

Pinar Duygulu

Slides are adapted from J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org Nazli Ikizler Mustafa Ozdal

http://www.mmds.org

Analysis of Large Graphs: Link Analysis, PageRank

Graph Data: Social Networks

Facebook social graph

4-degrees of separation [Backstrom-Boldi-Rosa-Ugander-Vigna, 2011]

Graph Data: Information Nets

[Börner et al., 2012]

Web as a Graph

- Web as a directed graph:
 - Nodes: Webpages
 - Edges: Hyperlinks

Web as a Graph

- Web as a directed graph:
 - Nodes: Webpages
 - Edges: Hyperlinks

Web as a Directed Graph

Broad Question

- How to organize the Web?
- First try: Human curated
 Web directories
 - Yahoo, DMOZ, LookSmart
- Second try: Web Search
 - Information Retrieval investigates:
 Find relevant docs in a small and trusted set
 - Newspaper articles, Patents, etc.
 - <u>But:</u> Web is huge, full of untrusted documents, random things, web spam, etc.

Web Search: 2 Challenges

- 2 challenges of web search:
- (1) Web contains many sources of information Who to "trust"?

- **Trick:** Trustworthy pages may point to each other!

- (2) What is the "best" answer to query "newspaper"?
 - No single right answer
 - Trick: Pages that actually know about newspapers might all be pointing to many newspapers

Early Search Engines

- Inverted index
 - Data structure that return pointers to all pages a term occurs
- Which page to return first?
 - Where do the search terms appear in the page?
 - How many occurrences of the search terms in the page?

• What if a spammer tries to fool the search engine?

CS 425 – Lecture 1

Fooling Early Search Engines

- Example: A spammer wants his page to be in the top search results for the term "movies".
- <u>Approach 1</u>:
 - Add thousands of copies of the term "movies" to your page.
 - Make them invisible.
- <u>Approach 2</u>:
 - Search the term "movies".
 - Copy the contents of the top page to your page.
 - Make it invisible.
- Problem: Ranking only based on page contents
- Early search engines almost useless because of spam.

CS 425 – Lecture 1

Google's Innovations

- <u>Basic idea</u>: Search engine believes what other pages say about you instead of what you say about yourself.
- Main innovations:
 - 1. Define the importance of a page based on:
 - How many pages point to it?
 - How important are those pages?
 - 2. Judge the contents of a page based on:
 - Which terms appear in the page?
 - Which terms are used to link to the page?

Ranking Nodes on the Graph

- All web pages are not equally "important"
 <u>www.joe-schmoe.com</u> vs. <u>www.stanford.edu</u>
- There is large diversity in the web-graph node connectivity.
 Let's rank the pages by the link structure!

PageRank: The "Flow" Formulation

Links as Votes

Idea: Links as votes

Page is more important if it has more links

• In-coming links? Out-going links?

• Think of in-links as votes:

- www.stanford.edu has 23,400 in-links
- <u>www.joe-schmoe.com</u> has 1 in-link
- Are all in-links are equal?
 - Links from important pages count more
 - Recursive question!

Example: PageRank Scores

Simple Recursive Formulation

- Each link's vote is proportional to the **importance** of its source page
- If page *j* with importance *r_j* has *n* out-links, each link gets *r_j* / *n* votes
- Page j's own importance is the sym of the votes on its in-links

$$r_j = r_i/3 + r_k/4$$

PageRank: The "Flow" Model

- A "vote" from an important page is worth more
- A page is important if it is pointed to by other important pages
- Define a "rank" r_j for page j

$$r_j = \sum_{i \to j} \frac{r_i}{d_i}$$

 $d_i \dots$ out-degree of node i

"Flow" equations:

$$r_{y} = r_{y}/2 + r_{a}/2$$
$$r_{a} = r_{y}/2 + r_{m}$$
$$r_{m} = r_{a}/2$$

Solving the flow equations

3 equations, 3 unknowns, no constants

No unique solution

Flow equations:

$$r_y = r_y/2 + r_a/2$$

 $r_a = r_y/2 + r_m$
 $r_m = r_a/2$

All solutions equivalent modulo the scale factor

Additional constraint forces uniqueness:

$$\mathbf{r}_y + r_a + r_m = \mathbf{1}$$

• Solution: $r_y = \frac{2}{5}$, $r_a = \frac{2}{5}$, $r_m = \frac{1}{5}$

- Gaussian elimination method works for small examples, but we need a better method for large web-size graphs
- We need a new formulation!

