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Graph Data: Social Networks

Facebook social graph
4-degrees of separation [Backstrom-Boldi-Rosa-Ugander-Vigna, 2011]



Graph Data: Information Nets

Citation networks and Maps of science
[Börner et al., 2012]



Web as a Graph

• Web as a directed graph:

– Nodes: Webpages

– Edges: Hyperlinks
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Web as a Directed Graph



Broad Question

• How to organize the Web?
• First try: Human curated

Web directories
– Yahoo, DMOZ, LookSmart

• Second try: Web Search
– Information Retrieval investigates:

Find relevant docs in a small 
and trusted set

• Newspaper articles, Patents, etc.

– But: Web is huge, full of untrusted documents, 
random things, web spam, etc.



Web Search: 2 Challenges

2 challenges of web search:

• (1) Web contains many sources of information
Who to “trust”?

– Trick: Trustworthy pages may point to each other!

• (2) What is the “best” answer to query 
“newspaper”?

– No single right answer

– Trick: Pages that actually know about newspapers 
might all be pointing to many newspapers
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Early Search Engines

• Inverted index

– Data structure that return pointers to all pages a term 
occurs

• Which page to return first?

– Where do the search terms appear in the page?

– How many occurrences of the search terms in the page?

• What if a spammer tries to fool the search engine?
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Fooling Early Search Engines

• Example: A spammer wants his page to be in the top search 
results for the term “movies”.

• Approach 1: 
– Add thousands of copies of the term “movies” to your page. 

– Make them invisible.

• Approach 2: 
– Search the term “movies”. 

– Copy the contents of the top page to your page.

– Make it invisible.

• Problem: Ranking only based on page contents

• Early search engines almost useless because of spam.
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Google’s Innovations

• Basic idea: Search engine believes what other pages say 
about you instead of what you say about yourself.

• Main innovations:

1. Define the importance of a page based on:
– How many pages point to it?

– How important are those pages?

2. Judge the contents of a page based on:
– Which terms appear in the page?

– Which terms are used to link to the page?



Ranking Nodes on the Graph

• All web pages are not equally “important”

www.joe-schmoe.com vs. www.stanford.edu

• There is large diversity 
in the web-graph 
node connectivity.
Let’s rank the pages by 
the link structure!

http://www.joe-schmoe.com/
http://www.stanford.edu/


PageRank: 
The “Flow” Formulation



Links as Votes

• Idea: Links as votes

– Page is more important if it has more links

• In-coming links? Out-going links?

• Think of in-links as votes:
– www.stanford.edu has 23,400 in-links

– www.joe-schmoe.com has 1 in-link

• Are all in-links are equal?

– Links from important pages count more

– Recursive question! 

http://www.stanford.edu/
http://www.joe-schmoe.com/


Example: PageRank Scores

B

38.4
C

34.3

E

8.1
F

3.9

D

3.9

A

3.3

1.6
1.6 1.6 1.6 1.6



Simple Recursive Formulation

• Each link’s vote is proportional to the 
importance of its source page

• If page j with importance rj has n out-links, 
each link gets rj / n votes

• Page j’s own importance is the sum of the 
votes on its in-links

j

ki

rj/3

rj/3rj/3
rj = ri/3+rk/4

ri/3 rk/4



PageRank: The “Flow” Model

• A “vote” from an important 
page is worth more

• A page is important if it is 
pointed to by other important 
pages

• Define a “rank” rj for page j





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The web in 1839

“Flow” equations:

ry = ry /2 + ra /2

ra = ry /2 + rm

rm = ra /2
𝒅𝒊 … out-degree of node 𝒊



Solving the flow equations



Page Rank: Matrix Formulation



Example



Eigenvector Formulation

• The flow equations can be written
𝒓 = 𝑴 ∙ 𝒓

• So the rank vector r is an eigenvector of the 
stochastic web matrix M
– In fact, its first or principal eigenvector, 

with corresponding eigenvalue 1
• Largest eigenvalue of M is 1 since M is

column stochastic (with non-negative entries)
– We know r is unit length and each column of M

sums to one, so 𝑴𝒓 ≤ 𝟏

• We can now efficiently solve for r!
The method is called Power iteration

NOTE: x is an 

eigenvector with 

the corresponding 

eigenvalue λ if:

𝑨𝒙 = 𝝀𝒙



Example: Flow Equations & M

r = M∙r

y       ½    ½    0     y

a   =  ½     0    1     a

m       0    ½    0    m

y

a m

y a m

y ½ ½ 0

a ½ 0 1

m 0 ½ 0

ry = ry /2 + ra /2

ra = ry /2 + rm

rm = ra /2



Power Iteration Method

• Given a web graph with n nodes, where the 
nodes are pages and edges are hyperlinks

• Power iteration: a simple iterative scheme

– Suppose there are N web pages

– Initialize: r(0) = [1/N,….,1/N]T

– Iterate: r(t+1) = M ∙ r(t)

– Stop when |r(t+1) – r(t)|1 < 


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di …. out-degree of node i

|x|1 = 1≤i≤N|xi| is the L1 norm 

Can use any other vector norm, e.g., Euclidean



PageRank: How to solve?



