
BBS654
Data Mining

Pinar Duygulu

Slides are adapted from
Nazli Ikizler

1

Sequence Data

10 15 20 25 30 35

2
3
5

6
1

1

Timeline

Object A:

Object B:

Object C:

4
5
6

2 7
8
1
2

1
6

1

7
8

Object Timestamp Events

A 10 2, 3, 5

A 20 6, 1

A 23 1

B 11 4, 5, 6

B 17 2

B 21 7, 8, 1, 2

B 28 1, 6

C 14 1, 8, 7

Sequence Database:

2

Mining Time-Series Data

• Time-series database

– Consists of sequences of values or events changing with time

– Data is recorded at regular intervals

– Characteristic time-series components

• Trend, cycle, seasonal, irregular

• Applications

– Financial: stock price, inflation

– Industry: power consumption

– Scientific: experiment results

– Meteorological: precipitation

3

Examples of Sequence Data

Sequence

Database

Sequence Element

(Transaction)

Event

(Item)

Customer Purchase history of a given

customer

A set of items bought by

a customer at time t

Books, diary products,

CDs, etc

Web Data Browsing activity of a

particular Web visitor

A collection of files

viewed by a Web visitor

after a single mouse click

Home page, index

page, contact info, etc

Event data History of events generated

by a given sensor

Events triggered by a

sensor at time t

Types of alarms

generated by sensors

Genome

sequences

DNA sequence of a

particular species

An element of the DNA

sequence

Bases A,T,G,C

Sequence

E1
E2

E1
E3

E2
E3
E4

E2

Element
(Transaction)

Event
(Item)

Sequence Mining

Formal Definition of a Sequence

• A sequence is an ordered list of elements
(transactions)

s = < e1 e2 e3 … >

– Each element contains a collection of events (items)

ei = {i1, i2, …, ik}

– Each element is attributed to a specific time or location

• Length of a sequence, |s|, is given by the number of
elements of the sequence

• A k-sequence is a sequence that contains k events
(items)

6

Formal Definition of a Subsequence

• A sequence <a1 a2 … an> is contained in another sequence <b1

b2 … bm> (m ≥ n) if there exist integers
i1 < i2 < … < in such that a1 bi1 , a2 bi1, …, an bin

• The support of a subsequence w is defined as the fraction of
data sequences that contain w

• A sequential pattern is a frequent subsequence (i.e., a
subsequence whose support is ≥ minsup)

Data sequence Subsequence Contain?

< {2,4} {3,5,6} {8} > < {2} {3,5} > Yes

< {1,2} {3,4} > < {1} {2} > No

< {2,4} {2,4} {2,5} > < {2} {4} > Yes

8

Sequential Pattern Mining: Definition

• Given:

– a database of sequences

– a user-specified minimum support threshold,
minsup

• Task:

– Find all subsequences with support ≥ minsup

9

What Is Sequential Pattern Mining?

• Given a set of sequences, find the complete set
of frequent subsequences

A sequence database

A sequence : < (ef) (ab) (df) c b >

An element may contain a set of items.
Items within an element are unordered
and we list them alphabetically.

<a(bc)dc> is a subsequence
of <a(abc)(ac)d(cf)>

Given support threshold min_sup =2, <(ab)c> is a
sequential pattern

SID sequence

10 <a(abc)(ac)d(cf)>

20 <(ad)c(bc)(ae)>

30 <(ef)(ab)(df)cb>

40 <eg(af)cbc>

J. Han and M. Kamber. Data Mining: Concepts and Techniques, www.cs.uiuc.edu/~hanji

10

Sequential Pattern Mining: Challenge

• Given a sequence: <{a b} {c d e} {f} {g h i}>

– Examples of subsequences:

<{a} {c d} {f} {g} >, < {c d e} >, < {b} {g} >, etc.

• How many k-subsequences can be extracted
from a given n-sequence?

<{a b} {c d e} {f} {g h i}> n = 9

k=4: Y _ _ Y Y _ _ _ Y

<{a} {d e} {i}>

126
4

9

:Answer

k

n

11

Challenges on Sequential Pattern Mining

• A huge number of possible sequential patterns are hidden in

databases

• A mining algorithm should

– find the complete set of patterns, when possible, satisfying

the minimum support (frequency) threshold

– be highly efficient, scalable, involving only a small number

of database scans

– be able to incorporate various kinds of user-specific

constraints

12

Sequential Pattern Mining Algorithms

• Concept introduction and an initial Apriori-like algorithm

– Agrawal & Srikant. Mining sequential patterns, ICDE’95

• Apriori-based method: GSP (Generalized Sequential Patterns: Srikant &

Agrawal @ EDBT’96)

• Pattern-growth methods: FreeSpan & PrefixSpan (Han et al.@KDD’00; Pei,

et al.@ICDE’01)

• Vertical format-based mining: SPADE (Zaki@Machine Leanining’00)

• Constraint-based sequential pattern mining (SPIRIT: Garofalakis, Rastogi,

Shim@VLDB’99; Pei, Han, Wang @ CIKM’02)

• Mining closed sequential patterns: CloSpan (Yan, Han & Afshar @SDM’03)