Page Rank: Matrix Formulation

Stochastic adjacency matrix M

Let page i has d_i out-links

• If
$$i \to j$$
, then $M_{ji} = \frac{1}{d_i}$ else $M_{ji} = 0$

M is a column stochastic matrix

Columns sum to 1

Rank vector r: vector with an entry per page

r_i is the importance score of page *i*

$$\sum_i r_i = 1$$

The flow equations can be written

$$r = M \cdot r$$

 $r_j = \sum_{i \to i} \frac{r_i}{d_i}$

Example

Remember the flow equation: $r_j = \sum_{i \to j} \frac{r_i}{d_i}$ Flow equation in the matrix form

 $M \cdot r = r$

Suppose page *i* links to 3 pages, including *j*

Eigenvector Formulation

- The flow equations can be written $r = M \cdot r$
- So the rank vector r is an eigenvector of the stochastic web matrix M
 - In fact, its first or principal eigenvector, with corresponding eigenvalue 1
 - Largest eigenvalue of *M* is 1 since *M* is column stochastic (with non-negative entries)
 - We know ${\it r}$ is unit length and each column of ${\it M}$ sums to one, so ${\it Mr} \leq 1$

NOTE: x is an eigenvector with the corresponding eigenvalue λ if: $Ax = \lambda x$

• We can now efficiently solve for *r*! The method is called Power iteration

Example: Flow Equations & M

	У	a	m
y	1/2	1/2	0
a	1/2	0	1
m	0	1/2	0

 $r = M \cdot r$

$$r_{y} = r_{y}/2 + r_{a}/2$$
$$r_{a} = r_{y}/2 + r_{m}$$
$$r_{m} = r_{a}/2$$

$$\begin{bmatrix} y \\ a \\ m \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & 0 & 1 \\ 0 & \frac{1}{2} & 0 \end{bmatrix} \begin{bmatrix} y \\ a \\ m \end{bmatrix}$$

Power Iteration Method

- Given a web graph with n nodes, where the nodes are pages and edges are hyperlinks
- Power iteration: a simple iterative scheme
 - Suppose there are N web pages
 - Initialize: $\mathbf{r}^{(0)} = [1/N,...,1/N]^{T}$
 - Iterate: $\mathbf{r}^{(t+1)} = \mathbf{M} \cdot \mathbf{r}^{(t)}$

- Stop when $|\mathbf{r}^{(t+1)} - \mathbf{r}^{(t)}|_1 < \varepsilon$

 $d_i \dots$ out-degree of node i

 $|\mathbf{x}|_1 = \sum_{1 \le i \le N} |x_i|$ is the L₁ norm Can use any other vector norm, e.g., Euclidean

PageRank: How to solve?

- Power Iteration:
 - Set $r_j = 1/N$ • 1: $r'_j = \sum_{i \to j} \frac{r_i}{d_i}$

Goto 1

Example:

$$\begin{bmatrix} r_y \\ r_a \\ r_m \end{bmatrix} = \frac{1/3}{1/3}$$

1/3 1/3 1/3

Iteration 0, 1, 2, ...

	У	а	m
У	1⁄2	1⁄2	0
a	1⁄2	0	1
m	0	1⁄2	0

 $r_y = r_y/2 + r_a/2$ $r_a = r_y/2 + r_m$ $r_m = r_a/2$

PageRank: How to solve?

- Power Iteration:
 - Set r_j = 1/N
 - 1: $r'_j = \sum_{i \to j} \frac{r_i}{d_i}$
 - **2**: *r* = *r*′
 - Goto 1

Example:

1/3	1/3	5/12	9/24	6/15
1/3	3/6	1/3	11/24	6/15
1/3	1/6	3/12	1/6	3/15

Iteration 0, 1, 2, ...

