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Sequence Database:
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Mining Time-Series Data

• Time-series database

– Consists of sequences of values or events changing with time

– Data is recorded at regular intervals

– Characteristic time-series components

• Trend, cycle, seasonal, irregular

• Applications

– Financial: stock price, inflation

– Industry: power consumption

– Scientific: experiment results

– Meteorological: precipitation
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Examples of Sequence Data

Sequence 

Database

Sequence Element 

(Transaction)

Event

(Item)

Customer Purchase history of a given 

customer

A set of items bought by 

a customer at time t

Books, diary products, 

CDs, etc

Web Data Browsing activity of a 

particular Web visitor

A collection of files 

viewed by a Web visitor 

after a single mouse click

Home page, index 

page, contact info, etc

Event data History of events generated 

by a given sensor

Events triggered by a 

sensor at time t

Types of alarms 

generated by sensors 

Genome 

sequences

DNA sequence of a 

particular species

An element of the DNA 

sequence 

Bases A,T,G,C
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Sequence Mining



Formal Definition of a Sequence

• A sequence is an ordered list of elements 
(transactions)

s = < e1 e2 e3 … >

– Each element contains a collection of events (items)

ei = {i1, i2, …, ik}

– Each element is attributed to a specific time or location

• Length of a sequence, |s|, is given by the number of 
elements of the sequence

• A k-sequence is a sequence that contains k events 
(items)
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Formal Definition of a Subsequence

• A sequence <a1 a2 … an> is contained in another sequence <b1 

b2 … bm> (m ≥ n) if there exist integers 
i1 < i2 < … < in such that a1  bi1 , a2  bi1, …, an  bin

• The support of a subsequence w is defined as the fraction of 
data sequences that contain w

• A sequential pattern is a frequent subsequence (i.e., a 
subsequence whose support is ≥ minsup)

Data sequence Subsequence Contain?

< {2,4} {3,5,6} {8} > < {2} {3,5} > Yes

< {1,2} {3,4} > < {1} {2} > No

< {2,4} {2,4} {2,5} > < {2} {4} > Yes
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Sequential Pattern Mining: Definition

• Given: 

– a database of sequences 

– a user-specified minimum support threshold, 
minsup

• Task:

– Find all subsequences with support ≥ minsup
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What Is Sequential Pattern Mining?

• Given a set of sequences, find the complete set 
of frequent subsequences

A sequence database

A sequence : < (ef) (ab)  (df) c b >

An element may contain a set of items.
Items within an element are unordered
and we list them alphabetically.

<a(bc)dc> is a subsequence 
of <a(abc)(ac)d(cf)>

Given support threshold min_sup =2, <(ab)c> is a 
sequential pattern

SID sequence

10 <a(abc)(ac)d(cf)>

20 <(ad)c(bc)(ae)>

30 <(ef)(ab)(df)cb>

40 <eg(af)cbc>

J. Han and M. Kamber. Data Mining: Concepts and Techniques, www.cs.uiuc.edu/~hanji
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Sequential Pattern Mining: Challenge

• Given a sequence:   <{a b} {c d e} {f} {g h i}>

– Examples of subsequences:

<{a} {c d} {f} {g} >, < {c d e} >, < {b} {g} >, etc.

• How many k-subsequences can be extracted 
from a given n-sequence?

<{a  b} {c d  e} {f} {g h  i}>  n = 9

k=4:       Y _    _ Y Y _  _  _ Y

<{a}         {d e}             {i}>   

126
4

9

:Answer



















k

n
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Challenges on Sequential Pattern Mining

• A huge number of possible sequential patterns are hidden in 

databases

• A mining algorithm should 

– find the complete set of patterns, when possible, satisfying 

the minimum support (frequency) threshold

– be highly efficient, scalable, involving only a small  number 

of database scans

– be able to incorporate various kinds of user-specific 

constraints 
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Sequential Pattern Mining Algorithms

• Concept introduction and an initial Apriori-like algorithm

– Agrawal & Srikant. Mining sequential patterns, ICDE’95

• Apriori-based method: GSP (Generalized Sequential Patterns: Srikant &  

Agrawal @ EDBT’96)

• Pattern-growth methods: FreeSpan & PrefixSpan (Han et al.@KDD’00; Pei, 

et al.@ICDE’01)

• Vertical format-based mining: SPADE (Zaki@Machine Leanining’00)

• Constraint-based sequential pattern mining (SPIRIT: Garofalakis, Rastogi, 

Shim@VLDB’99; Pei, Han, Wang @ CIKM’02)

• Mining closed sequential patterns: CloSpan (Yan, Han & Afshar @SDM’03)
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Sequential Pattern Mining: Example

Minsup = 50%

Examples of Frequent Subsequences:

