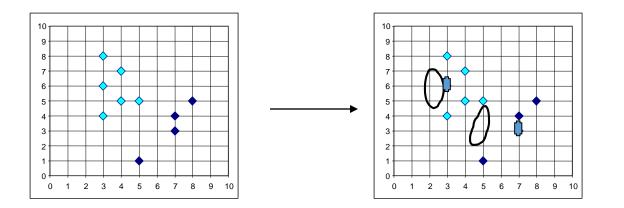
Original Points

K-means Clusters

One solution is to use many clusters. Find parts of clusters, but need to put together.

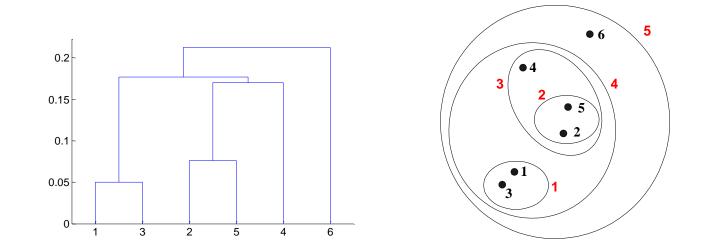
K-means is sensitive to outliers

- The k-means algorithm is sensitive to outliers !
 - Since an object with an extremely large value may substantially distort the distribution of the data
- K-Medoids: Instead of taking the mean value of the object in a cluster as a reference point, medoids can be used, which is the most centrally located object in a cluster



Hierarchical Clustering

- Produces a set of nested clusters organized as a hierarchical tree
- Can be visualized as a dendrogram
 - A tree like diagram that records the sequences of merges or splits



Strengths of Hierarchical Clustering

- Do not have to assume any particular number of clusters
 - Any desired number of clusters can be obtained by 'cutting' the dendogram at the proper level
- They may correspond to meaningful taxonomies
 - Example in biological sciences (e.g., animal kingdom, phylogeny reconstruction, ...)

Hierarchical Clustering

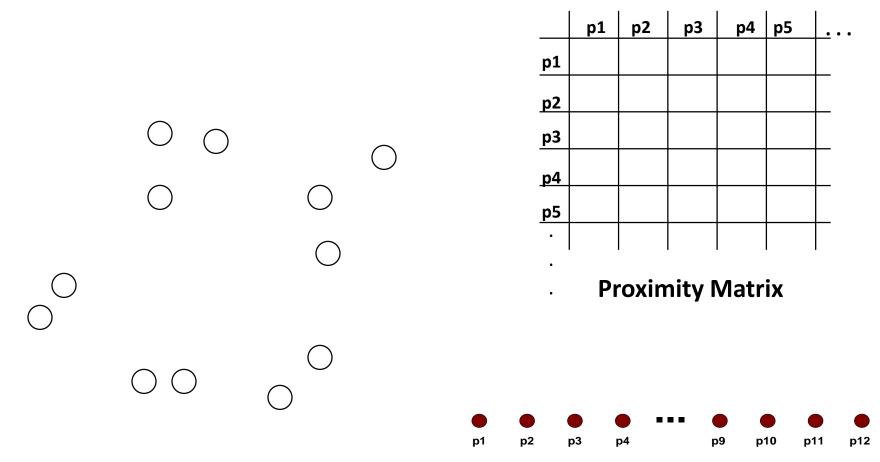
- Two main types of hierarchical clustering
 - Agglomerative:
 - Start with the points as individual clusters
 - At each step, merge the closest pair of clusters until only one cluster (or k clusters) left
 - Divisive:
 - Start with one, all-inclusive cluster
 - At each step, split a cluster until each cluster contains a point (or there are k clusters)
- Traditional hierarchical algorithms use a similarity or distance matrix
 - Merge or split one cluster at a time

Agglomerative Clustering Algorithm

- More popular hierarchical clustering technique
- Basic algorithm is straightforward
 - 1. Compute the proximity matrix
 - 2. Let each data point be a cluster
 - 3. Repeat
 - 4. Merge the two closest clusters
 - 5. Update the proximity matrix
 - 6. Until only a single cluster remains
- Key operation is the computation of the proximity of two clusters
 - Different approaches to defining the distance between clusters distinguish the different algorithms