	У	a	m
у	1⁄2	1⁄2	0
a	1⁄2	0	1
m	0	1⁄2	0

 $r_{y} = r_{y}/2 + r_{a}/2$ $r_{a} = r_{y}/2 + r_{m}$ $r_{m} = r_{a}/2$

PageRank: Random Walk Interpretation

Random Walk Interpretation of PageRank

- Consider a web surfer:
 - He starts at a random page
 - He follows a random link at every time step
 - After a sufficiently long time:
 - What is the probability that he is at page j?
 - This probability corresponds to the page rank of j.

Example: Random Walk

Time t = 0: Assume the random surfer is at A.

Time t = 1: p(A, 1) = ? = 0 p(B, 1) = ? = 1/3 p(C, 1) = ? = 1/3p(D, 1) = ? = 1/3

Example: Random Walk

Time t = 1:

$$p(B, 1) = 1/3$$

 $p(C, 1) = 1/3$
 $p(D, 1) = 1/3$

Time t=2: p(A, 2) = ?

$$p(A, 2) = p(B, 1) \cdot p(B \rightarrow A) + p(C, 1) \cdot p(C \rightarrow A)$$

= 1/3 \cdot 1/2 + 1/3 \cdot 1 = 3/6

CS 425 – Lecture 1

Example: Transition Matrix

$$p(A, t+1) = p(B, t) \cdot p(B \rightarrow A) + p(C, t) \cdot p(C \rightarrow A)$$
$$p(C, t+1) = p(A, t) \cdot p(A \rightarrow C) + p(D, t) \cdot p(D \rightarrow C)$$

CS 425 – Lecture 1

Random Walk Interpretation

Imagine a random web surfer:

- At any time *t*, surfer is on some page *i*
- At time t + 1, the surfer follows an out-link from i uniformly at random
- Ends up on some page *j* linked from *i*
- Process repeats indefinitely
- Let:
 - *p(t)* ... vector whose *i*th coordinate is the prob. that the surfer is at page *i* at time *t*
 - So, p(t) is a probability distribution over pages

PageRank: The Google Formulation

PageRank: Three Questions

- Does this converge?
- Does it converge to what we want?
- Are results reasonable?

Does this converge?

• Example:

 $r_a = 1 \ 0 \ 1 \ 0$ $r_b \ 10^{pration 0,11, 2, ...0} \ 1$

Does it converge to what we want?

• Example:

 $r_a = 1 \quad 0 \quad 0$ $r_b \qquad 0$

PageRank: Problems

Dead end

Spider trac

2 problems:

- (1) Some pages are dead ends (have no out-links)
 - Random walk has "nowhere" to go to
 - Such pages cause importance to "leak out"

• (2) Spider traps:

- (all out-links are within the group)
- Random walk gets "stuck" in a trap
- And eventually spider traps absorb all importance

Problem: Spider Traps

• Power Iteration:

$$-\operatorname{Set} r_j = 1/N$$

$$-r_j = \sum_{i \to j} \frac{r_i}{d_i}$$

• And iterate

)

m is a spider trap

 $r_{y} = r_{y}/2 + r_{a}/2$ $r_{a} = r_{y}/2$ $r_{m} = r_{a}/2 + r_{m}$

• Example:

All the PageRank score gets "trapped" in node m.

Solution: Teleports!

- The Google solution for spider traps: At each time step, the random surfer has two options
 - With prob. β , follow a link at random
 - With prob. **1**- β , jump to some random page
 - Common values for β are in the range 0.8 to 0.9
- Surfer will teleport out of spider trap within a few time steps

а

Problem: Dead Ends

• Power Iteration:

$$- \operatorname{Set} r_{j} = 1$$

$$-r_j = \sum_{i \to j} \frac{r_i}{d_i}$$

• And iterate

	У	a	m
у	1⁄2	1⁄2	0
a	1⁄2	0	0
m	0	1⁄2	0

 $r_{y} = r_{y}/2 + r_{a}/2$ $r_{a} = r_{y}/2$ $r_{m} = r_{a}/2$

• Example:

r _y		1/3	2/6	3/12	5/24		0
r _a	=	1/3	1/6	2/12	3/24	•••	0
r _m	J	1/3 Iteratior	1/6 0, 1, 2,	1/12	2/24		0

Here the PageRank "leaks" out since the matrix is not stochastic

Solution: Always Teleport!