< {1,2} >       s=60%

< {2,3} > s=60%

< {2,4}> s=80%

< {3} {5}> s=80%

< {1} {2} > s=80%

< {2} {2} > s=60%

< {1} {2,3} > s=60%

< {2} {2,3} > s=60%

< {1,2} {2,3} > s=60%

Object Timestamp Events

A 1 1,2,4

A 2 2,3

A 3 5

B 1 1,2

B 2 2,3,4

C 1 1, 2

C 2 2,3,4

C 3 2,4,5

D 1 2

D 2 3, 4

D 3 4, 5

E 1 1, 3

E 2 2, 4, 5
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Extracting Sequential Patterns

• Given n events:   i1, i2, i3, …, in

• Candidate 1-subsequences: 
<{i1}>, <{i2}>, <{i3}>, …, <{in}>

• Candidate 2-subsequences:
<{i1, i2}>, <{i1, i3}>, …, <{i1} {i1}>, <{i1} {i2}>, …, <{in-1} {in}>

• Candidate 3-subsequences:
<{i1, i2 , i3}>, <{i1, i2 , i4}>, …, <{i1, i2} {i1}>, <{i1, i2} {i2}>, …,

<{i1} {i1 , i2}>, <{i1} {i1 , i3}>, …, <{i1} {i1} {i1}>, <{i1} {i1} {i2}>, 
…
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The Apriori Property of Sequential Patterns

• A basic property: Apriori (Agrawal & Sirkant’94) 

– If a sequence S is not frequent 

– Then none of the super-sequences of S is frequent

– E.g, <hb> is infrequent  so do <hab> and <(ah)b>

<a(bd)bcb(ade)>50

<(be)(ce)d>40

<(ah)(bf)abf>30

<(bf)(ce)b(fg)>20

<(bd)cb(ac)>10

SequenceSeq. ID Given support threshold

min_sup =2 
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Generalized Sequential Pattern (GSP)

• Step 1: 
– Make the first pass over the sequence database D to yield all the 1-

element frequent sequences

• Step 2: 

Repeat until no new frequent sequences are found
– Candidate Generation: 

• Merge pairs of frequent subsequences found in the (k-1)th pass to 
generate candidate sequences that contain k items 

– Candidate Pruning:
• Prune candidate k-sequences that contain infrequent (k-1)-subsequences

– Support Counting:
• Make a new pass over the sequence database D to find the support for 

these candidate sequences

– Candidate Elimination:
• Eliminate candidate k-sequences whose actual support is less than minsup
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Finding Length-1 Sequential Patterns

• Initial candidates: 
– <a>, <b>, <c>, <d>, <e>, <f>, <g>, <h>

• Scan database once, count support for 
candidates

<a(bd)bcb(ade)>50

<(be)(ce)d>40

<(ah)(bf)abf>30

<(bf)(ce)b(fg)>20

<(bd)cb(ac)>10

SequenceSeq. ID

min_sup =2 

Cand Sup

<a> 3

<b> 5

<c> 4

<d> 3

<e> 3

<f> 2

<g> 1

<h> 1
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Generating Length-2 Candidates

<a> <b> <c> <d> <e> <f>

<a> <aa> <ab> <ac> <ad> <ae> <af>

<b> <ba> <bb> <bc> <bd> <be> <bf>

<c> <ca> <cb> <cc> <cd> <ce> <cf>

<d> <da> <db> <dc> <dd> <de> <df>

<e> <ea> <eb> <ec> <ed> <ee> <ef>

<f> <fa> <fb> <fc> <fd> <fe> <ff>

<a> <b> <c> <d> <e> <f>

<a> <(ab)> <(ac)> <(ad)> <(ae)> <(af)>

<b> <(bc)> <(bd)> <(be)> <(bf)>

<c> <(cd)> <(ce)> <(cf)>

<d> <(de)> <(df)>

<e> <(ef)>

<f>

51 length-2

Candidates

Without Apriori 

property,

8*8+8*7/2=92 

candidates

Apriori prunes 

44.57% candidates
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Finding Lenth-2 Sequential Patterns

• Scan database one more time, collect support count 
for each length-2 candidate

• There are 19 length-2 candidates which pass the 
minimum support threshold

– They are length-2 sequential patterns
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The GSP Mining Process

<a> <b> <c> <d> <e> <f> <g> <h>

<aa> <ab> … <af> <ba> <bb> … <ff> <(ab)> … <(ef)>

<abb> <aab> <aba> <baa> <bab> …

<abba> <(bd)bc> …

<(bd)cba>

1st scan: 8 cand. 6 length-1 seq. 
pat.

