
BBS654
Data Mining

Pinar Duygulu

Slides are adapted from 
J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, 

http://www.mmds.org
Nazli Ikizler

Mustafa Ozdal



Analysis of Large Graphs:
Link Analysis,  PageRank

Mining of Massive Datasets
Jure Leskovec, Anand Rajaraman, Jeff Ullman 
Stanford University

http://www.mmds.org 

Note to other teachers and users of these slides: We would be delighted if you found this our 

material useful in giving your own lectures. Feel free to use these slides verbatim, or to modify 

them to fit your own needs. If you make use of a significant portion of these slides in your own 

lecture, please include this message, or a link to our web site: http://www.mmds.org

http://www.mmds.org/


Graph Data: Social Networks

Facebook social graph
4-degrees of separation [Backstrom-Boldi-Rosa-Ugander-Vigna, 2011]



Graph Data: Information Nets

Citation networks and Maps of science
[Börner et al., 2012]



Web as a Graph

• Web as a directed graph:

– Nodes: Webpages

– Edges: Hyperlinks

I teach a 
class on 

Networks. CS224W: 
Classes are 

in the 
Gates 

building Computer  
Science 

Department 
at Stanford

Stanford 
University



Web as a Graph

• Web as a directed graph:

– Nodes: Webpages

– Edges: Hyperlinks

I teach a 
class on 

Networks. CS224W: 
Classes are 

in the 
Gates

building Computer  
Science 

Department 
at Stanford

Stanford 
University



Web as a Directed Graph



Broad Question

• How to organize the Web?
• First try: Human curated

Web directories
– Yahoo, DMOZ, LookSmart

• Second try: Web Search
– Information Retrieval investigates:

Find relevant docs in a small 
and trusted set

• Newspaper articles, Patents, etc.

– But: Web is huge, full of untrusted documents, 
random things, web spam, etc.



Web Search: 2 Challenges

2 challenges of web search:

• (1) Web contains many sources of information
Who to “trust”?

– Trick: Trustworthy pages may point to each other!

• (2) What is the “best” answer to query 
“newspaper”?

– No single right answer

– Trick: Pages that actually know about newspapers 
might all be pointing to many newspapers



CS 425 – Lecture 1

Early Search Engines

• Inverted index

– Data structure that return pointers to all pages a term 
occurs

• Which page to return first?

– Where do the search terms appear in the page?

– How many occurrences of the search terms in the page?

• What if a spammer tries to fool the search engine?



CS 425 – Lecture 1

Fooling Early Search Engines

• Example: A spammer wants his page to be in the top search 
results for the term “movies”.

• Approach 1: 
– Add thousands of copies of the term “movies” to your page. 

– Make them invisible.

• Approach 2: 
– Search the term “movies”. 

– Copy the contents of the top page to your page.

– Make it invisible.

• Problem: Ranking only based on page contents

• Early search engines almost useless because of spam.



CS 425 – Lecture 1

Google’s Innovations

• Basic idea: Search engine believes what other pages say 
about you instead of what you say about yourself.

• Main innovations:

1. Define the importance of a page based on:
– How many pages point to it?

– How important are those pages?

2. Judge the contents of a page based on:
– Which terms appear in the page?

– Which terms are used to link to the page?



Ranking Nodes on the Graph

• All web pages are not equally “important”

www.joe-schmoe.com vs. www.stanford.edu

• There is large diversity 
in the web-graph 
node connectivity.
Let’s rank the pages by 
the link structure!

http://www.joe-schmoe.com/
http://www.stanford.edu/


PageRank: 
The “Flow” Formulation



Links as Votes

• Idea: Links as votes

– Page is more important if it has more links

• In-coming links? Out-going links?

• Think of in-links as votes:
– www.stanford.edu has 23,400 in-links

– www.joe-schmoe.com has 1 in-link

• Are all in-links are equal?

