BBS654
 Data Mining

Pinar Duygulu

Slides are adapted from
J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets,
http://www.mmds.org
Nazli Ikizler
Mustafa Ozdal

Analysis of Large Graphs: Link Analysis, PageRank

Graph Data: Social Networks

Facebook social graph
4-degrees of separation [Backstrom-Boldi-Rosa-Ugander-Vigna, 2011]

Graph Data: Information Nets

Citation networks and Maps of science
[Börner et al., 2012]

Web as a Graph

- Web as a directed graph:

- Nodes: Webpages
- Edges: Hyperlinks

Stanford
University

Web as a Graph

- Web as a directed graph:
- Nodes: Webpages
- Edges: Hyperlinks

Web as a Directed Graph

Broad Question

- How to organize the Web?
- First try: Human curated Web directories
- Yahoo, DMOZ, LookSmart
- Second try: Web Search

- Information Retrieval investigates:

Find relevant docs in a small
and trusted set

- Newspaper articles, Patents, etc.
- But: Web is huge, full of untrusted documents, random things, web spam, etc.

Web Search: 2 Challenges

2 challenges of web search:

- (1) Web contains many sources of information Who to "trust"?
- Trick: Trustworthy pages may point to each other!
- (2) What is the "best" answer to query "newspaper"?
- No single right answer
- Trick: Pages that actually know about newspapers might all be pointing to many newspapers

Early Search Engines

Inverted index

- Data structure that return pointers to all pages a term occurs

Which page to return first?

- Where do the search terms appear in the page?
- How many occurrences of the search terms in the page?

What if a spammer tries to fool the search engine?

Fooling Early Search Engines

- Example: A spammer wants his page to be in the top search results for the term "movies".
- Approach 1:
- Add thousands of copies of the term "movies" to your page.
- Make them invisible.
- Approach 2:
- Search the term "movies".
- Copy the contents of the top page to your page.
- Make it invisible.
- Problem: Ranking only based on page contents
- Early search engines almost useless because of spam.

Goos e's nonovations

- Basic idea: Search engine believes what other pages say about you instead of what you say about yourself.
- Main innovations:

1. Define the importance of a page based on:

- How many pages point to it?
- How important are those pages?

2. Judge the contents of a page based on:

- Which terms appear in the page?
- Which terms are used to link to the page?

Ranking Nodes on the Graph

- All web pages are not equally "important" www.joe-schmoe.com vs. www.stanford.edu
- There is large diversity in the web-graph node connectivity. Let's rank the pages by the link structure!

PageRank:
 The "Flow" Formulation

Links as Votes

- Idea: Links as votes
- Page is more important if it has more links
- In-coming links? Out-going links?
- Think of in-links as votes:
- www.stanford.edu has 23,400 in-links
- www.joe-schmoe.com has 1 in-link
- Are all in-links are equal?
- Links from important pages count more
- Recursive question!

Example: PageRank Scores

Simple Recursive Formulation

- Each link's vote is proportional to the importance of its source page
- If page j with importance r_{j} has \boldsymbol{n} out-links, each link gets r_{j} / n votes
- Page j's own importance is the sym of the votes on its in-links

$$
r_{j}=r_{i} / 3+r_{k} / 4
$$

PageRank: The "Flow" Model

- A "vote" from an important page is worth more
- A page is important if it is pointed to by other important pages
- Define a "rank" r_{j} for page j

$$
r_{j}=\sum_{i \rightarrow j} \frac{r_{i}}{\mathrm{~d}_{\mathrm{i}}}
$$

$d_{i} \ldots$ out-degree of node i

Solving the flow equations

- 3 equations, 3 unknowns, no constants
- No unique solution

Flow equations:

$$
\begin{aligned}
& \mathbf{r}_{\mathbf{y}}=\mathbf{r}_{\mathrm{y}} / 2+\mathbf{r}_{\mathrm{a}} / 2 \\
& \mathbf{r}_{\mathrm{a}}=\mathbf{r}_{\mathrm{y}} / 2+\mathbf{r}_{\mathrm{m}} \\
& \mathbf{r}_{\mathrm{m}}=\mathrm{r}_{\mathrm{a}} / 2
\end{aligned}
$$

- All solutions equivalent modulo the scale factor
- Additional constraint forces uniqueness:
${ }^{-} r_{y}+r_{a}+r_{m}=1$
- Solution: $r_{y}=\frac{2}{5}, r_{a}=\frac{2}{5}, r_{m}=\frac{1}{5}$
- Gaussian elimination method works for small examples, but we need a better method for large web-size graphs
- We need a new formulation!

