BBS654 Data Mining

Pinar Duygulu

Slides are adapted from J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org Mustafa Ozdal

Example: Recommender Systems

Customer X

- Buys Metallica CD
- Buys Megadeth CD

Customer Y

- Does search on Metallica
- Recommender system suggests Megadeth from data collected about customer X

Recommendations

From Scarcity to Abundance

Shelf space is a scarce commodity for traditional retailers

- Also: TV networks, movie theaters,...

- Web enables near-zero-cost dissemination of information about products
 - From scarcity to abundance
- More choice necessitates better filters
 - Recommendation engines
 - How Into Thin Air made Touching the Void a bestseller: <u>http://www.wired.com/wired/archive/12.10/tail.html</u>

Sidenote: The Long Tail

Sources: Erik Brynjolfsson and Jeffrey Hu, MIT, and Michael Smith, Carnegie Mellon; Barnes & Noble; Netflix; RealNetworks Source: Chris Anderson (2004)

Physical vs. Online

Read http://www.wired.com/wired/archive/12.10/tail.html to learn more!

Source: Amazon.com

Types of Recommendations

- Editorial and hand curated
 - List of favorites
 - Lists of "essential" items
- Simple aggregates
 - Top 10, Most Popular, Recent Uploads

Tailored to individual users

– Amazon, Netflix, ...

Formal Model

- **X** = set of **Customers**
- *S* = set of **Items**
- Utility function $u: X \times S \rightarrow R$
 - -R = set of ratings
 - -R is a totally ordered set
 - -e.g., **0-5** stars, real number in **[0,1]**

Utility Matrix

Key Problems

- (1) Gathering "known" ratings for matrix

 How to collect the data in the utility matrix
- (2) Extrapolate unknown ratings from the known ones
 - Mainly interested in high unknown ratings
 - We are not interested in knowing what you don't like but what you like

• (3) Evaluating extrapolation methods

How to measure success/performance of recommendation methods

(1) Gathering Ratings

• Explicit

- Ask people to rate items
- Doesn't work well in practice people can't be bothered

Implicit

- Learn ratings from user actions
 - E.g., purchase implies high rating
- What about low ratings?

(2) Extrapolating Utilities

- Key problem: Utility matrix U is sparse
 - Most people have not rated most items
 - Cold start:
 - New items have no ratings
 - New users have no history
- Three approaches to recommender systems:

 - 1) Content-based
 2) Collaborative
 - 3) Latent factor based

Content-based Recommender Systems

Content-based Recommendations

 Main idea: Recommend items to customer x similar to previous items rated highly by x

Example:

Movie recommendations

 Recommend movies with same actor(s), director, genre, ...

• Websites, blogs, news

Recommend other sites with "similar" content

Plan of Action

Item Profiles

- For each item, create an item profile
- Profile is a set (vector) of features
 - Movies: author, title, actor, director,...
 - **Text:** Set of "important" words in document
- How to pick important features?
 - Usual heuristic from text mining is **TF-IDF** (Term frequency * Inverse Doc Frequency)
 - Term ... Feature
 - Document ... Item

Sidenote: TF-IDF

 f_{ij} = frequency of term (feature) i in doc (item) j

$$TF_{ij} = \frac{f_{ij}}{\max_k f_{kj}}$$

Note: we normalize TF to discount for "longer" documents

- **n**_i = number of docs that mention term **i**
- $\mathbf{N} = \text{total number of docs}$ $IDF_i = \log \frac{N}{n_i}$

TF-IDF score:
$$w_{ij} = TF_{ij} \times IDF_i$$

Doc profile = set of words with highest **TF-IDF** scores, together with their scores

Two Types of Document Similarity

- In the LSH lecture: Lexical similarity
 - Large identical sequences of characters
- For recommendation systems: Content similarity
 - Occurrences of common important words
 - TF-IDF score: If an uncommon word appears more frequently in two documents, it contributes to similarity.
- Similar techniques (e.g. MinHashing and LSH) are still applicable.

Representing Item Profiles

- A vector entry for each feature
 - Boolean features

e.g. One bool feature for every actor, director, genre, etc.