– Links from important pages count more

– Recursive question! 

http://www.stanford.edu/
http://www.joe-schmoe.com/


Example: PageRank Scores

B

38.4
C

34.3

E

8.1
F

3.9

D

3.9

A

3.3

1.6
1.6 1.6 1.6 1.6



Simple Recursive Formulation

• Each link’s vote is proportional to the 
importance of its source page

• If page j with importance rj has n out-links, 
each link gets rj / n votes

• Page j’s own importance is the sum of the 
votes on its in-links

j

ki

rj/3

rj/3rj/3
rj = ri/3+rk/4

ri/3 rk/4



PageRank: The “Flow” Model

• A “vote” from an important 
page is worth more

• A page is important if it is 
pointed to by other important 
pages

• Define a “rank” rj for page j





ji

i
j

r
r

id

y

ma
a/2

y/2
a/2

m

y/2

The web in 1839

“Flow” equations:

ry = ry /2 + ra /2

ra = ry /2 + rm

rm = ra /2
𝒅𝒊 … out-degree of node 𝒊



Solving the flow equations



Page Rank: Matrix Formulation



Example



Eigenvector Formulation

• The flow equations can be written
𝒓 = 𝑴 ∙ 𝒓

• So the rank vector r is an eigenvector of the 
stochastic web matrix M
– In fact, its first or principal eigenvector, 

with corresponding eigenvalue 1
• Largest eigenvalue of M is 1 since M is

column stochastic (with non-negative entries)
– We know r is unit length and each column of M

sums to one, so 𝑴𝒓 ≤ 𝟏

• We can now efficiently solve for r!
The method is called Power iteration

NOTE: x is an 

eigenvector with 

the corresponding 

eigenvalue λ if:

𝑨𝒙 = 𝝀𝒙



Example: Flow Equations & M

r = M∙r

y       ½    ½    0     y

a   =  ½     0    1     a

m       0    ½    0    m

y

a m

y a m

y ½ ½ 0

a ½ 0 1

m 0 ½ 0

ry = ry /2 + ra /2

ra = ry /2 + rm

rm = ra /2



Power Iteration Method

• Given a web graph with n nodes, where the 
nodes are pages and edges are hyperlinks

• Power iteration: a simple iterative scheme

– Suppose there are N web pages

– Initialize: r(0) = [1/N,….,1/N]T

– Iterate: r(t+1) = M ∙ r(t)

– Stop when |r(t+1) – r(t)|1 < 







ji

t

it

j

r
r

i

)(
)1(

d

di …. out-degree of node i

|x|1 = 1≤i≤N|xi| is the L1 norm 

Can use any other vector norm, e.g., Euclidean



PageRank: How to solve?



PageRank: How to solve?



PageRank: 
Random Walk Interpretation



CS 425 – Lecture 1

Random Walk Interpretation of 
PageRank

• Consider a web surfer:

– He starts at a random page

– He follows a random link at every time step

– After a sufficiently long time:

• What is the probability that he is at page j?
– This probability corresponds to the page rank of j.



CS 425 – Lecture 1

Example: Random Walk

A B

C D

Time t = 0: Assume the random surfer is at A.

Time t = 1:

p(A, 1) = ?

p(B, 1) = ?

p(C, 1) = ?

p(D, 1) = ?

0

1/3

1/3

1/3



CS 425 – Lecture 1

Example: Random Walk

A B

C D Time t=2:

p(A, 2) = ?

p(A, 2) = p(B, 1) . p(B→A) + p(C, 1) . p(C→A)

= 1/3 . 1/2 + 1/3 . 1 = 3/6 

Time t = 1:

p(B, 1) = 1/3

p(C, 1) = 1/3

p(D, 1) = 1/3



CS 425 – Lecture 1

Example: Transition Matrix

A B

C D

0

1/3

1/3

1/3

1/2

0

0

1/2

1

0

0

0

1/2

1/2

0

0

pA

pB

pC

pD

pA

pB

pC

pD

=

M p(t) p(t+1)

.

p(A, t+1) = p(B, t) . p(B→A) + p(C, t) . p(C→A)

p(C, t+1) = p(A, t) . p(A→C) + p(D, t) . p(D→C)



Random Walk Interpretation

 Imagine a random web surfer:

– At any time 𝒕, surfer is on some page 𝒊

– At time 𝒕 + 𝟏, the surfer follows an 
out-link from 𝒊 uniformly at random

– Ends up on some page 𝒋 linked from 𝒊

– Process repeats indefinitely

 Let:
 𝒑(𝒕) … vector whose 𝒊th coordinate is the 

prob. that the surfer is at page 𝒊 at time 𝒕

– So, 𝒑(𝒕) is a probability distribution over pages





ji

i
j

r
r

(i)dout

j

i1 i2 i3



PageRank: 
The Google Formulation



PageRank: Three Questions

• Does this converge?