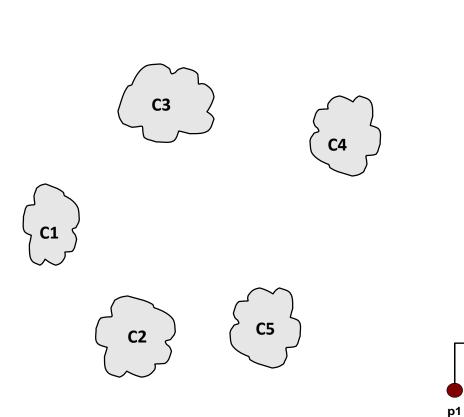
Starting Situation

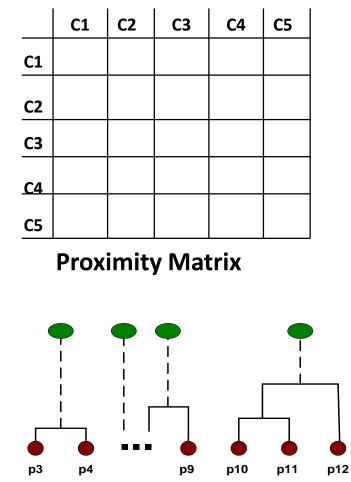
• Start with clusters of individual points and a proximity matrix



Intermediate Situation

• After some merging steps, we have some clusters





p2

Intermediate Situation

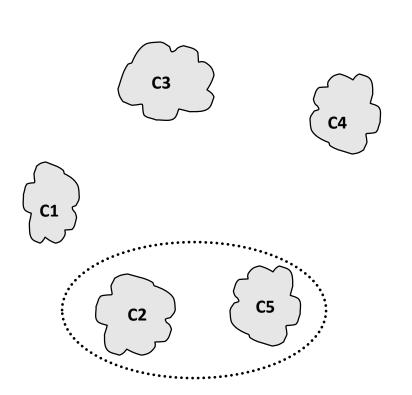
We want to merge the two closest clusters (C2 and C5) and update the proximity matrix.

