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Analysis of Large Graphs:
Link Analysis, PageRank
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Graph Data: Social Networks

Facebook social graph
4-degrees of separation [Backstrom-Boldi-Rosa-Ugander-Vigna, 2011]




Graph Data: Information Nets
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Web as a Graph

* Web as a directed graph:

— Nodes: Webpages

— Edges: Hyperlinks
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Web as a Directed Graph
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Broad Question

* How to organize the Web? %ff“hi?;fi@

* First try: Human curated e
Web directories el g
— Yahoo, DMOZ, LookSmart ?.::w;:;__ %i:;: s

* Second try: Web Search e

TexyOndy Talkoo = CoaPate

— Information Retrieval investigates:
Find relevant docs in a small
and trusted set

* Newspaper articles, Patents, etc.

— But: Web is huge, full of untrusted documents,
random things, web spam, etc.



Web Search: 2 Challenges

2 challenges of web search:

* (1) Web contains many sources of information
Who to “trust”?

— Trick: Trustworthy pages may point to each other!

* (2) What is the “best” answer to query
“newspaper”?
— No single right answer

— Trick: Pages that actually know about newspapers
might all be pointing to many newspapers



Early Search Engines

» |nverted index

— Data structure that return pointers to all pages a term
occurs

» Which page to return first?
— Where do the search terms appear in the page?
— How many occurrences of the search terms in the page?

» What if a spammer tries to fool the search engine?

CS 425 — Lecture 1



Fooling Early Search Engines

Example: A spammer wants his page to be in the top search
results for the term “movies”.

Approach 1:

— Add thousands of copies of the term “movies” to your page.

— Make them invisible.

Approach 2:

— Search the term “movies”.

— Copy the contents of the top page to your page.
— Make it invisible.

Problem: Ranking only based on page contents
Early search engines almost useless because of spam.

CS 425 — Lecture 1



Google’s Innovations

* Basicidea: Search engine believes what other pages say
about you instead of what you say about yourself.

e Main innovations:

1. Define the importance of a page based on:
— How many pages point to it?
— How important are those pages?

2. Judge the contents of a page based on:

— Which terms appear in the page?
— Which terms are used to link to the page?

CS 425 — Lecture 1



Ranking Nodes on the Graph

* All web pages are not equally “important”

WWwWWw.joe-schmoe.com vs. www.stanford.edu

* There is large diversity
in the web-graph
node connectivity.
Let’s rank the pages by
the link structure!



http://www.joe-schmoe.com/
http://www.stanford.edu/

PageRank:
The “Flow” Formulation



Links as Votes

* |dea: Links as votes
— Page is more important if it has more links

* In-coming links? Out-going links?

 Think of in-links as votes:

— www.stanford.edu has 23,400 in-links

— www.joe-schmoe.com has 1 in-link

* Are all in-links are equal?
— Links from important pages count more
— Recursive question!


http://www.stanford.edu/
http://www.joe-schmoe.com/

Example: PageRank Scores

e




Simple Recursive Formulation

* Each link’s vote is proportional to the
importance of its source page

* If page j with importance r; has n out-links,
each link gets r;/ n votes

* Page j’'s own importance is the sym of the
votes on its in-links \rlf;’/‘i
| rk
= ri/3+r/4 } 4
Xy
—, ./
’



PageRank: The “Flow” Model

* A “vote” from an important
page is worth more y/2

A pageisimportant if it is
pointed to by other important
pages

y/2

» Define a “rank” r; for page ] —M M’
a/2
r — E — “Flow"” equations:
r, =r,/2+r,/2
I—)j )

r,=r/2+r,

F =1, /2
d; ... out-degree of node i



Solving the flow equations

Flow equations:

3 equations, 3 unknowns, r, =r,/2+1,/2
no constants r, =ry/2+r1,

: _ _ N
“ No unique solution Iy =T,/

= All solutions equivalent modulo the scale factor
Additional constraint forces uniqueness:

Ty +rgt+ Ty =1

: 2 2 _1
. Solutlon.ry =z Ta =5 Tm =3
Gaussian elimination method works for
small examples, but we need a better
method for large web-size graphs

We need a new formulation!