• Does it converge to what we want?

• Are results reasonable?







ji

t

it

j

r
r

i

)(
)1(

d Mrr or

equivalently



Does this converge?

• Example:

ra 1 0 1 0

rb 0 1 0 1

=

ba

Iteration 0, 1, 2, …







ji

t

it

j

r
r

i

)(
)1(

d



Does it converge to what we want?

• Example:

ra 1 0 0 0

rb 0 1 0 0

=

ba

Iteration 0, 1, 2, …







ji

t

it

j

r
r

i

)(
)1(

d



PageRank: Problems

2 problems:

• (1) Some pages are 
dead ends (have no out-links)
– Random walk has “nowhere” to go to

– Such pages cause importance to “leak out”

• (2) Spider traps:
(all out-links are within the group)
– Random walk gets “stuck” in a trap

– And eventually spider traps absorb all importance

Dead end



Problem: Spider Traps

• Power Iteration:

– Set 𝑟𝑗 = 1/N

– 𝑟𝑗 =  𝑖→𝑗
𝑟𝑖

𝑑𝑖

• And iterate

• Example:

ry 1/3 2/6 3/12 5/24 0

ra = 1/3 1/6 2/12 3/24 … 0

rm 1/3 3/6 7/12 16/24 1
Iteration 0, 1, 2, …

y

a m

y a m

y ½ ½ 0

a ½ 0 0

m 0 ½ 1

ry = ry /2 + ra /2

ra = ry /2

rm = ra /2 + rm

m is a spider trap

All the PageRank score gets “trapped” in node 

m.



Solution: Teleports!

• The Google solution for spider traps: At each 
time step, the random surfer has two options

– With prob. , follow a link at random

– With prob. 1-, jump to some random page

– Common values for  are in the range 0.8 to 0.9

• Surfer will teleport out of spider trap 
within a few time steps

y

a m

y

a m



Problem: Dead Ends

• Power Iteration:

– Set 𝑟𝑗 = 1

– 𝑟𝑗 =  𝑖→𝑗
𝑟𝑖

𝑑𝑖

• And iterate

• Example:

ry 1/3 2/6 3/12 5/24 0

ra = 1/3 1/6 2/12 3/24 … 0

rm 1/3 1/6 1/12 2/24 0
Iteration 0, 1, 2, …

y

a m

y a m

y ½ ½ 0

a ½ 0 0

m 0 ½ 0

ry = ry /2 + ra /2

ra = ry /2

rm = ra /2

Here the PageRank “leaks” out since the matrix is not 

stochastic.



Solution: Always Teleport!

• Teleports: Follow random teleport links with 
probability 1.0 from dead-ends

– Adjust matrix accordingly

y

a m

y a m

y ½ ½ ⅓

a ½ 0 ⅓

m 0 ½ ⅓

y a m

y ½ ½ 0

a ½ 0 0

m 0 ½ 0

y

a m



Why Teleports Solve the Problem?

Why are dead-ends and spider traps a problem 
and why do teleports solve the problem?

• Spider-traps: PageRank scores are not what we 
want

– Solution: Never get stuck in a spider trap by 
teleporting out of it in a finite number of steps

• Dead-ends are a problem

– The matrix is not column stochastic so our initial 
assumptions are not met

– Solution: Make matrix column stochastic by always 
teleporting when there is nowhere else to go



Solution: Random Teleports

• Google’s solution that does it all:
At each step, random surfer has two options:

– With probability ,  follow a link at random

– With probability 1-, jump to some random page

• PageRank equation [Brin-Page, 98]

𝑟𝑗 = 

𝑖→𝑗

𝛽
𝑟𝑖
𝑑𝑖
+ (1 − 𝛽)

1

𝑁

di … out-degree 

of node i

This formulation assumes that 𝑴 has no dead ends.  We can either 

preprocess matrix 𝑴 to remove all dead ends or explicitly follow random 

teleport links with probability 1.0 from dead-ends.