– Numeric features

e.g. Budget of a movie, TF-IDF for a document,

elc.	Spielberg	Scorsese	Tarantino	Lynch	Budget
Jurassic Park	1	0	0	0	63M
Departed	0	1	0	0	90M
Eraserhead	0	0	0	1	20K
Twin Peaks	0	0	0	1	10M

 We may need weighting terms for normalization of features

User Profiles – Option 1

Option 1: Weighted average of rated item profiles
 Utility matrix (ratings 1-5)

	Jurassic Park	Minority Report	Schindler's List	Departed	Aviator	Eraser head	Twin Peaks
User 1	4		5			1	1
User 2	2	3			1	5	4
User 3		5	4	5	5		3

User profile(ratings 1-5)

	Spielberg	Scorcese	Lynch
User 1	4.5	0	1
User 2	2.5	1	4.5
User 3	4.5	5	3

Missing scores similar to bad scores

User Profiles – Option 2 (Better)

 Option 2: Subtract average values from ratings first
 Utility matrix (ratings 1-5)

	Jurassic Park	Minority Report	Schindler's List	Departed	Aviator	Eraser head	Twin Peaks	Avg
User 1	4		5	0		1	1	2.75
User 2	2	3			1	5	4	3
User 3		5	4	5	5		3	4.4

User Profiles – Option 2 (Better)

 Option 2: Subtract average values from ratings first
 Utility matrix (ratings 1-5)

	Jurassic Park	Minority Report	Schindler's List	Departed	Aviator	Eraser head	Twin Peaks	Avg
User 1	1.25		2.25			-1.75	-1.75	2.75
User 2	-1	0			-2	3	1	3
User 3		0.6	-0.4	0.6	0.6		-1.4	4.4

User profile

	Spielberg	Scorcese	Lynch
User 1	1.75	0	-1.75
User 2	-0.5	-2	2
User 3	-0.1	0.6	-1.4

Prediction Heuristic

- Given:
 - A feature vector for user U
 - A feature vector for movie M
- Predict user U's rating for movie M
- Which distance metric to use?

- Cosine distance is a good candidate
 - Works on weighted vectors
 - Only directions are important, not the magnitude
 - The magnitudes of vectors may be very different in movies and users

Reminder: Cosine Distance

 Consider x and y represented as vectors in an ndimensional space

$$\int_{\Theta}^{x} \int_{y}^{y} \cos(\theta) = \frac{x \cdot y}{||x|| \cdot ||y||}$$

- The cosine distance is defined as the θ value
 Or, cosine similarity is defined as cos(θ)
- Only direction of vectors considered, not the magnitudes
- Useful when we are dealing with vector spaces

Reminder: Cosine Distance -Example

y = [2.0, 1.0, 1.0]x = [0.1, 0.2, -0.1]

$$\cos(\theta) = \frac{x \cdot y}{||x|| \cdot ||y||} = \frac{0.2 + 0.2 - 0.1}{\sqrt{0.01 + 0.04 + 0.01} \cdot \sqrt{4 + 1 + 1}}$$
$$= \frac{0.3}{\sqrt{0.36}} = 0.5 \Rightarrow \theta = 60^{\circ}$$

Note: The distance is independent of vector magnitudes

Predict the rating of user U for movies 1, 2, and 3

	Actor 1	Actor 2	Actor 3	Actor 4
User U	-0.6	0.6	-1.5	2.0
Movie 1	1	1	0	0
Movie 2	1	0	1	0
Movie 3	0	1	0	1

User and movie feature vectors

	Actor 1	Actor 2	Actor 3	Actor 4	Vector Magn.
User U	-0.6	0.6	-1.5	2.0	2.6
Movie 1	1	1	0	0	1.4
Movie 2	1	0	1	0	1.4
Movie 3	0	1	0	1	1.4

	Actor 1	Actor 2	Actor 3	Actor 4	Vector Magn.	Cosine Sim
User U	-0.6	0.6	-1.5	2.0	2.6	
Movie 1	1	1	0	0	1.4	0
Movie 2	1	0	1	0	1.4	-0.6
Movie 3	0	1	0	1	1.4	0.7

	Actor 1	Actor 2	Actor 3	Actor 4	Vector Magn.	Cosine Sim	Cosine Dist
User U	-0.6	0.6	-1.5	2.0	2.6		
Movie 1	1	1	0	0	1.4	0	90 ⁰
Movie 2	1	0	1	0	1.4	-0.6	124 ⁰
Movie 3	0	1	0	1	1.4	0.7	46 ⁰

	Actor 1	Actor 2	Actor 3	Actor 4	Vector Magn.	Cosine Sim	Cosine Dist	Interpretation
User U	-0.6	0.6	-1.5	2.0	2.6			
Movie 1	1	1	0	0	1.4	0	90 ⁰	Neither likes nor dislikes
Movie 2	1	0	1	0	1.4	-0.6	124 ⁰	Dislikes
Movie 3	0	1	0	1	1.4	0.7	46 ⁰	Likes

Content-Based Approach: True or False?