Page Rank: Matrix Formulation

Stochastic adjacency matrix M

Let page i has d; out-links

1
Ifi - j,then M =~ else M;, =20

. Y i
= M is a column stochastic matrix
Columns sumto 1

Rank vector r: vector with an entry per page
r; is the importance score of page i

i =1

The flow equations can be written v, = Z—

M-r i=id



Example

= Remember the flow equation: r;, = Z
= Flow equation in the matrix form -/

M-r=r
= Suppose page i links to 3 pages, including j

i
J
Fi
1/3
M - r

A

d,

Il
ﬁ



Eigenvector Formulation

* The flow equations can be written
r=M:-r

* So the rank vector r is an eigenvector of the

stochastic web matrix M

— In fact, its first or principal eigenvector,
with corresponding eigenvalue 1

* Largest eigenvalue of Mis 1 since M is
column stochastic (with non-negative entries)

— We know r is unit length and each column of M
sums toone, soMr <1

 We can now efficiently solve for r!
The method is called Power iteration

NOTE: x is an
eigenvector with
the corresponding
eigenvalue A if:

Ax = Ax



Example: Flow Equations & M

ry =r,/2+r,/2
r, =r,/2+r,
r,=r,/2

y a m
o | Y2 | O
10| 1
| O
r=M-r

y| |2 ¥ 0

al=% 0 1

m 0 % 0

<<




Power Iteration Method

* Given a web graph with n nodes, where the
nodes are pages and edges are hyperlinks

* Power iteration: a simple iterative scheme
— Suppose there are N web pages
s (t)
— Initialize: r® = [1/N,....,1/N]" G Zr._
j i q
— Iterate: ri* =M - rlt) i—>j Ui
d. .... out-degree of node |

— Stop when |t — 0| < g

IX]; = 24<ien]Xi| 1S the L1 norm
Can use any other vector norm, e.g., Euclidean



PageRank: How to solve?

Power lteration:
Setrj = 1/N

ol T
1: T'j — Zi—>j a;
2:r =1
Goto 1

Example:

r, ) 1/3

1/3

1/3

lteration 0, 1, 2, ...

y a m
y| % | B | 0
al | 0 | 1
m| 0 | % | 0

r, =r,/2+r,/2

r, =r,/2+r,

r,=r,/2




PageRank: How to solve?

Power Iteration:
Set = 1/N

1: T"j = Z !

i—>jd_l,

2:r =1

Goto 1

Example:

—
I

1/3 173 5/12

173 3/6 1/3
1/3 1/6  3/12

lteration 0, 1, 2, ...

9/24

11724 ...
1/6

y a m
y| %2 2 0
al 2 0 1
m| O Va 0

ry =r,/2+r,/2

r, =r,/2+r,

r,=r,/2

6/15

6/15
3/15




PageRank:
Random Walk Interpretation



Random Walk Interpretation of
PageRank

* Consider a web surfer:
— He starts at a random page
— He follows a random link at every time step

— After a sufficiently long time:

* What is the probability that he is at page j?
— This probability corresponds to the page rank of j.

CS 425 — Lecture 1



Example: Random Walk

Time t = 0: Assume the random surfer is at A.

Timet=1:
p(A,1)=? O
pB,1)=? 1/3
p(C,1)=? 1/3
p(D,1)=7 1/3

CS 425 — Lecture 1



Example: Random Walk

Timet=1:
p(B, 1) =1/3
p(C, 1) =1/3
p(D, 1) =1/3

Time t=2:
P(A, 2) =7

p(A, 2) =p(B, 1).p(B—A) +p(C, 1).p(C—A)
=1/3.1/2+1/3.1=23/6

CS 425 — Lecture 1



Example: Transition Matrix

M p(t)

0 12 1 0 Pa
13 0 0 12 Ps
13 0 0 12| ||pg
113 12 0 O Po

p(t+1)

Pa
Ps
Pc
Pp

P(A, t+1) =p(B, t) . p(B—A) + p(C, 1) . p(C—A)

p(C, t+1) = p(A, 1) . p(A—C) + p(D, t) . p(D—C)

CS 425 — Lecture 1




Random Walk Interpretation

® [magine a random web surfer:
— At any time ¢, surfer is on some page i

— At time t + 1, the surfer follows an
out-link from i uniformly at random

f
Iy

I— ]

— Ends up on some page j linked from i

— Process repeats indefinitely

B |et:
® p(t) ... vector whose it" coordinate is the
prob. that the surfer is at page i at time t

— So, p(t) is a probability distribution over pages



PageRank:
The Google Formulation



PageRank: Three Questions

(t+1)
Z— equi\?arlently r — Mr

i— | i
* Does this converge?
* Does it converge to what we want?