PageRank: How to solve?



PageRank: 
Random Walk Interpretation
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Random Walk Interpretation of 
PageRank

• Consider a web surfer:

– He starts at a random page

– He follows a random link at every time step

– After a sufficiently long time:

• What is the probability that he is at page j?
– This probability corresponds to the page rank of j.
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Example: Random Walk

A B

C D

Time t = 0: Assume the random surfer is at A.

Time t = 1:

p(A, 1) = ?

p(B, 1) = ?

p(C, 1) = ?

p(D, 1) = ?

0

1/3

1/3

1/3
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Example: Random Walk

A B

C D Time t=2:

p(A, 2) = ?

p(A, 2) = p(B, 1) . p(B→A) + p(C, 1) . p(C→A)

= 1/3 . 1/2 + 1/3 . 1 = 3/6 

Time t = 1:

p(B, 1) = 1/3

p(C, 1) = 1/3

p(D, 1) = 1/3
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Example: Transition Matrix

A B

C D

0

1/3

1/3

1/3

1/2

0

0

1/2

1

0

0

0

1/2

1/2

0

0

pA

pB

pC

pD

pA

pB

pC

pD

=

M p(t) p(t+1)

.

p(A, t+1) = p(B, t) . p(B→A) + p(C, t) . p(C→A)

p(C, t+1) = p(A, t) . p(A→C) + p(D, t) . p(D→C)



Random Walk Interpretation

 Imagine a random web surfer:

– At any time 𝒕, surfer is on some page 𝒊

– At time 𝒕 + 𝟏, the surfer follows an 
out-link from 𝒊 uniformly at random

– Ends up on some page 𝒋 linked from 𝒊

– Process repeats indefinitely

 Let:
 𝒑(𝒕) … vector whose 𝒊th coordinate is the 

prob. that the surfer is at page 𝒊 at time 𝒕

– So, 𝒑(𝒕) is a probability distribution over pages


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PageRank: 
The Google Formulation



PageRank: Three Questions

• Does this converge?

• Does it converge to what we want?

• Are results reasonable?
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Does this converge?

• Example:

ra 1 0 1 0

rb 0 1 0 1

=

ba

Iteration 0, 1, 2, …
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Does it converge to what we want?

• Example:

ra 1 0 0 0

rb 0 1 0 0

=

ba

Iteration 0, 1, 2, …
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PageRank: Problems

2 problems:

• (1) Some pages are 
dead ends (have no out-links)
– Random walk has “nowhere” to go to

– Such pages cause importance to “leak out”

• (2) Spider traps:
(all out-links are within the group)
– Random walk gets “stuck” in a trap

– And eventually spider traps absorb all importance

Dead end



Problem: Spider Traps

• Power Iteration:

– Set 𝑟𝑗 = 1/N

– 𝑟𝑗 =  𝑖→𝑗
𝑟𝑖

𝑑𝑖

• And iterate

• Example:

ry 1/3 2/6 3/12 5/24 0

ra = 1/3 1/6 2/12 3/24 … 0

rm 1/3 3/6 7/12 16/24 1
Iteration 0, 1, 2, …

y

a m

y a m

y ½ ½ 0

a ½ 0 0

m 0 ½ 1

ry = ry /2 + ra /2

ra = ry /2

rm = ra /2 + rm

m is a spider trap

All the PageRank score gets “trapped” in node 

m.



Solution: Teleports!

• The Google solution for spider traps: At each 
time step, the random surfer has two options

– With prob. , follow a link at random

– With prob. 1-, jump to some random page

– Common values for  are in the range 0.8 to 0.9

• Surfer will teleport out of spider trap 
within a few time steps

y

a m

y

a m



Problem: Dead Ends

• Power Iteration:

– Set 𝑟𝑗 = 1

– 𝑟𝑗 =  𝑖→𝑗
𝑟𝑖

𝑑𝑖

• And iterate

• Example:

ry 1/3 2/6 3/12 5/24 0

ra = 1/3 1/6 2/12 3/24 … 0

rm 1/3 1/6 1/12 2/24 0
Iteration 0, 1, 2, …

y

a m

y a m

y ½ ½ 0

a ½ 0 0

m 0 ½ 0

ry = ry /2 + ra /2

ra = ry /2

rm = ra /2

Here the PageRank “leaks” out since the matrix is not 

stochastic.