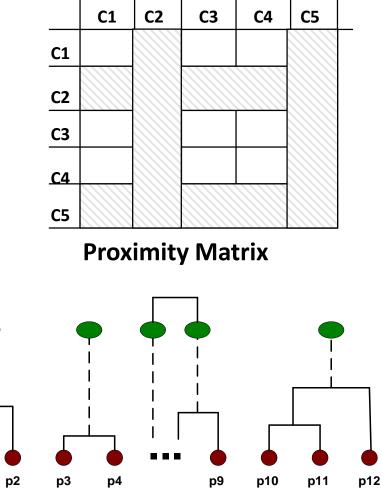
 <u>c1</u>

 <u>c2</u>

 <u>c3</u>

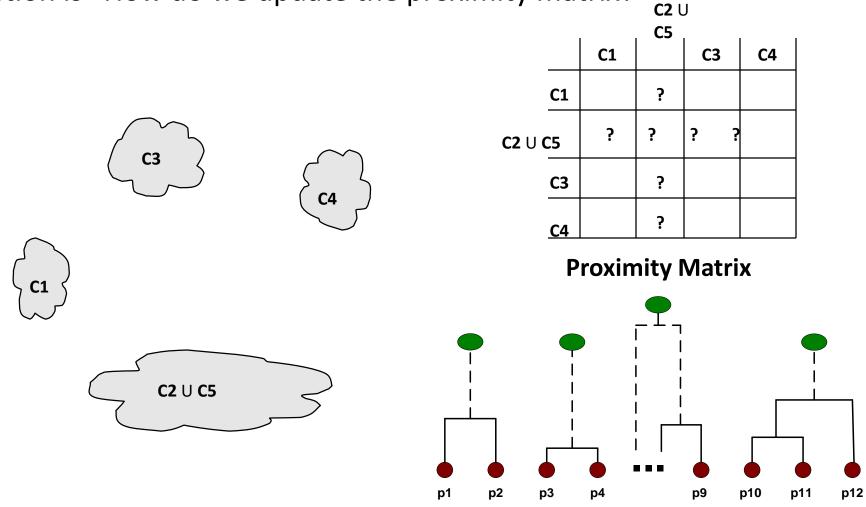
p1

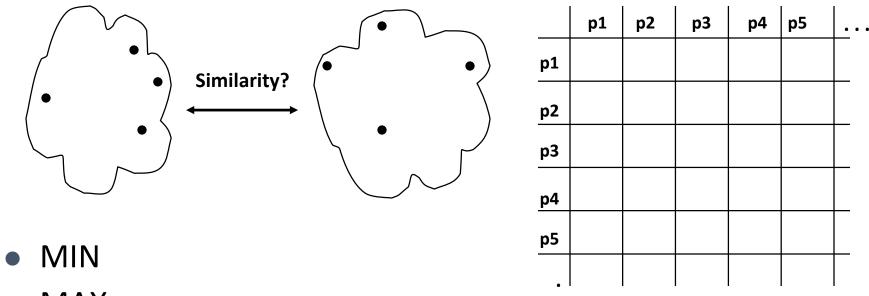




After Merging

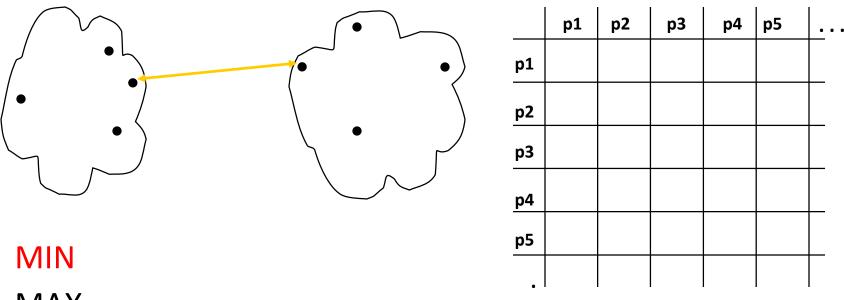
• The question is "How do we update the proximity matrix?"



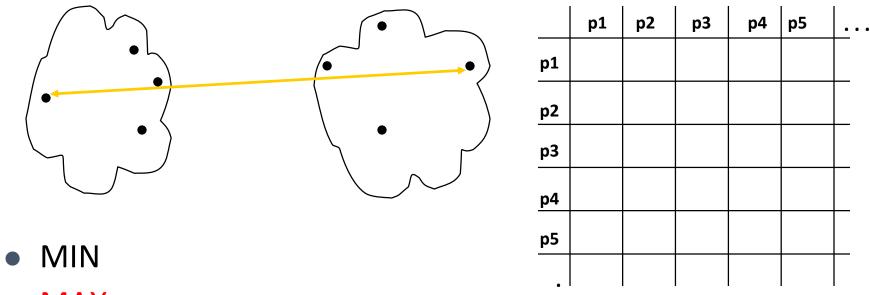


- MAX
- Group Average

- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

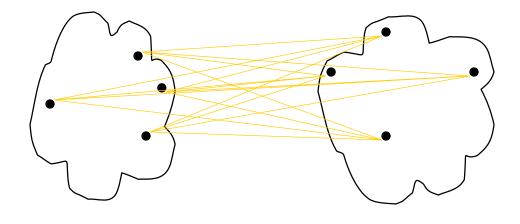


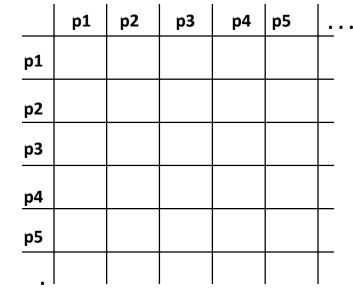
- MIN
- MAX
- Group Average
 - Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error