Page Rank: Matrix Formulation

Stochastic adjacency matrix M

- Let page i has d_{i} out-links
- If $i \rightarrow j$, then $M_{j i}=\frac{1}{d_{i}}$ else $M_{j i}=0$
- \boldsymbol{M} is a column stochastic ${ }_{\text {matrix }}$
- Columns sum to 1

Rank vector r : vector with an entry per page

- r_{i} is the importance score of page i
- $\sum_{i} r_{i}=1$

The flow equations can be written

$$
\boldsymbol{r}=\boldsymbol{M} \cdot \boldsymbol{r}
$$

$$
r_{j}=\sum_{i \rightarrow j} \frac{r_{i}}{\mathrm{~d}_{\mathrm{i}}}
$$

Example

- Remember the flow equation: $r_{j}=\sum_{i \rightarrow j} \frac{r_{i}}{\mathrm{~d}_{\mathrm{i}}}$
- Flow equation in the matrix form

$$
M \cdot r=r
$$

- Suppose page i links to 3 pages, including j

M

.

Eigenvector Formulation

- The flow equations can be written

$$
\boldsymbol{r}=\boldsymbol{M} \cdot \boldsymbol{r}
$$

- So the rank vector r is an eigenvector of the stochastic web matrix M
- In fact, its first or principal eigenvector, with corresponding eigenvalue 1
- Largest eigenvalue of \boldsymbol{M} is $\mathbf{1}$ since \boldsymbol{M} is column stochastic (with non-negative entries)
- We know r is unit length and each column of \boldsymbol{M} sums to one, so $\mathbf{M r} \leq \mathbf{1}$
- We can now efficiently solve for r ! The method is called Power iteration

NOTE: x is an
eigenvector with
the corresponding eigenvalue $\boldsymbol{\lambda}$ if:
$\boldsymbol{A x}=\lambda \boldsymbol{x}$

Example: Flow Equations \& M

	\mathbf{y}	\mathbf{a}	\mathbf{m}
\mathbf{y}	$1 / 2$	$1 / 2$	0
\mathbf{a}	$1 / 2$	0	1
\mathbf{m}	0	$1 / 2$	0

$$
r=M \cdot r
$$

$$
\begin{aligned}
& r_{y}=r_{y} / 2+r_{a} / 2 \\
& r_{a}=r_{y} / 2+r_{m} \\
& r_{m}=r_{a} / 2
\end{aligned}
$$

y
a
m
---:
$1 / 2$
0
:---:
a
m

Power Iteration Method

- Given a web graph with n nodes, where the nodes are pages and edges are hyperlinks
- Power iteration: a simple iterative scheme
- Suppose there are N web pages
- Initialize: $\mathbf{r}^{(0)}=[1 / \mathrm{N}, \ldots ., 1 / \mathrm{N}]^{\top}$
- Iterate: $\mathbf{r}^{(t+1)}=\mathbf{M} \cdot \mathbf{r}^{(t)}$

$$
r_{j}^{(t+1)}=\sum_{i \rightarrow j} \frac{r_{i}^{(t)}}{\mathrm{d}_{\mathrm{i}}}
$$

- Stop when $\left|\mathbf{r}^{(t+1)}-\mathbf{r}^{(t)}\right|_{1}<\varepsilon$
$|\mathbf{x}|_{1}=\sum_{1 \text { SisN }}\left|x_{i}\right|$ is the L_{1} norm
Can use any other vector norm, e.g., Euclidean

PageRank: How to solve?

- Power Iteration:
- Set $r_{j}=1 / N$
- $1: r_{j}^{\prime}=\sum_{i \rightarrow j} \frac{r_{i}}{d_{i}}$
- 2: $r=r^{\prime}$
- Goto 1

$$
\begin{aligned}
& r_{y}=r_{y} / 2+r_{a} / 2 \\
& r_{a}=r_{y} / 2+r_{m} \\
& r_{m}=r_{a} / 2
\end{aligned}
$$

- Example:
\(\left(\begin{array}{l}r_{y}

r_{a}

r_{m}\end{array}\right)=\)| $1 / 3$ |
| :--- |
| $1 / 3$ |
| $1 / 3$ |

Iteration 0, 1, 2, \ldots

PageRank: How to solve?