- Teleports: Follow random teleport links with probability 1.0 from dead-ends
 - Adjust matrix accordingly

Why Teleports Solve the Problem?

Why are dead-ends and spider traps a problem and why do teleports solve the problem?

- Spider-traps: PageRank scores are not what we want
 - Solution: Never get stuck in a spider trap by teleporting out of it in a finite number of steps
- **Dead-ends** are a problem
 - The matrix is not column stochastic so our initial assumptions are not met
 - Solution: Make matrix column stochastic by always teleporting when there is nowhere else to go

Solution: Random Teleports

- Google's solution that does it all: At each step, random surfer has two options:
 - With probability β , follow a link at random
 - With probability *1-\beta*, jump to some random page
- **PageRank equation** [Brin-Page, 98]

$$r_j = \sum_{i \to j} \beta \frac{r_i}{d_i} + (1 - \beta) \frac{1}{N} \overset{\text{d}_i \dots \text{ out-degree}}{\underset{\text{of node } i}{N}}$$

This formulation assumes that M has no dead ends. We can either preprocess matrix M to remove all dead ends or explicitly follow random teleport links with probability 1.0 from dead-ends.

The Google Matrix

- PageRank equation [Brin-Page, '98] $r_{j} = \sum_{i \to j} \beta \frac{r_{i}}{d_{i}} + (1 - \beta) \frac{1}{N}$
- The Google Matrix A: $A = \beta M + (1 - \beta) \left[\frac{1}{N}\right]_{N \times N}$ [1/N]_{NXN}
 where a
 - [1/N]_{NxN}...N by N matrix where all entries are 1/N

- We have a recursive problem: $r = A \cdot r$ And the Power method still works!
- What is β ?

– In practice $\beta = 0.8, 0.9$ (make 5 steps on avg., jump)

Random Teleports ($\beta = 0.8$)

У		1/3	0.33	0.24	0.26		7/33
a =	=	1/3	0.20	0.20	0.18	• • •	5/33
m		1/3	0.46	0.52	0.56		21/33

Matrix Formulation

- Suppose there are N pages
- Consider page *i*, with **d**_i out-links
- We have $M_{ji} = 1/|d_i|$ when $i \rightarrow j$ and $M_{ji} = 0$ otherwise
- The random teleport is equivalent to:
 - Adding a **teleport link** from *i* to every other page and setting transition probability to $(1-\beta)/N$
 - Reducing the probability of following each out-link from $1/|d_i|$ to $\beta/|d_i|$
 - Equivalent: Tax each page a fraction $(1-\beta)$ of its score and redistribute evenly

How do we actually compute the PageRank?

Computing Page Rank

Key step is matrix-vector multiplication

 $-\mathbf{r}^{new} = \mathbf{A} \cdot \mathbf{r}^{old}$

- Easy if we have enough main memory to hold A, r^{old}, r^{new}
- Say N = 1 billion pages
 - We need 4 bytes for each entry (say)
 - 2 billion entries for vectors, approx 8GB
 - Matrix A has N² entries
 - 10¹⁸ is a large number!

 $\mathbf{A} = \beta \cdot \mathbf{M} + (1 - \beta) [1/N]_{Nx}$ $\mathbf{A} = 0.8 \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{2} & 1 \end{bmatrix} + 0.2 \begin{bmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix}$ $= \begin{bmatrix} \frac{7}{15} & \frac{7}{15} & \frac{1}{15} \\ \frac{7}{15} & \frac{1}{15} & \frac{1}{15} \\ \frac{1}{15} & \frac{7}{15} & \frac{1}{3} \end{bmatrix}$

Matrix Sparseness

- Reminder: Our original matrix was sparse.
 - On average: ~10 out-links per vertex
 - # of non-zero values in matrix M: ~10N
- Teleport links make matrix M dense.
- Can we convert it back to the sparse form?