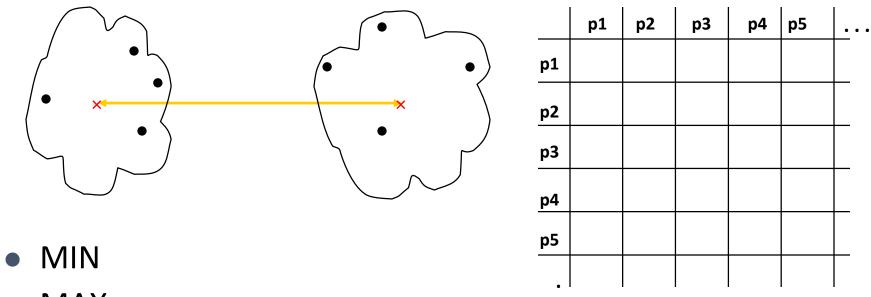
- MAX
- Group Average

- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error





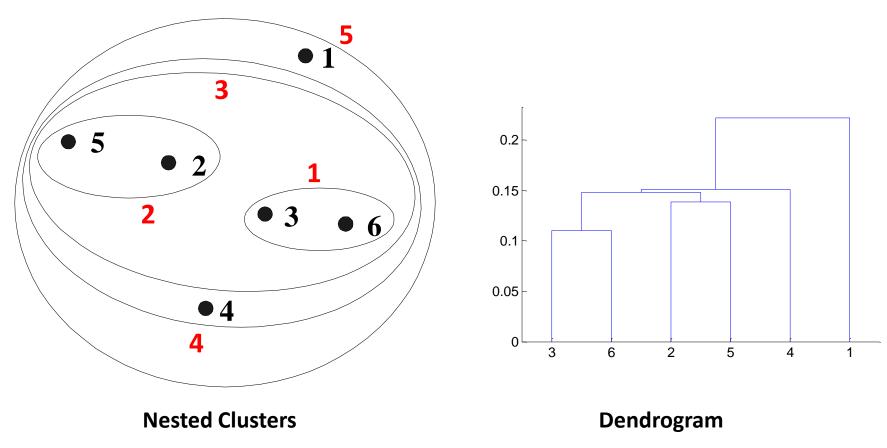
- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error



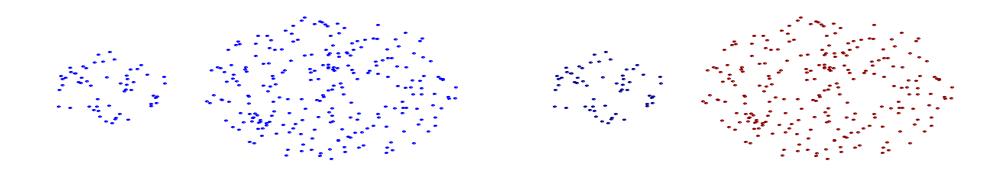
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

Hierarchical Clustering: MIN or Single Link

- Similarity of two clusters is based on the two most similar (closest) points in the different clusters
 - Determined by one pair of points, i.e., by one link in the proximity graph.



Strength of MIN

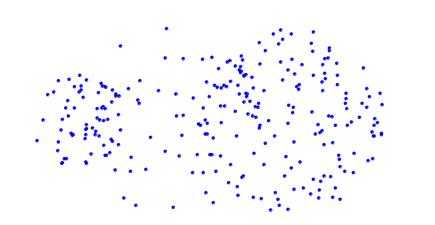


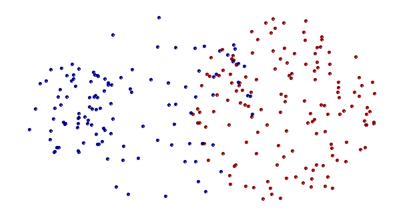
Original Points

Two Clusters

• Can handle non-elliptical shapes

Limitations of MIN





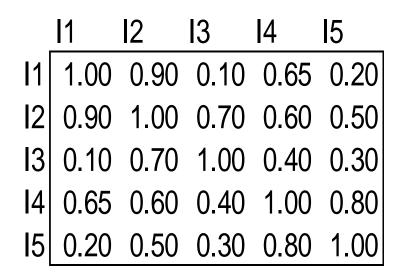
Original Points

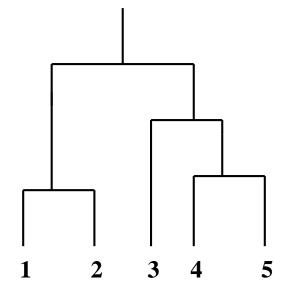
Two Clusters

• Sensitive to noise and outliers

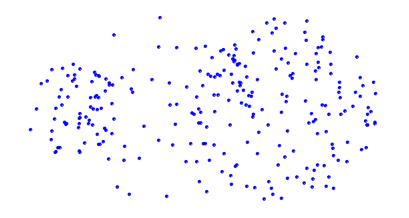
Cluster Similarity: MAX or Complete Linkage

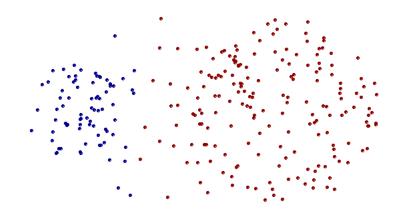
- Similarity of two clusters is based on the two least similar (most distant) points in the different clusters
 - Determined by all pairs of points in the two clusters