13

Sequential Pattern Mining: Example

Minsup = 50%

Examples of Frequent Subsequences:

< {1,2} > s=60%

< {2,3} > s=60%

< {2,4}> s=80%

< {3} {5}> s=80%

< {1} {2} > s=80%

< {2} {2} > s=60%

< {1} {2,3} > s=60%

< {2} {2,3} > s=60%

< {1,2} {2,3} > s=60%

Object Timestamp Events

A 1 1,2,4

A 2 2,3

A 3 5

B 1 1,2

B 2 2,3,4

C 1 1, 2

C 2 2,3,4

C 3 2,4,5

D 1 2

D 2 3, 4

D 3 4, 5

E 1 1, 3

E 2 2, 4, 5

14

Extracting Sequential Patterns

• Given n events: i1, i2, i3, …, in

• Candidate 1-subsequences:
<{i1}>, <{i2}>, <{i3}>, …, <{in}>

• Candidate 2-subsequences:
<{i1, i2}>, <{i1, i3}>, …, <{i1} {i1}>, <{i1} {i2}>, …, <{in-1} {in}>

• Candidate 3-subsequences:
<{i1, i2 , i3}>, <{i1, i2 , i4}>, …, <{i1, i2} {i1}>, <{i1, i2} {i2}>, …,

<{i1} {i1 , i2}>, <{i1} {i1 , i3}>, …, <{i1} {i1} {i1}>, <{i1} {i1} {i2}>,
…

15

The Apriori Property of Sequential Patterns

• A basic property: Apriori (Agrawal & Sirkant’94)

– If a sequence S is not frequent

– Then none of the super-sequences of S is frequent

– E.g, <hb> is infrequent so do <hab> and <(ah)b>

<a(bd)bcb(ade)>50

<(be)(ce)d>40

<(ah)(bf)abf>30

<(bf)(ce)b(fg)>20

<(bd)cb(ac)>10

SequenceSeq. ID Given support threshold

min_sup =2

16

Generalized Sequential Pattern (GSP)

• Step 1:
– Make the first pass over the sequence database D to yield all the 1-

element frequent sequences

• Step 2:

Repeat until no new frequent sequences are found
– Candidate Generation:

• Merge pairs of frequent subsequences found in the (k-1)th pass to
generate candidate sequences that contain k items

– Candidate Pruning:
• Prune candidate k-sequences that contain infrequent (k-1)-subsequences

– Support Counting:
• Make a new pass over the sequence database D to find the support for

these candidate sequences

– Candidate Elimination:
• Eliminate candidate k-sequences whose actual support is less than minsup

17

18

Finding Length-1 Sequential Patterns

• Initial candidates:
– <a>, , <c>, <d>, <e>, <f>, <g>, <h>

• Scan database once, count support for
candidates

<a(bd)bcb(ade)>50

<(be)(ce)d>40

<(ah)(bf)abf>30

<(bf)(ce)b(fg)>20

<(bd)cb(ac)>10

SequenceSeq. ID

min_sup =2

Cand Sup

<a> 3

 5

<c> 4

<d> 3

<e> 3

<f> 2

<g> 1

<h> 1

19

Generating Length-2 Candidates

<a> <c> <d> <e> <f>

<a> <aa> <ab> <ac> <ad> <ae> <af>

 <ba> <bb> <bc> <bd> <be> <bf>

<c> <ca> <cb> <cc> <cd> <ce> <cf>

<d> <da> <db> <dc> <dd> <de> <df>

<e> <ea> <eb> <ec> <ed> <ee> <ef>

<f> <fa> <fb> <fc> <fd> <fe> <ff>

<a> <c> <d> <e> <f>

<a> <(ab)> <(ac)> <(ad)> <(ae)> <(af)>

 <(bc)> <(bd)> <(be)> <(bf)>

<c> <(cd)> <(ce)> <(cf)>

<d> <(de)> <(df)>

<e> <(ef)>

<f>

51 length-2

Candidates

Without Apriori

property,

8*8+8*7/2=92

candidates

Apriori prunes

44.57% candidates

20

Finding Lenth-2 Sequential Patterns

• Scan database one more time, collect support count
for each length-2 candidate

• There are 19 length-2 candidates which pass the
minimum support threshold

– They are length-2 sequential patterns

21

The GSP Mining Process

<a> <c> <d> <e> <f> <g> <h>

<aa> <ab> … <af> <ba> <bb> … <ff> <(ab)> … <(ef)>

<abb> <aab> <aba> <baa> <bab> …

<abba> <(bd)bc> …

<(bd)cba>

1st scan: 8 cand. 6 length-1 seq.
pat.

2nd scan: 51 cand. 19 length-2 seq.
pat. 10 cand. not in DB at all

3rd scan: 46 cand. 19 length-3 seq.
pat. 20 cand. not in DB at all

4th scan: 8 cand. 6 length-4 seq.
pat.

5th scan: 1 cand. 1 length-5 seq.
pat.