Original matrix without teleports

0	1/2	1	0
1/3	0	0	1/2
1/3	0	0	1/2
1/3	1/2	0	0

CS 425 – Lecture 1

Rearranging the Equation

•
$$r = A \cdot r$$
, where $A_{ji} = \beta M_{ji} + \frac{1-\beta}{N}$

•
$$r_j = \sum_{i=1}^{N} A_{ji} \cdot r_i$$

• $r_j = \sum_{i=1}^{N} \left[\beta \ M_{ji} + \frac{1-\beta}{N} \right] \cdot r_i$
 $= \sum_{i=1}^{N} \beta \ M_{ji} \cdot r_i + \frac{1-\beta}{N} \sum_{i=1}^{N} r_i$
 $= \sum_{i=1}^{N} \beta \ M_{ji} \cdot r_i + \frac{1-\beta}{N}$ since $\sum r_i = 1$
• So we get: $r = \beta \ M \cdot r + \left[\frac{1-\beta}{N} \right]_N$

Note: Here we assumed **M** has no dead-ends

 $[x]_N \dots$ a vector of length N with all entries x

Example: Equation with Teleports

Note: Here we assumed **M** has no dead-ends

CS 425 – Lecture 1

Sparse Matrix Formulation

• We just rearranged the **PageRank equation**

$$r = \beta M \cdot r + \left[\frac{1-\beta}{N}\right]_N$$

- where $[(1-\beta)/N]_N$ is a vector with all N entries $(1-\beta)/N$
- *M* is a sparse matrix! (with no dead-ends)
 - 10 links per node, approx 10N entries
- So in each iteration, we need to:
 - Compute $\mathbf{r}^{\text{new}} = \beta \mathbf{M} \cdot \mathbf{r}^{\text{old}}$
 - Add a constant value $(1-\beta)/N$ to each entry in r^{new}
 - Note if M contains dead-ends then $\sum_j r_j^{new} < 1$ and we also have to renormalize r^{new} so that it sums to 1

PageRank: Without Dead Ends

- Input: Graph G and parameter β
 - Directed graph G (cannot have dead ends)
 - Parameter $oldsymbol{eta}$
- Output: PageRank vector r^{new}

- Set:
$$r_j^{old} = \frac{1}{N}$$

- repeat until convergence: $\sum_j |r_j^{new} - r_j^{old}| > \varepsilon$
• $\forall j: r_j^{new} = \sum_{i \to j} \beta \frac{r_i^{old}}{d_i}$
 $r_j^{new} = 0$ if in-degree of j is 0
• Add constant terms:
 $\forall j: r_j^{new} = r_j^{new} + \frac{1-\beta}{N}$
• $r^{old} = r^{new}$

PageRank: The Complete Algorithm

• Input: Graph G and parameter β

- Directed graph G (can have spider traps and dead ends)
- Parameter $\boldsymbol{\beta}$
- <u>Output: PageRank vector r^{new}</u>

- Set:
$$r_j^{old} = \frac{1}{N}$$

- repeat until convergence: $\sum_j |r_j^{new} - r_j^{old}| > \varepsilon$
• $\forall j: r_j^{new} = \sum_{i \to j} \beta \frac{r_i^{old}}{d_i}$
 $r_j^{new} = 0$ if in-degree of j is 0
• Now re-insert the leaked PageRank:
 $\forall j: r_j^{new} = r_j^{new} + \frac{1-S}{N} \text{ where: } S = \sum_j r_j^{new}$

If the graph has no dead-ends then the amount of leaked PageRank is $1-\beta$. But since we have dead-ends the amount of leaked PageRank may be larger. We have to explicitly account for it by computing **S**.

Some Problems with Page Rank

- Measures generic popularity of a page
 - Biased against topic-specific authorities
 - Solution: Topic-Specific PageRank (next)
- Susceptible to Link spam
 - Artificial link topographies created in order to boost page rank
 - Solution: TrustRank
- Uses a single measure of importance
 - Other models of importance
 - Solution: Hubs-and-Authorities