
BBS654
Data Mining

Pinar Duygulu

Slides are adapted from
J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets,

http://www.mmds.org
Mustafa Ozdal

Example: Recommender Systems

• Customer X

– Buys Metallica CD

– Buys Megadeth CD

• Customer Y
– Does search on Metallica

– Recommender system
suggests Megadeth from
data collected about
customer X

Recommendations

Items

Search Recommendations

Products, web sites,

blogs, news items, …

Examples:

From Scarcity to Abundance

• Shelf space is a scarce commodity for traditional
retailers
– Also: TV networks, movie theaters,…

• Web enables near-zero-cost dissemination
of information about products
– From scarcity to abundance

• More choice necessitates better filters
– Recommendation engines
– How Into Thin Air made Touching the Void

a bestseller: http://www.wired.com/wired/archive/12.10/tail.html

http://www.wired.com/wired/archive/12.10/tail.html

Sidenote: The Long Tail

Source: Chris Anderson (2004)

Physical vs. Online

Read http://www.wired.com/wired/archive/12.10/tail.html to learn more!

http://www.wired.com/wired/archive/12.10/tail.html

Types of Recommendations

• Editorial and hand curated

– List of favorites

– Lists of “essential” items

• Simple aggregates

– Top 10, Most Popular, Recent Uploads

• Tailored to individual users

– Amazon, Netflix, …

Formal Model

• X = set of Customers

• S = set of Items

• Utility function u: X× S R

– R = set of ratings

– R is a totally ordered set

– e.g., 0-5 stars, real number in [0,1]

Utility Matrix

0.4

10.2

0.30.5

0.21

Avatar LOTR Matrix Pirates

Alice

Bob

Carol

David

Key Problems

• (1) Gathering “known” ratings for matrix
– How to collect the data in the utility matrix

• (2) Extrapolate unknown ratings from the
known ones
– Mainly interested in high unknown ratings

• We are not interested in knowing what you don’t like
but what you like

• (3) Evaluating extrapolation methods
– How to measure success/performance of

recommendation methods

(1) Gathering Ratings

• Explicit

– Ask people to rate items

– Doesn’t work well in practice – people
can’t be bothered

• Implicit

– Learn ratings from user actions

• E.g., purchase implies high rating

– What about low ratings?

(2) Extrapolating Utilities

• Key problem: Utility matrix U is sparse

– Most people have not rated most items

– Cold start:

• New items have no ratings

• New users have no history

• Three approaches to recommender systems:

– 1) Content-based

– 2) Collaborative

– 3) Latent factor based

This lecture

Content-based
Recommender Systems

Content-based Recommendations

• Main idea: Recommend items to customer x
similar to previous items rated highly by x

Example:

• Movie recommendations

– Recommend movies with same actor(s),
director, genre, …

• Websites, blogs, news

– Recommend other sites with “similar” content

Plan of Action

likes

Item profiles

Red

Circles

Triangles

User profile

match

recommend
build

Item Profiles

• For each item, create an item profile

• Profile is a set (vector) of features

– Movies: author, title, actor, director,…

– Text: Set of “important” words in document

• How to pick important features?

– Usual heuristic from text mining is TF-IDF
(Term frequency * Inverse Doc Frequency)

• Term … Feature

• Document … Item

Sidenote: TF-IDF

fij = frequency of term (feature) i in doc (item) j

ni = number of docs that mention term i

N = total number of docs

TF-IDF score: wij = TFij × IDFi

Doc profile = set of words with highest TF-IDF
scores, together with their scores

Note: we normalize TF

to discount for “longer”

documents

Two Types of Document Similarity

• In the LSH lecture: Lexical similarity
– Large identical sequences of characters

• For recommendation systems: Content similarity
– Occurrences of common important words

– TF-IDF score: If an uncommon word appears more frequently in two
documents, it contributes to similarity.

• Similar techniques (e.g. MinHashing and LSH) are still
applicable.

Representing Item Profiles
• A vector entry for each feature

– Boolean features

e.g. One bool feature for every actor, director, genre, etc.

– Numeric features

e.g. Budget of a movie, TF-IDF for a document,
etc.