- Power Iteration:
- Set $r_{j}=1 / N$
- $1: r^{\prime}{ }_{j}=\sum_{i \rightarrow j} \frac{r_{i}}{d_{i}}$
- 2: $r=r^{\prime}$
- Goto 1
- Example:

$$
\left(\begin{array}{lllllll}
\mathrm{r}_{\mathrm{y}} \\
\mathrm{r}_{\mathrm{a}} \\
\mathrm{r}_{\mathrm{m}}
\end{array}\right)=\begin{array}{lllll}
1 / 3 & 1 / 3 & 5 / 12 & 9 / 24 & \\
\hline 1 / 3 & 3 / 6 & 1 / 3 & 11 / 24 & \ldots \\
1 / 3 & 1 / 6 & 3 / 12 & 1 / 6 & \\
\hline
\end{array}
$$

	y	a	m
y	$1 / 2$	$1 / 2$	0
a	$1 / 2$	0	1
m	0	$1 / 2$	0

$$
\begin{aligned}
& r_{y}=r_{y} / 2+r_{a} / 2 \\
& r_{a}=r_{y} / 2+r_{m} \\
& r_{m}=r_{a} / 2
\end{aligned}
$$

PageRank:
 Random Walk Interpretation

Random Walk Interpretation of PageRank

- Consider a web surfer:
- He starts at a random page
- He follows a random link at every time step
- After a sufficiently long time:
- What is the probability that he is at page j ?
- This probability corresponds to the page rank of j.

Example: Random Walk

Time $t=0$: Assume the random surfer is at A.

Time $t=1$:

$$
\begin{array}{lc}
\mathrm{p}(\mathrm{~A}, 1)=? & 0 \\
\mathrm{p}(\mathrm{~B}, 1)=? & 1 / 3 \\
\mathrm{p}(\mathrm{C}, 1)=? & 1 / 3 \\
\mathrm{p}(\mathrm{D}, 1)=? & 1 / 3
\end{array}
$$

Example: Random Walk

Time $t=1$:

$$
\begin{aligned}
& p(B, 1)=1 / 3 \\
& p(C, 1)=1 / 3 \\
& p(D, 1)=1 / 3
\end{aligned}
$$

Time $t=2$:

$$
\mathrm{p}(\mathrm{~A}, 2)=?
$$

$$
\begin{aligned}
p(A, 2) & =p(B, 1) \cdot p(B \rightarrow A)+p(C, 1) \cdot p(C \rightarrow A) \\
& =1 / 3 \cdot 1 / 2+1 / 3 \cdot 1=3 / 6
\end{aligned}
$$

Example: Transition Matrix

$$
\begin{aligned}
& p(A, t+1)=p(B, t) \cdot p(B \rightarrow A)+p(C, t) \cdot p(C \rightarrow A) \\
& p(C, t+1)=p(A, t) \cdot p(A \rightarrow C)+p(D, t) \cdot p(D \rightarrow C)
\end{aligned}
$$

Random Walk Interpretation

- Imagine a random web surfer:
- At any time \boldsymbol{t}, surfer is on some page \boldsymbol{i}
- At time $\boldsymbol{t}+\mathbf{1}$, the surfer follows an out-link from i uniformly at random
- Ends up on some page \boldsymbol{j} linked from \boldsymbol{i}

- Process repeats indefinitely
- $\boldsymbol{p}(\boldsymbol{t})$... vector whose $\boldsymbol{i}^{\text {th }}$ coordinate is the prob. that the surfer is at page \boldsymbol{i} at time \boldsymbol{t}
- So, $\boldsymbol{p}(\boldsymbol{t})$ is a probability distribution over pages

PageRank:
 The Google Formulation

PageRank: Three Questions

$$
r_{j}^{(t+1)}=\sum_{i \rightarrow j} \frac{r_{i}^{(t)}}{\mathrm{d}_{\mathrm{i}}} \underset{\substack{\text { equivalently }}}{\text { or }} \quad r=M r
$$

- Does this converge?
- Does it converge to what we want?
- Are results reasonable?

Does this converge?