Strength of MAX



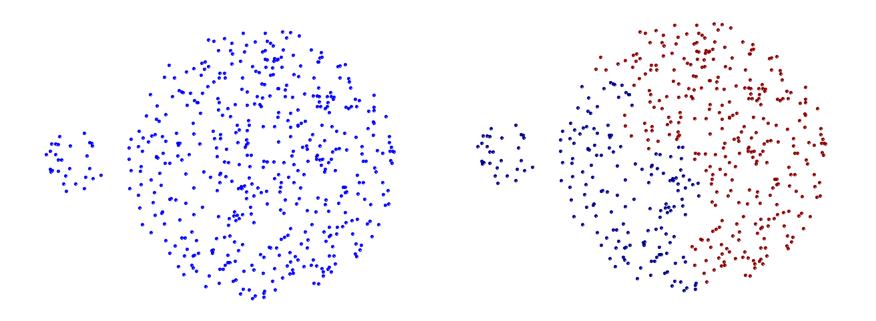


Original Points

Two Clusters

• Less susceptible to noise and outliers

Limitations of MAX



Original Points

Two Clusters

- •Tends to break large clusters
- Biased towards globular clusters

Cluster Similarity: Group Average

• Proximity of two clusters is the average of pairwise proximity between points in the two clusters.

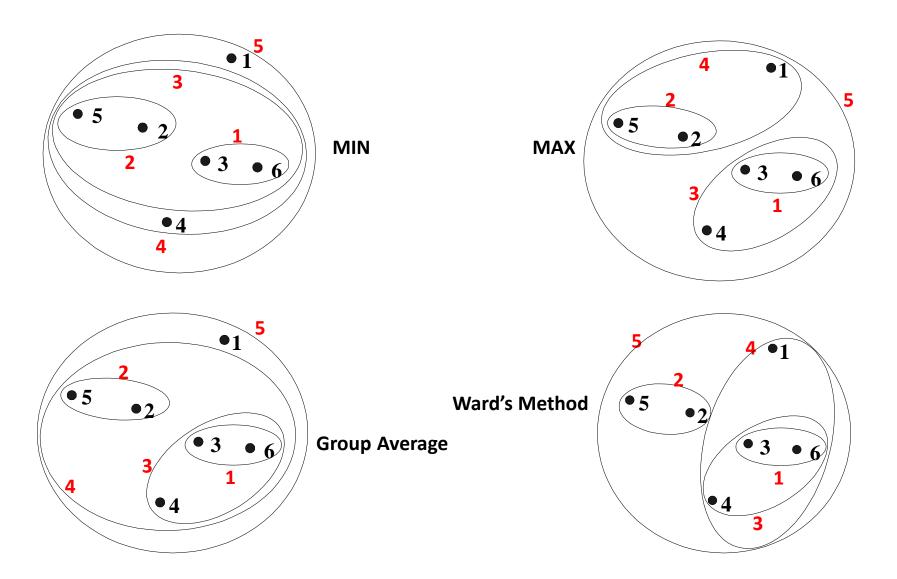
$$proximity(Cluster_{i}, Cluster_{j}) = \frac{\sum_{\substack{p_{i} \in Cluster_{i} \\ p_{j} \in Cluster_{j}}} \sum_{\substack{p_{i} \in Cluster_{i} \\ p_{j} \in Cluster_{j}}} \sum_{\substack{p_{i} \in Cluster_{i} \\ P_{i} \in Cluster_{i}}} \sum_{\substack{p_{i} \in$$

- Need to use average connectivity for scalability since total proximity favors large clusters
- Compromise between Single and Complete Link
- Strengths
 - Less susceptible to noise and outliers
- Limitations
 - Biased towards globular clusters

Cluster Similarity: Ward's Method

- Similarity of two clusters is based on the increase in squared error when two clusters are merged
 - Similar to group average if distance between points is distance squared
- Less susceptible to noise and outliers
- Biased towards globular clusters
- Can be used to initialize K-means