• We may need weighting terms for
normalization of features

Spielberg Scorsese Tarantino Lynch Budget

Jurassic Park 1 0 0 0 63M

Departed 0 1 0 0 90M

Eraserhead 0 0 0 1 20K

Twin Peaks 0 0 0 1 10M

User Profiles – Option 1
• Option 1: Weighted average of rated item

profiles
Jurassic

Park
Minority
Report

Schindler’s
List

Departed Aviator Eraser
head

Twin
Peaks

User 1 4 5 1 1

User 2 2 3 1 5 4

User 3 5 4 5 5 3

Utility matrix (ratings 1-5)

Spielberg Scorcese Lynch

User 1 4.5 0 1

User 2 2.5 1 4.5

User 3 4.5 5 3

User profile(ratings 1-5)

Missing scores

similar to

bad scores

User Profiles – Option 2 (Better)
• Option 2: Subtract average values from ratings

first
Jurassic

Park
Minority
Report

Schindler’s
List

Departed Aviator Eraser
head

Twin
Peaks

Avg

User 1 4 5 0 1 1 2.75

User 2 2 3 1 5 4 3

User 3 5 4 5 5 3 4.4

Utility matrix (ratings 1-5)

User Profiles – Option 2 (Better)
• Option 2: Subtract average values from ratings

first
Jurassic

Park
Minority
Report

Schindler’s
List

Departed Aviator Eraser
head

Twin
Peaks

Avg

User 1 1.25 2.25 -1.75 -1.75 2.75

User 2 -1 0 -2 3 1 3

User 3 0.6 -0.4 0.6 0.6 -1.4 4.4

Utility matrix (ratings 1-5)

Spielberg Scorcese Lynch

User 1 1.75 0 -1.75

User 2 -0.5 -2 2

User 3 -0.1 0.6 -1.4

User profile

Prediction Heuristic
• Given:

– A feature vector for user U

– A feature vector for movie M

• Predict user U’s rating for movie M

• Which distance metric to use?

• Cosine distance is a good candidate

– Works on weighted vectors

– Only directions are important, not the magnitude

• The magnitudes of vectors may be very different in
movies and users

Reminder: Cosine Distance

• Consider x and y represented as vectors in an n-
dimensional space

cos 𝜃 =
𝑥.𝑦

𝑥 .| 𝑦 |

• The cosine distance is defined as the θ value
– Or, cosine similarity is defined as cos(θ)

• Only direction of vectors considered, not the
magnitudes

• Useful when we are dealing with vector spaces

θ

x
y

Reminder: Cosine Distance -
Example

cos 𝜃 =
𝑥. 𝑦

𝑥 . | 𝑦 |
=

0.2 + 0.2 − 0.1

0.01 + 0.04 + 0.01 . 4 + 1 + 1

=
0.3

0.36
= 0.5  θ = 600

Note: The distance is independent of vector magnitudes

θ
x = [0.1, 0.2, -0.1]

y = [2.0, 1.0, 1.0]

Prediction Example

User and movie feature vectors

Actor 1 Actor 2 Actor 3 Actor 4

User U -0.6 0.6 -1.5 2.0

Movie 1 1 1 0 0

Movie 2 1 0 1 0

Movie 3 0 1 0 1

Predict the rating of user U for movies 1, 2, and 3

Prediction Example

Actor 1 Actor 2 Actor 3 Actor 4 Vector
Magn.

User U -0.6 0.6 -1.5 2.0 2.6

Movie 1 1 1 0 0 1.4

Movie 2 1 0 1 0 1.4

Movie 3 0 1 0 1 1.4

Predict the rating of user U for movies 1, 2, and 3

Prediction Example

Actor 1 Actor 2 Actor 3 Actor 4 Vector
Magn.

Cosine
Sim

User U -0.6 0.6 -1.5 2.0 2.6

Movie 1 1 1 0 0 1.4 0

Movie 2 1 0 1 0 1.4 -0.6

Movie 3 0 1 0 1 1.4 0.7

Predict the rating of user U for movies 1, 2, and 3

Prediction Example

Actor 1 Actor 2 Actor 3 Actor 4 Vector
Magn.

Cosine
Sim

Cosine
Dist

User U -0.6 0.6 -1.5 2.0 2.6

Movie 1 1 1 0 0 1.4 0 900

Movie 2 1 0 1 0 1.4 -0.6 1240

Movie 3 0 1 0 1 1.4 0.7 460

Predict the rating of user U for movies 1, 2, and 3

Prediction Example

Actor 1 Actor 2 Actor 3 Actor 4 Vector
Magn.