- Example:
$r_{a}=\begin{array}{lllll}1 & 0 & 1 & 0\end{array}$
r_{b}
|Aration $0.11,2, \ldots 0 \quad 1$

Does it converge to what we want?

$$
\text { (a)b } r_{j}^{(t+1)}=\sum_{i \rightarrow j} \frac{r_{i}^{(t)}}{\mathrm{d}_{\mathrm{i}}}
$$

- Example:
$\mathrm{r}_{\mathrm{a}}=$
r_{b}
Aleration d, 1, 2,... 0
0

PageRank: Problems

2 problems:

- (1) Some pages are dead ends (have no out-links)
- Random walk has "nowhere" to go to
- Such pages cause importance to "leak out"

- (2) Spider traps: (all out-links are within the group)
- Random walk gets "stuck" in a trap
- And eventually spider traps absorb all importance

Problem: Spider Traps

- Power Iteration:
- Set $r_{j}=1 / N$
$-r_{j}=\sum_{i \rightarrow j} \frac{r_{i}}{d_{i}}$
- And iterate

m is a spider trap

$$
\begin{aligned}
& \mathbf{r}_{\mathrm{y}}=\mathbf{r}_{\mathrm{y}} / 2+\mathbf{r}_{\mathrm{a}} / 2 \\
& \mathbf{r}_{\mathrm{a}}=\mathbf{r}_{\mathrm{y}} / 2 \\
& \mathbf{r}_{\mathrm{m}}=\mathbf{r}_{\mathrm{a}} / 2+\mathbf{r}_{\mathrm{m}}
\end{aligned}
$$

- Example:
\(\left(\begin{array}{l}r_{y}

r_{\mathrm{a}}

\mathrm{r}_{\mathrm{m}}\end{array}\right)=\)| $1 / 3$ | $2 / 6$ | $3 / 12$ | $5 / 24$ | | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $1 / 3$ | $1 / 6$ | $2 / 12$ | $3 / 24$ | \ldots | 0 |
| $1 / 3$ | $3 / 6$ | $7 / 12$ | $16 / 24$ | | 1 |

All the PageRank score gets "trapped" in node m.

Solution: Teleports!

- The Google solution for spider traps: At each time step, the random surfer has two options
- With prob. β, follow a link at random
- With prob. 1- β, jump to some random page
- Common values for $\boldsymbol{\beta}$ are in the range 0.8 to 0.9
- Surfer will teleport out of spider trap within a few time steps

Problem: Dead Ends

- Power Iteration:
- Set $r_{j}=1$
$-r_{j}=\sum_{i \rightarrow j} \frac{r_{i}}{d_{i}}$
- And iterate

$$
\begin{aligned}
& \mathbf{r}_{\mathbf{y}}=\mathbf{r}_{\mathrm{y}} / 2+\mathbf{r}_{\mathrm{a}} / 2 \\
& \mathbf{r}_{\mathrm{a}}=\mathbf{r}_{\mathrm{y}} / 2 \\
& \mathbf{r}_{\mathrm{m}}=\mathbf{r}_{\mathrm{a}} / 2
\end{aligned}
$$

- Example:

$$
\left(\begin{array}{l}
\mathrm{r}_{\mathrm{y}} \\
\mathrm{r}_{\mathrm{a}} \\
\mathrm{r}_{\mathrm{m}}
\end{array}\right)=\begin{array}{cccccc}
1 / 3 & 2 / 6 & 3 / 12 & 5 / 24 & & 0 \\
1 / 3 & 1 / 6 & 2 / 12 & 3 / 24 & \ldots & 0 \\
1 / 3 & 1 / 6 \\
\text { theration } & 1 / 1,2, \ldots & 1 / 12 & 2 / 24 & & 0
\end{array}
$$

Here the PageRank "leaks" out since the matrix is not stochastic

Solution: Always Teleport!

- Teleports: Follow random teleport links with probability 1.0 from dead-ends
- Adjust matrix accordingly

	y	a	m
y	$1 / 2$	$1 / 2$	0
a	$1 / 2$	0	0
m	0	$1 / 2$	0

	y	a	m
y	$1 / 2$	$1 / 2$	$1 / 3$
a	$1 / 2$	0	$1 / 3$
m	0	$1 / 2$	$1 / 3$

Why Teleports Solve the Problem?

Why are dead-ends and spider traps a problem and why do teleports solve the problem?

- Spider-traps: PageRank scores are not what we want
- Solution: Never get stuck in a spider trap by teleporting out of it in a finite number of steps
- Dead-ends are a problem
- The matrix is not column stochastic so our initial assumptions are not met
- Solution: Make matrix column stochastic by always teleporting when there is nowhere else to go

Solution: Random Teleports

- Google's solution that does it all:

At each step, random surfer has two options:

- With probability $\boldsymbol{\beta}$, follow a link at random
- With probability $\mathbf{1 - \beta}$, jump to some random page
- PageRank equation [Brin-Page, 98]

This formulation assumes that \boldsymbol{M} has no dead ends. We can either preprocess matrix \boldsymbol{M} to remove all dead ends or explicitly follow random teleport links with probability 1.0 from dead-ends.