 Are results reasonable?



Does this converge?

(t+1) I'(t)
> ) _N 4
e( Q rj _Z d

=] “i
 Example:
r, = 1 0 1 0

a

I iBration 011, 2, .0 1



Does it converge to what we want?

(t+1) f ©
A N
e )Q rj o Z d

=] “i
 Example:
r,. = 1 0 0 0

a

Iy rationd. 1,2, .0 0



PageRank: Problems

Dead end
2 problems:
* (1) Some pages are
dead ends (have no out-links)
— Random walk has “nowhere” to go to
— Such pages cause importance to “leak out” ®
Pider trap

e (2) Spider traps:
(all out-links are within the group)
— Random walk gets “stuck” in a trap
— And eventually spider traps absorb all importance



Problem: Spider Traps

e Power lteration: y a m
B | 1 | 0
—Setr; = 1/N
J al » | 0| 0
i
=Y. .t m|l 0 | % | 1
J 1=] d;
e And iterate misaspidertrap =y /2 +r,/2
r, =r,/2

rm=r,/2+r,

 Example:

T 13 206 3/12 524 0
nl= U3 U 212 324 .. 0
. 13 3/6 712 16/24 1

All the PageRank score gets “trapped” in node
m



Solution: Teleports!

* The Google solution for spider traps: At each
time step, the random surfer has two options

— With prob. B, follow a link at random
— With prob. 1-£, jump to some random page
— Common values for £ are in the range 0.8 to 0.9

* Surfer will teleport out of spider trap
within a few time steps




Problem: Dead Ends

* Power Iteration: y a m
1 1
—Setr; =1 el I
a| % 0 0
i
J 1=] d;
* And iterate r, =r,/2+r,/2
r, =r,/2
F =1, /2

 Example:

T 13 206 3/12 524 0
nl= U3 U6 212 324 .. 0O
Tm’” ﬂfé:r%ation (} /§ 2 1712 2/24 0

Here the PageRank “leaks” out since the matrix is not

ctnrhactie




Solution: Always Teleport!

e Teleports: Follow random teleport links with
probability 1.0 from dead-ends

— Adjust matrix accordingly

o <

Yo

Yo

Yo

Yo

m
0
0
0

—

y a m

Yo

Yo

Y

o

Yo

0

Ys

0

Yo

V&




Why Teleports Solve the Problem?

Why are dead-ends and spider traps a problem
and why do teleports solve the problem?

e Spider-traps: PageRank scores are not what we
want

— Solution: Never get stuck in a spider trap by
teleporting out of it in a finite number of steps

 Dead-ends are a problem

— The matrix is not column stochastic so our initial
assumptions are not met

— Solution: Make matrix column stochastic by always
teleporting when there is nowhere else to go



Solution: Random Teleports

* Google’s solution that does it all:
At each step, random surfer has two options:

— With probability £, follow a link at random
— With probability 1-8, jump to some random page

* PageRank equation [Brin-Page, 98]
ri 1 d; ... out-degree
Y, = — -|— 1 —_ S of node |
=]

This formulation assumes that M has no dead ends. We can either
preprocess matrix M to remove all dead ends or explicitly follow random
teleport links with probability 1.0 from dead-ends.



The Google Matrix

PageRank equation [Brin-Page, ‘98]
Ti 1
T = —+(1—-p)—
1= Bt =By
=]

The Google Matrix A: [/N]u..N by N matrix

1 where all entries are 1/N
A= M (1_'8)[N]
NXN

We have a recursive problem: r =4 -r
And the Power method still works!

Whatis §?
— In practice £=0.8,0.9 (make 5 steps on avg., jump)




Random Teleports ( = 0.8)

M [1/ N] NxN
1/21/2 0 1/3 1/3 1/3
1/2 0 o| +*+0.2{1/31/31/3
0 1/2 1 1/3 1/3 1/3

y |7/15 7/15 1/15
a |7/15 1/15 1/15
m|1/15 7/15 13/15

A
y 1/3 033 024 0.26 7133
a = 1/3 020 020 0.18 ... 5/33
m 1/3 046 0.52 0.56 21/33



Matrix Formulation

e Suppose there are N pages

* Consider page i, with d; out-links

* We have M;=1/]d;| wheni— j
and M; = 0 otherwise

* The random teleport is equivalent to:

— Adding a teleport link from i to every other page
and setting transition probability to (1-6)/N

— Reducing the probability of following each
out-link from 1//d.[ to f/]d:|

— Equivalent: Tax each page a fraction (1-f) of its
score and redistribute evenly



How do we actually compute
the PageRank?