Cosine
Sim

Cosine
Dist

Interpretation

User U -0.6 0.6 -1.5 2.0 2.6

Movie 1 1 1 0 0 1.4 0 900 Neither likes
nor dislikes

Movie 2 1 0 1 0 1.4 -0.6 1240 Dislikes

Movie 3 0 1 0 1 1.4 0.7 460 Likes

Predict the rating of user U for movies 1, 2, and 3

Content-Based Approach: True or False?

• Need data on other users

False

• Can handle users with unique tastes

True – no need to have similarity with other users

• Can handle new items easily

True – well-defined features for items

• Can handle new users easily

False – how to construct user-profiles?

• Can provide explanations for the predicted recommendations

True – know which features contributed to the ratings

Likes Metallica,

Sinatra and Bieber

Pros: Content-based Approach

• +: No need for data on other users

– No cold-start or sparsity problems

• +: Able to recommend to users with
unique tastes

• +: Able to recommend new & unpopular items

– No first-rater problem

• +: Able to provide explanations

– Can provide explanations of recommended items by
listing content-features that caused an item to be
recommended

Cons: Content-based Approach

• –: Finding the appropriate features is hard
– E.g., images, movies, music

• –: Recommendations for new users
– How to build a user profile?

• –: Overspecialization
– Never recommends items outside user’s

content profile

– People might have multiple interests

– Unable to exploit quality judgments of other users
• e.g. Users who like director X also like director Y

User U rated X, but doesn’t know about Y

Collaborative Filtering

Harnessing quality judgments of other users

Collaborative Filtering

• Consider user x

• Find set N of other
users whose ratings
are “similar” to
x’s ratings

• Estimate x’s ratings
based on ratings
of users in N

x

N

Finding “Similar” Users

• Let rx be the vector of user x’s ratings

• Jaccard similarity measure
– Problem: Ignores the value of the rating

• Cosine similarity measure

– sim(x, y) = cos(rx, ry) =
𝑟𝑥⋅𝑟𝑦

||𝑟𝑥||⋅||𝑟𝑦||

– Problem: Treats missing ratings as “negative”

• Pearson correlation coefficient
– Sxy = items rated by both users x and y

rx = [*, _, _, *, ***]

ry = [*, _, **, **, _]

rx, ry as sets:

rx = {1, 4, 5}

ry = {1, 3, 4}

rx, ry as points:

rx = {1, 0, 0, 1, 3}

ry = {1, 0, 2, 2, 0}

rx, ry … avg.

rating of x, y

𝒔𝒊𝒎 𝒙, 𝒚 =
 𝒔∈𝑺𝒙𝒚 𝒓𝒙𝒔 − 𝒓𝒙 𝒓𝒚𝒔 − 𝒓𝒚

 𝒔∈𝑺𝒙𝒚 𝒓𝒙𝒔 − 𝒓𝒙
𝟐 𝒔∈𝑺𝒙𝒚 𝒓𝒚𝒔 − 𝒓𝒚

𝟐

Similarity Metric

• Intuitively we want: sim(A, B) > sim(A, C)

• Jaccard similarity: 1/5 < 2/4

• Cosine similarity: 0.386 > 0.322

– Considers missing ratings as “negative”

– Solution: subtract the (row) mean

sim A,B vs. A,C:

0.092 > -0.559

Notice cosine sim. is

correlation when

data is centered at 0

𝒔𝒊𝒎(𝒙, 𝒚) =
 𝒊 𝒓𝒙𝒊 ⋅ 𝒓𝒚𝒊

 𝒊 𝒓𝒙𝒊
𝟐 ⋅ 𝒊 𝒓𝒚𝒊

𝟐

Cosine sim:

Rating Predictions

From similarity metric to recommendations:

• Let rx be the vector of user x’s ratings

• Let N be the set of k users most similar to x who
have rated item i

• Prediction for item i of user x:

– 𝑟𝑥𝑖 =
1

𝑘
 𝑦∈𝑁 𝑟𝑦𝑖

– 𝑟𝑥𝑖 =
 𝑦∈𝑁 𝑠𝑥𝑦⋅𝑟𝑦𝑖

 𝑦∈𝑁 𝑠𝑥𝑦

– Other options?