- Need data on other users False
- Can handle users with unique tastes

Likes Metallica, Sinatra and Bieber

True – no need to have similarity with other users

• Can handle new items easily

True – well-defined features for items

• Can handle new users easily

False – how to construct user-profiles?

Can provide explanations for the predicted recommendations
 True – know which features contributed to the ratings

Pros: Content-based Approach

- +: No need for data on other users
 - No cold-start or sparsity problems
- +: Able to recommend to users with unique tastes
- +: Able to recommend new & unpopular items
 - No first-rater problem
- +: Able to provide explanations
 - Can provide explanations of recommended items by listing content-features that caused an item to be recommended

Cons: Content-based Approach

- -: Finding the appropriate features is hard
 - E.g., images, movies, music
- -: Recommendations for new users
 - How to build a user profile?
- –: Overspecialization
 - Never recommends items outside user's content profile
 - People might have multiple interests
 - Unable to exploit quality judgments of other users
 - e.g. Users who like director X also like director Y
 User U rated X, but doesn't know about Y

Collaborative Filtering

Harnessing quality judgments of other users

Collaborative Filtering

- Consider user **x**
- Find set *N* of other users whose ratings are "similar" to *x*'s ratings
- prefer prefer ence ence similar X prefer recommendation Ν recommended search items

database

 Estimate x's ratings based on ratings of users in N

Finding "Similar" Use $r_{y} = [*, _, _, *, *, ***]$

- Let **r**_x be the vector of user **x**'s ratings
- Jaccard similarity measure

- Problem: Ignores the value of the rating

Cosine similarity measure

$$-\sin(\boldsymbol{x}, \boldsymbol{y}) = \cos(\boldsymbol{r}_{\boldsymbol{x}}, \boldsymbol{r}_{\boldsymbol{y}}) = \frac{r_{\boldsymbol{x}} \cdot r_{\boldsymbol{y}}}{||r_{\boldsymbol{x}}|| \cdot ||r_{\boldsymbol{y}}||}$$

- Problem: Treats missing ratings as "negative"

Pearson correlation coefficient

 $-S_{xy}$ = items rated by both users x and y

$$sim(x,y) = \frac{\sum_{s \in S_{xy}} (r_{xs} - \overline{r_x}) (r_{ys} - \overline{r_y})}{\sqrt{\sum_{s \in S_{xy}} (r_{xs} - \overline{r_x})^2} \sqrt{\sum_{s \in S_{xy}} (r_{ys} - \overline{r_y})^2}} \frac{\overline{r_x}, \overline{r_y} \dots \text{ avg.}}{r_{x} \text{ avg. rating of } x, y}}$$

 r_x, r_y as sets: $r_x = \{1, 4, 5\}$ $r_y = \{1, 3, 4\}$

 $r_x, r_y \text{ as points:}$ $r_x = \{1, 0, 0, 1, 3\}$ $r_y = \{1, 0, 2, 2, 0\}$

Similarity Metric

	HP1	HP2	HP3	TW	SW1	SW2	SW3
A	4			5	1		
B	5	5	4				
C				2	4	5	
D		3					3

- Intuitively we want: sim(A, B) > sim(A, C)
- Jaccard similarity: 1/5 < 2/4
- **Cosine similarity:** 0.386 > 0.322
 - Considers missing ratings as "negative"
 - Solution: subtract the (row) mean

	HP1	HP2	HP3	\mathbf{TW}	SW1	SW2	SW3
Α	2/3			5/3	-7/3		
B	1/3	1/3	-2/3				
C				-5/3	1/3	4/3	
D		0					0

sim A,B vs. A,C: 0.092 > -0.559

Notice cosine sim. is correlation when data is centered at 0

Rating Predictions

From similarity metric to recommendations:

- Let **r**_x be the vector of user **x**'s ratings
- Let N be the set of k users most similar to x who have rated item i
- Prediction for item *i* of user x:

$$-r_{xi} = \frac{1}{k} \sum_{y \in N} r_{yi}$$
$$-r_{xi} = \frac{\sum_{y \in N} s_{xy} \cdot r_{yi}}{\sum_{y \in N} s_{xy}}$$

Shorthand: $s_{xy} = sim(x, y)$

- Other options?