Solution: Always Teleport!

• Teleports: Follow random teleport links with 
probability 1.0 from dead-ends

– Adjust matrix accordingly

y

a m

y a m

y ½ ½ ⅓

a ½ 0 ⅓

m 0 ½ ⅓

y a m

y ½ ½ 0

a ½ 0 0

m 0 ½ 0

y

a m



Why Teleports Solve the Problem?

Why are dead-ends and spider traps a problem 
and why do teleports solve the problem?

• Spider-traps: PageRank scores are not what we 
want

– Solution: Never get stuck in a spider trap by 
teleporting out of it in a finite number of steps

• Dead-ends are a problem

– The matrix is not column stochastic so our initial 
assumptions are not met

– Solution: Make matrix column stochastic by always 
teleporting when there is nowhere else to go



Solution: Random Teleports

• Google’s solution that does it all:
At each step, random surfer has two options:

– With probability ,  follow a link at random

– With probability 1-, jump to some random page

• PageRank equation [Brin-Page, 98]

𝑟𝑗 = 

𝑖→𝑗

𝛽
𝑟𝑖
𝑑𝑖
+ (1 − 𝛽)

1

𝑁

di … out-degree 

of node i

This formulation assumes that 𝑴 has no dead ends.  We can either 

preprocess matrix 𝑴 to remove all dead ends or explicitly follow random 

teleport links with probability 1.0 from dead-ends.



The Google Matrix

• PageRank equation [Brin-Page, ‘98]

𝑟𝑗 = 

𝑖→𝑗

𝛽
𝑟𝑖
𝑑𝑖
+ (1 − 𝛽)

1

𝑁

• The Google Matrix A:

𝐴 = 𝛽 𝑀 + 1 − 𝛽
1

𝑁 𝑁×𝑁
• We have a recursive problem: 𝒓 = 𝑨 ⋅ 𝒓

And the Power method still works!

• What is  ?
– In practice  =0.8,0.9 (make 5 steps on avg., jump)

[1/N]NxN…N by N matrix

where all entries are 1/N



Random Teleports (  0.8)

y

a    =

m

1/3

1/3

1/3

0.33

0.20

0.46

0.24

0.20

0.52

0.26

0.18

0.56

7/33

5/33

21/33

. . .

y

a
m

13/15

7/15

1/2 1/2   0

1/2   0    0

0   1/2   1

1/3 1/3 1/3

1/3 1/3 1/3

1/3 1/3 1/3

y   7/15  7/15   1/15

a   7/15  1/15   1/15

m  1/15  7/15  13/15

0.8 + 0.2

M [1/N]NxN

A



Matrix Formulation

• Suppose there are N pages

• Consider page i, with di out-links

• We have Mji = 1/|di| when i → j
and Mji = 0 otherwise

• The random teleport is equivalent to:
– Adding a teleport link from i to every other page 

and setting transition probability to (1-)/N

– Reducing the probability of following each 
out-link from 1/|di| to /|di|

– Equivalent: Tax each page a fraction (1-) of its 
score and redistribute evenly 



How do we actually compute 
the PageRank?



Computing Page Rank

• Key step is matrix-vector multiplication
– rnew = A ∙ rold

• Easy if we have enough main memory to 
hold A, rold, rnew

• Say N = 1 billion pages
– We need 4 bytes for 

each entry (say)

– 2 billion entries for 
vectors, approx 8GB

– Matrix A has N2 entries
• 1018 is a large number!

½   ½   0

½   0   0

0    ½   1

1/3 1/3 1/3

1/3 1/3 1/3

1/3 1/3 1/3

7/15  7/15   1/15

7/15  1/15   1/15

1/15  7/15  13/15

0.8 +0.2

A = ∙M + (1-) [1/N]NxN

=

A =
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Matrix Sparseness

• Reminder: Our original matrix was sparse.
– On average: ~10 out-links per vertex

– # of non-zero values in matrix M: ~10N

• Teleport links make matrix M dense.

• Can we convert it back to the sparse form?