• Many other tricks possible…

Shorthand:

𝒔𝒙𝒚 = 𝒔𝒊𝒎 𝒙, 𝒚

Rating Predictions

Prediction based on the top 2 neighbors who
have also rated HP2

similarity of A

0.09

-0.56

0

Predict the rating of A for HP2:

Option 1: 𝑟𝑥𝑖 =
1

𝑘
 𝑦∈𝑁 𝑟𝑦𝑖

rA,HP2 = (5+3) / 2 = 4

Rating Predictions

Prediction based on the top 2 neighbors who
have also rated HP2

similarity of A

0.09

-0.56

0

Predict the rating of A for HP2:

Option 2: 𝑟𝑥𝑖 =
 𝑦∈𝑁 𝑠𝑥𝑦⋅𝑟𝑦𝑖

 𝑦∈𝑁 𝑠𝑥𝑦

rA,HP2 = (5 x 0.09 + 3 x 0) / 0.09 = 5

Item-Item Collaborative Filtering

• So far: User-user collaborative filtering

• Another view: Item-item

– For item i, find other similar items

– Estimate rating for item i based
on ratings for similar items

– Can use same similarity metrics and
prediction functions as in user-user model












);(

);(

xiNj ij

xiNj xjij

xi
s

rs
r

sij… similarity of items i and j

rxj…rating of user u on item j

N(i;x)… set items rated by x similar to i

Item-Item CF (|N|=2)

121110987654321

455311

3124452

534321423

245424

5224345

423316

users

m
o

v
ie

s

- unknown rating - rating between 1 to 5

Item-Item CF (|N|=2)

121110987654321

455 ?311

3124452

534321423

245424

5224345

423316

users

- estimate rating of movie 1 by user 5

m
o

v
ie

s

Item-Item CF (|N|=2)

121110987654321

455 ?311

3124452

534321423

245424

5224345

423316

users

Neighbor selection:

Identify movies similar to

movie 1, rated by user 5

m
o

v
ie

s

1.00

-0.18

0.41

-0.10

-0.31

0.59

sim(1,m)

Here we use Pearson correlation as similarity:

1) Subtract mean rating mi from each movie i

m1 = (1+3+5+5+4)/5 = 3.6

row 1: [-2.6, 0, -0.6, 0, 0, 1.4, 0, 0, 1.4, 0, 0.4, 0]

2) Compute cosine similarities between rows

Item-Item CF (|N|=2)

121110987654321

455 ?311

3124452

534321423

245424

5224345

423316

users

Neighbor selection:

Identify movies similar to

movie 1, rated by user 5

m
o

v
ie

s

1.00

-0.18

0.41

-0.10

-0.31

0.59

sim(1,m)

Here we use Pearson correlation as similarity:

1) Subtract mean rating mi from each movie i

m1 = (1+3+5+5+4)/5 = 3.6

row 1: [-2.6, 0, -0.6, 0, 0, 1.4, 0, 0, 1.4, 0, 0.4, 0]

2) Compute cosine similarities between rows

Item-Item CF (|N|=2)

121110987654321

455 ?311

3124452

534321423

245424

5224345

423316

users

Compute similarity weights:

s1,3=0.41, s1,6=0.59

m
o

v
ie

s

1.00

-0.18

0.41

-0.10

-0.31

0.59

sim(1,m)

Item-Item CF (|N|=2)

121110987654321

4552.6311

3124452

534321423

245424

5224345

423316

users

Predict by taking weighted average:

r1.5 = (0.41*2 + 0.59*3) / (0.41+0.59) = 2.6

m
o

v
ie

s

𝒓𝒊𝒙 =
 𝒋∈𝑵(𝒊;𝒙) 𝒔𝒊𝒋 ⋅ 𝒓𝒋𝒙

 𝒔𝒊𝒋

CF: Common Practice

• Define similarity sij of items i and j

• Select k nearest neighbors N(i; x)

– Items most similar to i, that were rated by x

• Estimate rating rxi as the weighted average:

baseline estimate for

rxi

 μ = overall mean movie rating
 bx = rating deviation of user x

= (avg. rating of user x) – μ
 bi = rating deviation of movie i










);(

);(

xiNj ij

xiNj xjij

xi
s

rs
r

Before:












);(

);(
)(

xiNj ij

xiNj xjxjij

xixi
s

brs
br

𝒃𝒙𝒊 = 𝝁 + 𝒃𝒙 + 𝒃𝒊

Example

• The global movie rating is μ = 2.8
i.e. average of all ratings of all users is 2.8