• Many other tricks possible...

Rating Predictions

Predict the rating of A for HP2:

Prediction based on the top 2 neighbors who have also rated HP2 Option 1: $r_{xi} = \frac{1}{k} \sum_{y \in N} r_{yi}$

 $r_{A,HP2} = (5+3) / 2 = 4$

Rating Predictions

Predict the rating of A for HP2:

Prediction based on the top 2 neighbors who have also rated HP2

Option 2:
$$r_{xi} = \frac{\sum_{y \in N} s_{xy} \cdot r_{yi}}{\sum_{y \in N} s_{xy}}$$

 $r_{A,HP2} = (5 \times 0.09 + 3 \times 0) / 0.09 = 5$

Item-Item Collaborative Filtering

- So far: User-user collaborative filtering
- Another view: Item-item
 - For item *i*, find other similar items
 - Estimate rating for item *i* based on ratings for similar items
 - Can use same similarity metrics and prediction functions as in user-user model

$$r_{xi} = \frac{\sum_{j \in N(i;x)} S_{ij} \cdot r_{xj}}{\sum_{j \in N(i;x)} S_{ij}}$$

s_{ij... similarity of items i and j
r_{xj...rating of user u on item j
N(i;x)... set items rated by x similar to i

- unknown rating

- rating between 1 to 5

- estimate rating of movie 1 by user 5

Neighbor selection:

Identify movies similar to movie 1, rated by user 5

Here we use Pearson correlation as similarity:

- 1) Subtract mean rating m_i from each movie i
 - $m_1 = (1+3+5+5+4)/5 = 3.6$
 - *row 1:* [-2.6, 0, -0.6, 0, 0, 1.4, 0, 0, 1.4, 0, 0.4, 0]
- 2) Compute cosine similarities between rows

Neighbor selection:

Identify movies similar to movie 1, rated by user 5

Here we use Pearson correlation as similarity:

- 1) Subtract mean rating m_i from each movie i
 - $m_1 = (1+3+5+5+4)/5 = 3.6$
- *row 1:* [-2.6, 0, -0.6, 0, 0, 1.4, 0, 0, 1.4, 0, 0.4, 0]
- 2) Compute cosine similarities between rows

Compute similarity weights:

s_{1,3}=0.41, s_{1,6}=0.59

users

2.6 <u>3</u> <u>6</u>

Predict by taking weighted average:

movies

 $r_{1.5} = (0.41^{*}2 + 0.59^{*}3) / (0.41 + 0.59) = 2.6$

$$r_{ix} = \frac{\sum_{j \in N(i;x)} s_{ij} \cdot r_{jx}}{\sum s_{ij}}$$

CF: Common Practice

- Define **similarity s**_{ii} of items **i** and **j**
- Select k nearest neighbors N(i; x)
 Items most similar to i, that were rated by x
- Estimate rating r_{xi} as the weighted average:

$$r_{xi} = b_{xi} + \frac{\sum_{j \in N(i;x)} S_{ij} \cdot (r_{xj} - b_{xj})}{\sum_{j \in N(i;x)} S_{ij}}$$

baseline estimate for

$$r_{xi}$$
$$b_{xi} = \mu + b_x + b_i$$

- μ = overall mean movie rating
- **b**_x = rating deviation of user **x**
 - = (avg. rating of user \mathbf{x}) $\boldsymbol{\mu}$
- **b**_i = rating deviation of movie **i**

Example

- The global movie rating is μ = 2.8
 i.e. average of all ratings of all users is 2.8
- The average rating of user x is $\mu_x = 3.5$
- Rating deviation of user x is $b_x = \mu_x \mu = 0.7$ i.e. this user's avg rating is 0.7 larger than global avg
- The average rating for movie i is $\mu_i = 2.6$
- Rating deviation of movie i is $b_i = \mu_i \mu = -0.2$ i.e. this movie's avg rating is 0.2 less than global avg
- Baseline estimate for user x and movie i is