The Google Matrix

• PageRank equation [Brin-Page, ‘98]

𝑟𝑗 = 

𝑖→𝑗

𝛽
𝑟𝑖
𝑑𝑖
+ (1 − 𝛽)

1

𝑁

• The Google Matrix A:

𝐴 = 𝛽 𝑀 + 1 − 𝛽
1

𝑁 𝑁×𝑁
• We have a recursive problem: 𝒓 = 𝑨 ⋅ 𝒓

And the Power method still works!

• What is  ?
– In practice  =0.8,0.9 (make 5 steps on avg., jump)

[1/N]NxN…N by N matrix

where all entries are 1/N



Random Teleports (  0.8)

y

a    =

m

1/3

1/3

1/3

0.33

0.20

0.46

0.24

0.20

0.52

0.26

0.18

0.56

7/33

5/33

21/33

. . .

y

a
m

13/15

7/15

1/2 1/2   0

1/2   0    0

0   1/2   1

1/3 1/3 1/3

1/3 1/3 1/3

1/3 1/3 1/3

y   7/15  7/15   1/15

a   7/15  1/15   1/15

m  1/15  7/15  13/15

0.8 + 0.2

M [1/N]NxN

A



Matrix Formulation

• Suppose there are N pages

• Consider page i, with di out-links

• We have Mji = 1/|di| when i → j
and Mji = 0 otherwise

• The random teleport is equivalent to:
– Adding a teleport link from i to every other page 

and setting transition probability to (1-)/N

– Reducing the probability of following each 
out-link from 1/|di| to /|di|

– Equivalent: Tax each page a fraction (1-) of its 
score and redistribute evenly 



How do we actually compute 
the PageRank?



Computing Page Rank

• Key step is matrix-vector multiplication
– rnew = A ∙ rold

• Easy if we have enough main memory to 
hold A, rold, rnew

• Say N = 1 billion pages
– We need 4 bytes for 

each entry (say)

– 2 billion entries for 
vectors, approx 8GB

– Matrix A has N2 entries
• 1018 is a large number!

½   ½   0

½   0   0

0    ½   1

1/3 1/3 1/3

1/3 1/3 1/3

1/3 1/3 1/3

7/15  7/15   1/15

7/15  1/15   1/15

1/15  7/15  13/15

0.8 +0.2

A = ∙M + (1-) [1/N]NxN

=

A =



CS 425 – Lecture 1

Matrix Sparseness

• Reminder: Our original matrix was sparse.
– On average: ~10 out-links per vertex

– # of non-zero values in matrix M: ~10N

• Teleport links make matrix M dense.

• Can we convert it back to the sparse form?

A B

C D

0

1/3

1/3

1/3

1/2

0

0

1/2

1

0

0

0

1/2

1/2

0

0

Original matrix without teleports



Rearranging the Equation

• 𝒓 = 𝑨 ⋅ 𝒓,   where 𝑨𝒋𝒊 = 𝜷𝑴𝒋𝒊 +
𝟏−𝜷

𝑵

• 𝑟𝑗 =  i=1
𝑁 𝐴𝑗𝑖 ⋅ 𝑟𝑖

• 𝑟𝑗 =  𝑖=1
𝑁 𝛽 𝑀𝑗𝑖 +

1−𝛽

𝑁
⋅ 𝑟𝑖

=  i=1
𝑁 𝛽 𝑀𝑗𝑖 ⋅ 𝑟𝑖 +

1−𝛽

𝑁
 i=1
𝑁 𝑟𝑖

=  i=1
𝑁 𝛽 𝑀𝑗𝑖 ⋅ 𝑟𝑖 +

1−𝛽

𝑁
since  𝑟𝑖 = 1

• So we get: 𝒓 = 𝜷𝑴 ⋅ 𝒓 +
𝟏−𝜷

𝑵 𝑵
[x]N … a vector  of length N with all entries x

Note: Here we assumed M

has no dead-ends



CS 425 – Lecture 1

Example: Equation with Teleports

A B

C D

0

1/3

1/3

1/3

1/2

0

0

1/2

1

0

0

0

1/2

1/2

0

0

rA

rB

rC

rD

=

M rold

.