2nd scan: 51 cand. 19 length-2 seq. 
pat. 10 cand. not in DB at all

3rd scan: 46 cand. 19 length-3 seq. 
pat. 20 cand. not in DB at all

4th scan: 8 cand. 6 length-4 seq. 
pat. 

5th scan: 1 cand. 1 length-5 seq. 
pat. 

Cand. cannot pass 
sup. threshold

Cand. not in DB at all

<a(bd)bcb(ade)>50

<(be)(ce)d>40

<(ah)(bf)abf>30

<(bf)(ce)b(fg)>20

<(bd)cb(ac)>10

SequenceSeq. ID

min_sup =2 



Candidate Generation

• Base case (k=2): 
– Merging two frequent 1-sequences <{i1}>  and <{i2}> will produce two 

candidate 2-sequences:  <{i1} {i2}>  and   <{i1 i2}>

• General case (k>2):
– A frequent (k-1)-sequence w1 is merged with another frequent 

(k-1)-sequence w2 to produce a candidate k-sequence if the subsequence 
obtained by removing the first event in w1 is the same as the subsequence 
obtained by removing the last event in w2

• The resulting candidate after merging is given by the sequence w1 extended 
with the last event of w2. 

– If the last two events in w2 belong to the same element, then the last 
event in w2 becomes part of the last element in w1

– Otherwise, the last event in w2 becomes a separate element appended to 
the end of w1
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Candidate Generation Examples

• Merging the sequences 
w1=<{1} {2 3} {4}> and w2 =<{2 3} {4 5}> 
will produce the candidate sequence < {1} {2 3} {4 5}> because the last two 
events in w2 (4 and 5) belong to the same element

• Merging the sequences 
w1=<{1} {2 3} {4}> and w2 =<{2 3} {4} {5}> 
will produce the candidate sequence < {1} {2 3} {4} {5}> because the last 
two events in w2 (4 and 5) do not belong to the same element

• We do not have to merge the sequences 
w1 =<{1} {2 6} {4}> and w2 =<{1} {2} {4 5}> 
to produce the candidate < {1} {2 6} {4 5}> because if the latter is a viable 
candidate, then it can be obtained by merging w1 with 
< {1} {2 6} {5}>
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GSP Example

< {1} {2} {3} >

< {1} {2 5} >

< {1} {5} {3} >

< {2} {3} {4} >

< {2 5} {3} >

< {3} {4} {5} >

< {5} {3 4} >

< {1} {2} {3} {4} >

< {1} {2 5} {3} >

< {1} {5} {3 4} >

< {2} {3} {4} {5} >

< {2 5} {3 4} >
< {1} {2 5} {3} >

Frequent

3-sequences

Candidate

Generation

Candidate

Pruning
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The SPADE Algorithm

• SPADE (Sequential PAttern Discovery using Equivalent Class) 

developed by Zaki 2001

• A vertical format sequential pattern mining method

• A sequence database is mapped to a large set of 

– Item: <SID, EID>

• Sequential pattern mining is performed by 

– growing the subsequences (patterns) one item at 

a time by Apriori candidate generation
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The SPADE Algorithm
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The main advantage 

of the vertical 

approach is that it 

enables different 

search strategies 

over the sequence 

search space, 

including breadth or 

depth-first search



Bottlenecks of GSP and SPADE

• A huge set of candidates could be generated

– 1,000 frequent length-1 sequences generate s huge number of length-

2 candidates!

• Multiple scans of database in mining

• Mining long sequential patterns

– Needs an exponential number of short candidates

– A length-100 sequential pattern needs 1030

candidate sequences!

500,499,1
2

9991000
10001000 




30100
100

1

1012
100










i i
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Projection-Based Sequence Mining: 
PrefixSpan

• PrefixSpan : Prefix-Projected Sequential Pattern 
Growth

– Projection-based 

– But only prefix-based projection: less projections and 
quickly shrinking sequences

• J.Pei, J.Han,… PrefixSpan : Mining sequential patterns 
efficiently by prefix-projected pattern growth. 
ICDE’01.

• The main idea in PrefixSpan is to compute the support 

for only the individual symbols in the projected database 

Ds  , and then to perform recursive projections on the 
frequent symbols in a depth-first manner.
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Prefix and Suffix (Projection)

• <a>, <aa>, <a(ab)> and <a(abc)> are prefixes of 

sequence <a(abc)(ac)d(cf)>

• Given sequence <a(abc)(ac)d(cf)>

Prefix Suffix (Prefix-Based Projection)

<a> <(abc)(ac)d(cf)>

<aa> <(_bc)(ac)d(cf)>

<ab> <(_c)(ac)d(cf)>



30

Mining Sequential Patterns by Prefix 
Projections

• Step 1: find length-1 sequential patterns

– <a>, <b>, <c>, <d>, <e>, <f>

• Step 2: divide search space. The complete set of seq. 
pat. can be partitioned into 6 subsets:

– The ones having prefix <a>;

– The ones having prefix <b>;

– …

– The ones having prefix <f>

SID sequence

10 <a(abc)(ac)d(cf)>

20 <(ad)c(bc)(ae)>

30 <(ef)(ab)(df)cb>

40 <eg(af)cbc>
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Finding Seq. Patterns with Prefix <a>

• Only need to consider projections w.r.t. <a>

– <a>-projected database: <(abc)(ac)d(cf)>, <(_d)c(bc)(ae)>, 

<(_b)(df)cb>, <(_f)cbc>

• Find all the length-2 seq. pat. Having prefix <a>: <aa>, 

<ab>, <(ab)>, <ac>, <ad>, <af>

– Further partition into 6 subsets

• Having prefix <aa>;

• …

• Having prefix <af>

SID sequence

10 <a(abc)(ac)d(cf)>

20 <(ad)c(bc)(ae)>

30 <(ef)(ab)(df)cb>

40 <eg(af)cbc>
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Completeness of PrefixSpan

SID sequence

10 <a(abc)(ac)d(cf)>

20 <(ad)c(bc)(ae)>

30 <(ef)(ab)(df)cb>

40 <eg(af)cbc>

SDB

Length-1 sequential patterns
<a>, <b>, <c>, <d>, <e>, <f>

<a>-projected database
<(abc)(ac)d(cf)>
<(_d)c(bc)(ae)>
<(_b)(df)cb>
<(_f)cbc>

Length-2 sequential
patterns
<aa>, <ab>, <(ab)>,
<ac>, <ad>, <af>

Having prefix <a>

Having prefix <aa>

<aa>-proj. db … <af>-proj. db

Having prefix <af>

<b>-projected database …

Having prefix <b>

Having prefix <c>, …, <f>

… …
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The Algorithm of PrefixSpan

• Input: A sequence database S, and the minimum 
support threshold min_sup

• Output: The complete set of sequential patterns

• Method: Call PrefixSpan(<>,0,S)

• Subroutine PrefixSpan(α, l, S|α)

• Parameters:
– α: sequential pattern,

– l: the length of α;

– S|α: the α-projected database, if α ≠<>; otherwise; the 
sequence database S
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The Algorithm of PrefixSpan(2)

• Method
1. Scan S|α once, find the set of frequent items b such 

that:
a) b can be assembled to the last element of α to form    

a sequential pattern; or
b) <b> can be appended to α to form a sequential 

pattern.

2. For each frequent item b, append it to α to form a 
sequential pattern α’, and output α’;

3. For each α’, construct α’-projected database S|α’, 
and call PrefixSpan(α’, l+1, S|α’).



PrefixSpan
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Minsup = 3
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Efficiency of PrefixSpan

• No candidate sequence needs to be generated

• Projected databases keep shrinking

• Major cost of PrefixSpan: constructing 

projected databases

– Can be improved by bi-level projections



Timing Constraints

{A   B}     {C}    {D   E}

<= ms

<= xg >ng

xg: max-gap

ng: min-gap

ms: maximum span

• Maxspan: maximum allowed time difference between the latest and the 

earliest occurrences of events in the entire sequence.

• Mingap: minimum time difference between consecutive elements of a 

sequence

• Maxgap: maximum time difference between consecutive elements of a 

sequence



Timing Constraints

{A   B}     {C}    {D   E}

<= ms

<= xg >ng

xg: max-gap

ng: min-gap

ms: maximum span

Data sequence Subsequence Contain?

< {2,4} {3,5,6} {4,7} {4,5} {8} > < {6} {5} > Yes

< {1} {2} {3} {4} {5}> < {1} {4} > No

< {1} {2,3} {3,4} {4,5}> < {2} {3} {5} > Yes

< {1,2} {3} {2,3} {3,4} {2,4} {4,5}> < {1,2} {5} > No

xg = 2, ng = 0, ms= 4



Mining Sequential Patterns with Timing Constraints

• Approach 1:

– Mine sequential patterns without timing constraints

– Postprocess the discovered patterns

• Approach 2:

– Modify GSP to directly prune candidates that violate 
timing constraints
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Other Formulation

• In some domains, we may have only one very long 
time series

– Example: 
• monitoring network traffic events for attacks

• monitoring telecommunication alarm signals

• Goal is to find frequent sequences of events in the 
time series

– This problem is also known as frequent episode mining

E1

E2

E1

E2

E1

E2

E3

E4 E3  

E4

E1

E2

E2  E4 

E3  E5

E2

E3  E5

E1

E2 E3 E1

Pattern: <E1> <E3>
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