 $b_{xi} = \mu + b_x + b_i = 2.8 + 0.7 - 0.2 = 3.3$

Example (cont'd)

$$r_{xi} = b_{xi} + \frac{\sum_{j \in N(i;x)} s_{ij} \cdot (r_{xj} - b_{xj})}{\sum_{j \in N(i;x)} s_{ij}}$$

- Items k and m: The most similar items to i that are also rated by x Assume both have similarity values of 0.4
- Assume:

 $r_{xk} = 2$ and $b_{xk} = 3.2$ $r_{xm} = 3$ and $b_{xk} = 3.8$

- \rightarrow deviation of -1.2
- \rightarrow deviation of -0.8

Example (cont'd) $r_{xi} = b_{xi} + \frac{\sum_{j \in N(i;x)} s_{ij} \cdot (r_{xj} - b_{xj})}{\sum_{j \in N(i;x)} s_{ij}}$

Rating r_{xi} is the baseline rating plus the weighted avg of deviations of the most similar items' ratings: $r_{xi} = 3.3 + \frac{0.4 \times (-1.2) + 0.4 \times (-0.8)}{0.4 \pm 0.4} = 2.3$

Item-Item vs. User-User

- In practice, it has been observed that <u>item-item</u> often works better than user-user
- Why? Items are simpler, users have multiple tastes

Collaborating Filtering: True or False?

- Need data on other users True
- Effective for users with unique tastes and esoteric items
 False relies on similarity between users or items
- Can handle new items easily False – cold start problems
- Can handle new users easily
 False cold start problems
- Can provide explanations for the predicted recommendations User-user: False – "because users X, Y, Z also liked it" Item-item: True – "because you also liked items i, j, k"

Pros/Cons of Collaborative Filtering

+ Works for any kind of item

No feature selection needed

- Cold Start:

Need enough users in the system to find a match

• - Sparsity:

- The user/ratings matrix is sparse
- Hard to find users that have rated the same items

• - First rater:

- Cannot recommend an item that has not been previously rated
- New items, Esoteric items

• - Popularity bias:

- Cannot recommend items to someone with unique taste
- Tends to recommend popular items

Hybrid Methods

- Implement two or more different recommenders and combine predictions
 - Perhaps using a linear model
- Add content-based methods to collaborative filtering
 - Item profiles for new item problem
 - Demographics to deal with new user problem

Item/User Clustering to Reduce Sparsity

	HP1	HP2	HP3	TW	SW1	SW2	SW3
A	4			5	1		
B	5	5	4				
C				2	4	5	
D		3					3

		HP	TW	SW
Ν	A	4	5	1
	B	4.67		
	C		2	4.5
	D	3		3

REMARKS & PRACTICAL TIPS

- Evaluation
- Error metrics
- Complexity / Speed

Evaluating Predictions

Compare predictions with known ratings

- Root-mean-square error (RMSE)

$$\sqrt{\sum_{xi} (r_{xi} - r_{xi}^*)^2}$$

where r_{xi} is predicted, r_{xi}^* is the true rating of x on i

• Another approach: 0/1 model

- Coverage:

- Number of items/users for which system can make predictions
- Precision:
 - Accuracy of predictions
- Receiver operating characteristic (ROC)
 - Tradeoff curve between true positives and false positives

Problems with Error Measures

- Narrow focus on accuracy sometimes misses the point
 - Prediction Context
 - Prediction Diversity

Prediction Diversity Problem

Werckmeister Harmonies Damnation Off of the fee genuinely visionary filmmakers (6)

Problems with Error Measures

- In practice, we care only to predict high ratings:
 - RMSE might penalize a method that does well for high ratings and badly for others
 - Alternative: Precision at top k

Collaborative Filtering: Complexity

- Expensive step is finding k most similar customers: O(|X|)
- Too expensive to do at runtime

Could pre-compute

- Naïve pre-computation takes time O(k · |X|)
 X ... set of customers
- We already know how to do this!
 - Near-neighbor search in high dimensions (LSH)
 - Clustering
 - Dimensionality reduction

Tip: Add Data

Leverage all the data

- Don't try to reduce data size in an effort to make fancy algorithms work
- Simple methods on large data do best
- Add more data
 - e.g., add IMDB data on genres

• More data beats better algorithms

http://anand.typepad.com/datawocky/2008/03/more-data-usual.html