• The average rating of user x is μx = 3.5
• Rating deviation of user x is bx = μx – μ = 0.7

i.e. this user’s avg rating is 0.7 larger than global avg

• The average rating for movie i is μi = 2.6
• Rating deviation of movie i is bi = μi – μ = -0.2

i.e. this movie’s avg rating is 0.2 less than global avg

• Baseline estimate for user x and movie i is
𝒃𝒙𝒊 = 𝝁 + 𝒃𝒙 + 𝒃𝒊 = 𝟐. 𝟖 + 𝟎. 𝟕 − 𝟎. 𝟐 = 𝟑. 𝟑

Example (cont’d)

• Items k and m: The most similar items to i that are also rated by x
Assume both have similarity values of 0.4

• Assume:
rxk = 2 and bxk = 3.2 → deviation of -1.2
rxm = 3 and bxk = 3.8 → deviation of -0.8












);(

);(
)(

xiNj ij

xiNj xjxjij

xixi
s

brs
br

Example (cont’d)

Rating rxi is the baseline rating plus the weighted
avg of deviations of the most similar items’ ratings:

𝑟𝑥𝑖 = 3.3 +
0.4× −1.2 +0.4×(−0.8)

0.4+0.4
= 2.3












);(

);(
)(

xiNj ij

xiNj xjxjij

xixi
s

brs
br

Item-Item vs. User-User

0.41

8.010.9

0.30.5

0.81

Avatar LOTR Matrix Pirates

Alice

Bob

Carol

David

 In practice, it has been observed that item-item
often works better than user-user

 Why? Items are simpler, users have multiple tastes

Collaborating Filtering: True or
False?

• Need data on other users
True

• Effective for users with unique tastes and esoteric items
False – relies on similarity between users or items

• Can handle new items easily
False – cold start problems

• Can handle new users easily
False – cold start problems

• Can provide explanations for the predicted recommendations
User-user: False – “because users X, Y, Z also liked it”
Item-item: True – “because you also liked items i, j, k”

Pros/Cons of Collaborative Filtering

• + Works for any kind of item
– No feature selection needed

• - Cold Start:
– Need enough users in the system to find a match

• - Sparsity:
– The user/ratings matrix is sparse
– Hard to find users that have rated the same items

• - First rater:
– Cannot recommend an item that has not been

previously rated
– New items, Esoteric items

• - Popularity bias:
– Cannot recommend items to someone with

unique taste
– Tends to recommend popular items

Hybrid Methods

• Implement two or more different
recommenders and combine predictions

– Perhaps using a linear model

• Add content-based methods to
collaborative filtering

– Item profiles for new item problem

– Demographics to deal with new user problem

Item/User Clustering to Reduce
Sparsity

REMARKS & PRACTICAL TIPS

- Evaluation

- Error metrics

- Complexity / Speed

Evaluation

1 3 4

3 5 5

4 5 5

3

3

2 2 2

5

2 1 1

3 3

1

movies

users

Evaluation

1 3 4

3 5 5

4 5 5

3

3

2 ? ?

?

2 1 ?

3 ?

1

Test Data Set

users

movies

Evaluating Predictions

• Compare predictions with known ratings
– Root-mean-square error (RMSE)

 𝑥𝑖 𝑟𝑥𝑖 − 𝑟𝑥𝑖
∗ 2

where 𝒓𝒙𝒊 is predicted, 𝒓𝒙𝒊
∗ is the true rating of x on i

• Another approach: 0/1 model
– Coverage:

• Number of items/users for which system can make predictions

– Precision:
• Accuracy of predictions

– Receiver operating characteristic (ROC)
• Tradeoff curve between true positives and false positives

Problems with Error Measures

• Narrow focus on accuracy sometimes
misses the point

– Prediction Context

– Prediction Diversity

Prediction Diversity Problem

Problems with Error Measures

• In practice, we care only to predict high
ratings:

– RMSE might penalize a method that does well
for high ratings and badly for others

– Alternative: Precision at top k

Collaborative Filtering: Complexity

• Expensive step is finding k most similar
customers: O(|X|)

• Too expensive to do at runtime
– Could pre-compute

• Naïve pre-computation takes time O(k ·|X|)
– X … set of customers

• We already know how to do this!
– Near-neighbor search in high dimensions (LSH)

– Clustering

– Dimensionality reduction

Tip: Add Data

• Leverage all the data

– Don’t try to reduce data size in an
effort to make fancy algorithms work

– Simple methods on large data do best

• Add more data

– e.g., add IMDB data on genres

• More data beats better algorithms
http://anand.typepad.com/datawocky/2008/03/more-data-usual.html

http://anand.typepad.com/datawocky/2008/03/more-data-usual.html