The Google Matrix

- PageRank equation [Brin-Page, '98]

$$
r_{j}=\sum_{i \rightarrow j} \beta \frac{r_{i}}{d_{i}}+(1-\beta) \frac{1}{N}
$$

- The Google Matrix A:

$$
A=\beta M+(1-\beta)\left[\frac{1}{N}\right]_{N \times N}
$$

- We have a recursive problem: $\boldsymbol{r}=\boldsymbol{A} \cdot \boldsymbol{r}$ And the Power method still works!
- What is β ?
- In practice $\beta=0.8,0.9$ (make 5 steps on avg., jump)

Random Teleports ($\beta=0.8$)

Matrix Formulation

- Suppose there are \boldsymbol{N} pages
- Consider page \boldsymbol{i}, with \mathbf{d}_{i} out-links
- We have $\boldsymbol{M}_{\boldsymbol{j i}}=\mathbf{1} /\left|d_{i}\right|$ when $\boldsymbol{i} \rightarrow \boldsymbol{j}$ and $\boldsymbol{M}_{j i}=\mathbf{0}$ otherwise
- The random teleport is equivalent to:
- Adding a teleport link from \boldsymbol{i} to every other page and setting transition probability to $(1-\beta) / N$
- Reducing the probability of following each out-link from $1 /\left|d_{i}\right|$ to $\beta /\left|d_{i}\right|$
- Equivalent: Tax each page a fraction (1- β) of its score and redistribute evenly

How do we actually compute the PageRank?

Computing Page Rank

- Key step is matrix-vector multiplication
$-\boldsymbol{r}^{\text {new }}=\boldsymbol{A} \cdot \boldsymbol{r}^{\text {old }}$
- Easy if we have enough main memory to hold A, $\mathbf{r}^{\text {old }}, \mathbf{r}^{\text {new }}$
- Say N = 1 billion pages
- We need 4 bytes for each entry (say)
-2 billion entries for vectors, approx 8GB
- Matrix A has N^{2} entries
- 10^{18} is a large number!

$$
\begin{aligned}
& \mathbf{A}=\beta \cdot \mathbf{M}+(1-\beta)[1 / N]_{N}, \\
& \boldsymbol{A}=0.8 \begin{array}{lll}
1 / 21 / 2 & 0 \\
1 / 2 & 0 & 0 \\
0 & 1 / 2 & 1
\end{array}+0.2 \begin{array}{l}
1 / 31 / 31 / 3 \\
1 / 3 \\
1 / 3 \\
1 / 3 \\
\hline
\end{array} \\
& =\begin{array}{lll}
7 / 15 & 7 / 15 & 1 / 15 \\
7 / 15 & 1 / 15 & 1 / 15 \\
1 / 15 & 7 / 15 & 13 / 15
\end{array}
\end{aligned}
$$

Matrix Sparseness

- Reminder: Our original matrix was sparse.
- On average: ~10 out-links per vertex
- \# of non-zero values in matrix M: ~10N
- Teleport links make matrix M dense.
- Can we convert it back to the sparse form?

Original matrix without teleports

0	$1 / 2$	1	0
$1 / 3$	0	0	$1 / 2$
$1 / 3$	0	0	$1 / 2$
$1 / 3$	$1 / 2$	0	0

Rearranging the Equation

- $r=\boldsymbol{A} \cdot \boldsymbol{r}$, where $\boldsymbol{A}_{\boldsymbol{j} \boldsymbol{i}}=\boldsymbol{\beta} \boldsymbol{M}_{\boldsymbol{j} \boldsymbol{i}}+\frac{\mathbf{1 - \beta}}{\boldsymbol{N}}$
- $r_{j}=\sum_{i=1}^{N} A_{j i} \cdot r_{i}$
- $r_{j}=\sum_{i=1}^{N}\left[\beta M_{j i}+\frac{1-\beta}{N}\right] \cdot r_{i}$

$$
\begin{aligned}
& =\sum_{i=1}^{N} \beta M_{j i} \cdot r_{i}+\frac{1-\beta}{N} \sum_{i=1}^{N} r_{i} \\
& =\sum_{i=1}^{N} \beta M_{j i} \cdot r_{i}+\frac{1-\beta}{N} \quad \text { since } \sum r_{i}=1
\end{aligned}
$$