A B

C D

0

1/3

1/3

1/3

1/2

0

0

1/2

1

0

0

0

1/2

1/2

0

0

Original matrix without teleports



Rearranging the Equation

• 𝒓 = 𝑨 ⋅ 𝒓,   where 𝑨𝒋𝒊 = 𝜷𝑴𝒋𝒊 +
𝟏−𝜷

𝑵

• 𝑟𝑗 =  i=1
𝑁 𝐴𝑗𝑖 ⋅ 𝑟𝑖

• 𝑟𝑗 =  𝑖=1
𝑁 𝛽 𝑀𝑗𝑖 +

1−𝛽

𝑁
⋅ 𝑟𝑖

=  i=1
𝑁 𝛽 𝑀𝑗𝑖 ⋅ 𝑟𝑖 +

1−𝛽

𝑁
 i=1
𝑁 𝑟𝑖

=  i=1
𝑁 𝛽 𝑀𝑗𝑖 ⋅ 𝑟𝑖 +

1−𝛽

𝑁
since  𝑟𝑖 = 1

• So we get: 𝒓 = 𝜷𝑴 ⋅ 𝒓 +
𝟏−𝜷

𝑵 𝑵
[x]N … a vector  of length N with all entries x

Note: Here we assumed M

has no dead-ends
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Example: Equation with Teleports

A B

C D

0

1/3

1/3

1/3

1/2

0

0

1/2

1

0

0

0

1/2

1/2

0

0

rA

rB

rC

rD

=

M rold

.

rA

rB

rC

rD

rnew

+

1/4

1/4

1/4

1/4

β (1-β)

Note: Here we assumed M

has no dead-ends



Sparse Matrix Formulation

• We just rearranged the PageRank equation

𝒓 = 𝜷𝑴 ⋅ 𝒓 +
𝟏 − 𝜷

𝑵
𝑵

• where [(1-)/N]N is a vector with all N entries (1-)/N

• M is a sparse matrix! (with no dead-ends)

– 10 links per node, approx 10N entries

• So in each iteration, we need to:
– Compute rnew =  M ∙ rold

– Add a constant value (1-)/N to each entry in rnew

• Note if M contains dead-ends then  𝒋 𝒓𝒋
𝒏𝒆𝒘 < 𝟏 and 

we also have to renormalize rnew so that it sums to 1



PageRank: Without Dead Ends

• Input: Graph 𝑮 and parameter 𝜷
– Directed graph 𝑮 (cannot have dead ends)
– Parameter 𝜷

• Output: PageRank vector 𝒓𝒏𝒆𝒘

– Set: 𝑟𝑗
𝑜𝑙𝑑 =

1

𝑁

– repeat until convergence:  𝑗 𝑟𝑗
𝑛𝑒𝑤 − 𝑟𝑗

𝑜𝑙𝑑 > 𝜀

• ∀𝑗: 𝒓𝒋
𝒏𝒆𝒘 =  𝒊→𝒋𝜷

𝒓𝒊
𝒐𝒍𝒅

𝒅𝒊

𝒓𝒋
𝒏𝒆𝒘 = 𝟎 if in-degree of 𝒋 is 0

• Add constant terms:

∀𝒋: 𝒓𝒋
𝒏𝒆𝒘 = 𝒓𝒋

𝒏𝒆𝒘 +
𝟏−𝜷

𝑵

• 𝒓𝒐𝒍𝒅 = 𝒓𝒏𝒆𝒘



PageRank: The Complete Algorithm

• Input: Graph 𝑮 and parameter 𝜷
– Directed graph 𝑮 (can have spider traps and dead ends)
– Parameter 𝜷

• Output: PageRank vector 𝒓𝒏𝒆𝒘

– Set: 𝑟𝑗
𝑜𝑙𝑑 =

1

𝑁

– repeat until convergence:  𝑗 𝑟𝑗
𝑛𝑒𝑤 − 𝑟𝑗

𝑜𝑙𝑑 > 𝜀

• ∀𝑗: 𝒓′𝒋
𝒏𝒆𝒘 =  𝒊→𝒋𝜷

𝒓𝒊
𝒐𝒍𝒅

𝒅𝒊

𝒓′𝒋
𝒏𝒆𝒘 = 𝟎 if in-degree of 𝒋 is 0

• Now re-insert the leaked PageRank:

∀𝒋: 𝒓𝒋
𝒏𝒆𝒘 = 𝒓′𝒋

𝒏𝒆𝒘
+
𝟏−𝑺

𝑵

• 𝒓𝒐𝒍𝒅 = 𝒓𝒏𝒆𝒘

where: 𝑆 =
 𝑗 𝑟′𝑗

𝑛𝑒𝑤

If the graph has no dead-ends then the amount of leaked PageRank is 1-β. But since we have dead-ends 

the amount of leaked PageRank may be larger. We have to explicitly account for it by computing S.



Some Problems with Page Rank

• Measures generic popularity of a page
– Biased against topic-specific authorities

– Solution: Topic-Specific PageRank (next)

• Susceptible to Link spam
– Artificial link topographies created in order to 

boost page rank

– Solution: TrustRank

• Uses a single measure of importance
– Other models of importance

– Solution: Hubs-and-Authorities