rA

rB

rC

rD

rnew

+

1/4

1/4

1/4

1/4

β (1-β)

Note: Here we assumed M

has no dead-ends



Sparse Matrix Formulation

• We just rearranged the PageRank equation

𝒓 = 𝜷𝑴 ⋅ 𝒓 +
𝟏 − 𝜷

𝑵
𝑵

• where [(1-)/N]N is a vector with all N entries (1-)/N

• M is a sparse matrix! (with no dead-ends)

– 10 links per node, approx 10N entries

• So in each iteration, we need to:
– Compute rnew =  M ∙ rold

– Add a constant value (1-)/N to each entry in rnew

• Note if M contains dead-ends then  𝒋 𝒓𝒋
𝒏𝒆𝒘 < 𝟏 and 

we also have to renormalize rnew so that it sums to 1



PageRank: Without Dead Ends

• Input: Graph 𝑮 and parameter 𝜷
– Directed graph 𝑮 (cannot have dead ends)
– Parameter 𝜷

• Output: PageRank vector 𝒓𝒏𝒆𝒘

– Set: 𝑟𝑗
𝑜𝑙𝑑 =

1

𝑁

– repeat until convergence:  𝑗 𝑟𝑗
𝑛𝑒𝑤 − 𝑟𝑗

𝑜𝑙𝑑 > 𝜀

• ∀𝑗: 𝒓𝒋
𝒏𝒆𝒘 =  𝒊→𝒋𝜷

𝒓𝒊
𝒐𝒍𝒅

𝒅𝒊

𝒓𝒋
𝒏𝒆𝒘 = 𝟎 if in-degree of 𝒋 is 0

• Add constant terms:

∀𝒋: 𝒓𝒋
𝒏𝒆𝒘 = 𝒓𝒋

𝒏𝒆𝒘 +
𝟏−𝜷

𝑵

• 𝒓𝒐𝒍𝒅 = 𝒓𝒏𝒆𝒘



PageRank: The Complete Algorithm

• Input: Graph 𝑮 and parameter 𝜷
– Directed graph 𝑮 (can have spider traps and dead ends)
– Parameter 𝜷

• Output: PageRank vector 𝒓𝒏𝒆𝒘

– Set: 𝑟𝑗
𝑜𝑙𝑑 =

1

𝑁

– repeat until convergence:  𝑗 𝑟𝑗
𝑛𝑒𝑤 − 𝑟𝑗

𝑜𝑙𝑑 > 𝜀

• ∀𝑗: 𝒓′𝒋
𝒏𝒆𝒘 =  𝒊→𝒋𝜷

𝒓𝒊
𝒐𝒍𝒅

𝒅𝒊

𝒓′𝒋
𝒏𝒆𝒘 = 𝟎 if in-degree of 𝒋 is 0

• Now re-insert the leaked PageRank:

∀𝒋: 𝒓𝒋
𝒏𝒆𝒘 = 𝒓′𝒋

𝒏𝒆𝒘
+
𝟏−𝑺

𝑵

• 𝒓𝒐𝒍𝒅 = 𝒓𝒏𝒆𝒘

where: 𝑆 =
 𝑗 𝑟′𝑗

𝑛𝑒𝑤

If the graph has no dead-ends then the amount of leaked PageRank is 1-β. But since we have dead-ends 

the amount of leaked PageRank may be larger. We have to explicitly account for it by computing S.



Some Problems with Page Rank

• Measures generic popularity of a page
– Biased against topic-specific authorities

– Solution: Topic-Specific PageRank (next)

• Susceptible to Link spam
– Artificial link topographies created in order to 

boost page rank

– Solution: TrustRank

• Uses a single measure of importance
– Other models of importance

– Solution: Hubs-and-Authorities