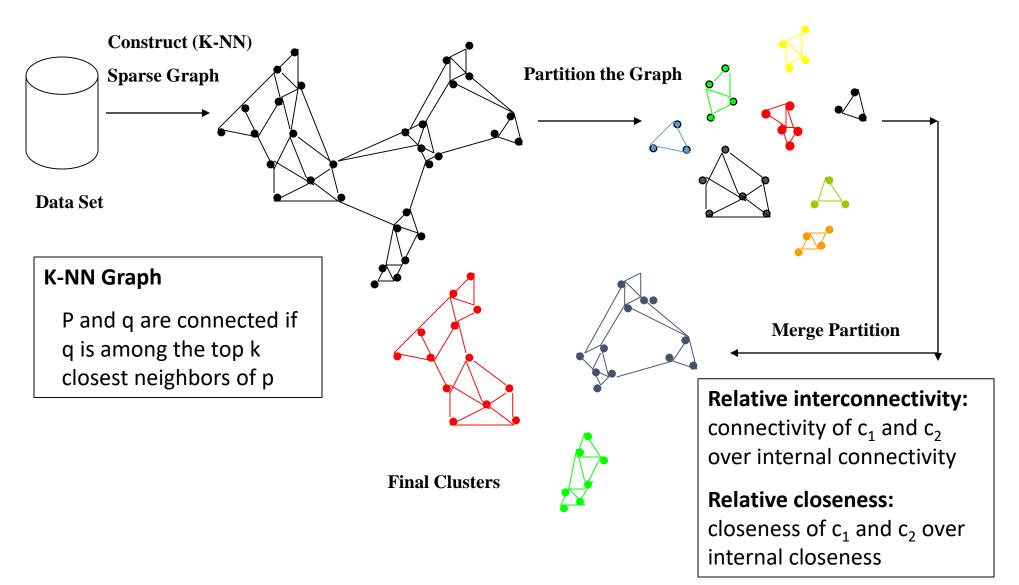
Hierarchical Clustering: Comparison



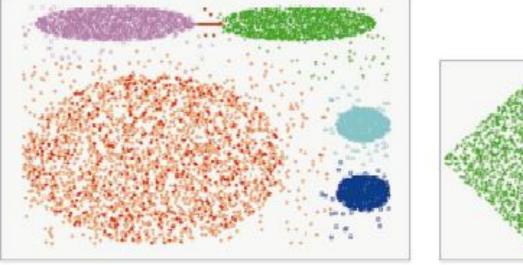
CHAMELEON: Hierarchical Clustering Using Dynamic Modeling (1999)

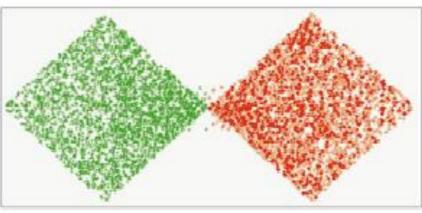
- CHAMELEON: G. Karypis, E. H. Han, and V. Kumar, 1999
- Measures the similarity based on a dynamic model
 - Two clusters are merged only if the *interconnectivity* and *closeness (proximity)* between two clusters are high *relative to* the internal interconnectivity of the clusters and closeness of items within the clusters
- Graph-based, and a two-phase algorithm
 - 1. Use a graph-partitioning algorithm: cluster objects into a large number of relatively small sub-clusters
 - 2. Use an agglomerative hierarchical clustering algorithm: find the genuine clusters by repeatedly combining these sub-clusters

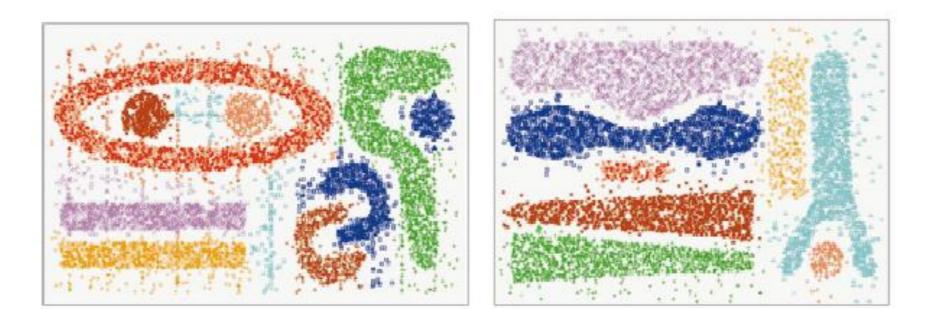
Overall Framework of CHAMELEON



CHAMELEON (Clustering Complex Objects)







Hierarchical Clustering: Problems and Limitations

- Once a decision is made to combine two clusters, it cannot be undone
- No objective function is directly minimized
- Different schemes have problems with one or more of the following:
 - Sensitivity to noise and outliers
 - Difficulty handling different sized clusters and convex shapes
 - Breaking large clusters