- So we get: $\boldsymbol{r}=\boldsymbol{\beta} \boldsymbol{M} \cdot \boldsymbol{r}+\left[\frac{1-\boldsymbol{\beta}}{N}\right]_{N}$

Note: Here we assumed M has no dead-ends

Example: Equation with Teleports

Note: Here we assumed M has no dead-ends

Sparse Matrix Formulation

- We just rearranged the PageRank equation

$$
r=\beta M \cdot r+\left[\frac{1-\beta}{N}\right]_{N}
$$

- where $[(1-\beta) / \mathbf{N}]_{N}$ is a vector with all \boldsymbol{N} entries $(1-\beta) / \mathbf{N}$
- \boldsymbol{M} is a sparse matrix! (with no dead-ends)
- 10 links per node, approx 10 N entries
- So in each iteration, we need to:
- Compute $\boldsymbol{r}^{\text {new }}=\beta \boldsymbol{M} \cdot \boldsymbol{r}^{\text {old }}$
- Add a constant value (1- β)/N to each entry in $\boldsymbol{r}^{\text {new }}$
- Note if M contains dead-ends then $\sum_{j} r_{j}^{\text {new }}<1$ and we also have to renormalize $r^{\text {new }}$ so that it sums to 1

PageRank: Without Dead Ends

- Input: Graph G and parameter $\boldsymbol{\beta}$
- Directed graph \boldsymbol{G} (cannot have dead ends)
- Parameter $\boldsymbol{\beta}$
- Output: PageRank vector $r^{\text {new }}$
- Set: $r_{j}^{\text {old }}=\frac{1}{N}$
- repeat until convergence: $\sum_{j}\left|r_{j}^{\text {new }}-r_{j}^{\text {old }}\right|>\varepsilon$
- $\forall j: \boldsymbol{r}_{j}^{\text {new }}=\sum_{i \rightarrow j} \boldsymbol{\beta} \frac{r_{i}^{\text {old }}}{d_{i}}$
$\boldsymbol{r}_{\boldsymbol{j}}^{\text {new }}=\mathbf{0}$ if in-degree of \boldsymbol{j} is $\mathbf{0}$
- Add constant terms:

$$
\forall j: r_{j}^{n e w}=r_{j}^{n e w}+\frac{1-\beta}{N}
$$

- $r^{\text {old }}=r^{\text {new }}$

PageRank: The Complete Algorithm

- Input: Graph G and parameter β
- Directed graph \boldsymbol{G} (can have spider traps and dead ends)
- Parameter $\boldsymbol{\beta}$
- Output: PageRank vector $r^{\text {new }}$
- Set: $r_{j}^{\text {old }}=\frac{1}{N}$
- repeat until convergence: $\sum_{j}\left|r_{j}^{\text {new }}-r_{j}^{\text {old }}\right|>\varepsilon$
- $\forall j: \boldsymbol{r}_{j}^{\text {new }}=\sum_{i \rightarrow j} \beta \frac{r_{i}^{\text {old }}}{d_{i}}$

$$
\boldsymbol{r}_{\boldsymbol{j}}^{\prime \text { new }}=\mathbf{0} \text { if in-degree of } \boldsymbol{j} \text { is } \mathbf{0}
$$

- Now re-insert the leaked PageRank:
$\forall \boldsymbol{j}: \boldsymbol{r}_{\boldsymbol{j}}^{\text {new }}=\boldsymbol{r}_{\boldsymbol{j}}^{\prime \text { new }}+\frac{\mathbf{1 - S}}{\boldsymbol{N}} \quad \begin{aligned} & \text { where: } S= \\ & \sum_{j} r_{j}^{\text {new }}\end{aligned} \boldsymbol{r}^{\text {old }}=\boldsymbol{r}^{\text {new }}$
If the graph has no dead-ends then the amount of leaked PageRank is 1- β. But since we have dead-ends the amount of leaked PageRank may be larger. We have to explicitly account for it by computing \mathbf{S}.

Some Problems with Page Rank

- Measures generic popularity of a page
- Biased against topic-specific authorities
- Solution: Topic-Specific PageRank (next)
- Susceptible to Link spam
- Artificial link topographies created in order to boost page rank
- Solution: TrustRank
- Uses a single measure of importance
- Other models of importance
- Solution: Hubs-and-Authorities