Computing Page Rank

e Key step is matrix-vector multiplication
— rew = A . pold

e Easy if we have enough main memory to
hold A, rold pnew

* Say N =1 billion pages

A = B-M + (1-B) [1/N],,
— We need 4 bytes for P (1-B) [Ny

% Y 0 1/31/3 1/3
each entry (say) A =0.8 % 0 0(+0.2 1/31/31/3
— 2 billion entries for 0 % 1 1/31/31/3

vectors, approx 8GB
— Matrix A has N2 entries 7/15 7/15 1/15
* 10'8is a large number! = |7/15 115 1/15
1/15 7/15 13/15




Matrix Sparseness

 Reminder: Our original matrix was sparse.
— On average: ~10 out-links per vertex
— # of non-zero values in matrix M: ~10N

* Teleport links make matrix M dense.
 Can we convert it back to the sparse form?

O Original matrix without teleports
A 0 12 1 0)
1/3 0) 0 12
1/3 0) 0 12
e: 1B 12 0 0

CS 425 — Lecture 1



Rearranging the Equation

*1r =A-1, where 4;; = B M;; 1 1}?
= {V=1Aji'7"i
"= §V=1[,3Mji | 1;,ﬁ]°7”i

=2 =18 Mj; - 1 — EZI 11

Z 1B Mj; - 1; 1 1;,[; since Yr; =1

* Soweget:r=8M - r ll;ﬁ]N

Note: Here we assumed M

has no dead-ends [X]y --- @ vector of length N with all entries x



Example: Equation with Teleports

Fnew M rold
A Ia 0 1/2 1 0 A 1/4
g 1/3 o o0 12 g . 1/4
o B 13 0O 0 12| o + (1-B) 1/4
G: D 113 12 O 0 s 1/4

Note: Here we assumed M
has no dead-ends

CS 425 — Lecture 1



Sparse Matrix Formulation

* We just rearranged the PageRank equation
1 — ﬁ

! N 1y

* where [(1-B)/N], is a vector with all N entries (1-8)/N

r=pM- -1+

* M is a sparse matrix! (with no dead-ends)
— 10 links per node, approx 10N entries

e Soin each iteration, we need to:
— Compute r'ev = S M - rold
— Add a constant value (1-)/N to each entry in r"ew

* Note if M contains dead-ends then }; ;" < 1 and
we also have to renormalize r"¢% so that it sums to 1



PageRank: Without Dead Ends

* Input: Graph G and parameter 8
— Directed graph G (cannot have dead ends)
— Parameter 8

e Qutput: PageRank vector r
— Set: 1 Old ==
N

repeat until convergence: . ; ‘r

. v new old
Ji 1; Z,ﬁ,ﬁ

new
r;

i =0 ifin- degree of jisO

 Add constant terms:
V] rnew _ pew_l_ﬂ

new

new __ ]old S €

o yold _ ,mew



PageRank: The Complete Algorithm

* Input: Graph G and parameter 8
— Directed graph G (can have spider traps and dead ends)
— Parameter 8

Output: PageRank vector r

— Set: 1°!¢ = 2
N

repeat until convergence: . ; ‘r

. v mew __ old
Ji 1 ZH,B

r’}‘ew = 0 ifin- degree of jis 0

new

new __ ]old S €

,new

* Now re-insert the Ieaked PageRank:
1=5 \where: s =
Tj + N mew

v] rnew —
o rold — rnew iT

If the graph has no dead-ends then the amount of leaked PageRank is 1-B. But since we have dead-ends
the amount of leaked PageRank may be larger. We have to explicitly account for it by computing S.



Some Problems with Page Rank

* Measures generic popularity of a page
— Biased against topic-specific authorities
— Solution: Topic-Specific PageRank (next)

* Susceptible to Link spam

— Artificial link topographies created in order to
boost page rank

— Solution: TrustRank
* Uses a single measure of importance

— Other models of importance
— Solution: Hubs-and-Authorities