Cand. cannot pass
sup. threshold

Cand. not in DB at all

<a(bd)bcb(ade)>50

<(be)(ce)d>40

<(ah)(bf)abf>30

<(bf)(ce)b(fg)>20

<(bd)cb(ac)>10

SequenceSeq. ID

min_sup =2

Candidate Generation

• Base case (k=2):
– Merging two frequent 1-sequences <{i1}> and <{i2}> will produce two

candidate 2-sequences: <{i1} {i2}> and <{i1 i2}>

• General case (k>2):
– A frequent (k-1)-sequence w1 is merged with another frequent

(k-1)-sequence w2 to produce a candidate k-sequence if the subsequence
obtained by removing the first event in w1 is the same as the subsequence
obtained by removing the last event in w2

• The resulting candidate after merging is given by the sequence w1 extended
with the last event of w2.

– If the last two events in w2 belong to the same element, then the last
event in w2 becomes part of the last element in w1

– Otherwise, the last event in w2 becomes a separate element appended to
the end of w1

22

Candidate Generation Examples

• Merging the sequences
w1=<{1} {2 3} {4}> and w2 =<{2 3} {4 5}>
will produce the candidate sequence < {1} {2 3} {4 5}> because the last two
events in w2 (4 and 5) belong to the same element

• Merging the sequences
w1=<{1} {2 3} {4}> and w2 =<{2 3} {4} {5}>
will produce the candidate sequence < {1} {2 3} {4} {5}> because the last
two events in w2 (4 and 5) do not belong to the same element

• We do not have to merge the sequences
w1 =<{1} {2 6} {4}> and w2 =<{1} {2} {4 5}>
to produce the candidate < {1} {2 6} {4 5}> because if the latter is a viable
candidate, then it can be obtained by merging w1 with
< {1} {2 6} {5}>

23

GSP Example

< {1} {2} {3} >

< {1} {2 5} >

< {1} {5} {3} >

< {2} {3} {4} >

< {2 5} {3} >

< {3} {4} {5} >

< {5} {3 4} >

< {1} {2} {3} {4} >

< {1} {2 5} {3} >

< {1} {5} {3 4} >

< {2} {3} {4} {5} >

< {2 5} {3 4} >
< {1} {2 5} {3} >

Frequent

3-sequences

Candidate

Generation

Candidate

Pruning

24

The SPADE Algorithm

• SPADE (Sequential PAttern Discovery using Equivalent Class)

developed by Zaki 2001

• A vertical format sequential pattern mining method

• A sequence database is mapped to a large set of

– Item: <SID, EID>

• Sequential pattern mining is performed by

– growing the subsequences (patterns) one item at

a time by Apriori candidate generation

25

The SPADE Algorithm

26

The main advantage

of the vertical

approach is that it

enables different

search strategies

over the sequence

search space,

including breadth or

depth-first search

Bottlenecks of GSP and SPADE

• A huge set of candidates could be generated

– 1,000 frequent length-1 sequences generate s huge number of length-

2 candidates!

• Multiple scans of database in mining

• Mining long sequential patterns

– Needs an exponential number of short candidates

– A length-100 sequential pattern needs 1030

candidate sequences!

500,499,1
2

9991000
10001000

30100
100

1

1012
100

i i

27

28

Projection-Based Sequence Mining:
PrefixSpan

• PrefixSpan : Prefix-Projected Sequential Pattern
Growth

– Projection-based

– But only prefix-based projection: less projections and
quickly shrinking sequences

• J.Pei, J.Han,… PrefixSpan : Mining sequential patterns
efficiently by prefix-projected pattern growth.
ICDE’01.

• The main idea in PrefixSpan is to compute the support

for only the individual symbols in the projected database

Ds , and then to perform recursive projections on the
frequent symbols in a depth-first manner.

29

Prefix and Suffix (Projection)

• <a>, <aa>, <a(ab)> and <a(abc)> are prefixes of

sequence <a(abc)(ac)d(cf)>

• Given sequence <a(abc)(ac)d(cf)>

Prefix Suffix (Prefix-Based Projection)

<a> <(abc)(ac)d(cf)>

<aa> <(_bc)(ac)d(cf)>

<ab> <(_c)(ac)d(cf)>

30

Mining Sequential Patterns by Prefix
Projections

• Step 1: find length-1 sequential patterns

– <a>, , <c>, <d>, <e>, <f>

• Step 2: divide search space. The complete set of seq.
pat. can be partitioned into 6 subsets:

– The ones having prefix <a>;

– The ones having prefix ;

– …

– The ones having prefix <f>

SID sequence

10 <a(abc)(ac)d(cf)>

20 <(ad)c(bc)(ae)>

30 <(ef)(ab)(df)cb>

40 <eg(af)cbc>

31

Finding Seq. Patterns with Prefix <a>

• Only need to consider projections w.r.t. <a>

– <a>-projected database: <(abc)(ac)d(cf)>, <(_d)c(bc)(ae)>,

<(_b)(df)cb>, <(_f)cbc>

• Find all the length-2 seq. pat. Having prefix <a>: <aa>,

<ab>, <(ab)>, <ac>, <ad>, <af>

– Further partition into 6 subsets

• Having prefix <aa>;

• …

• Having prefix <af>

SID sequence

10 <a(abc)(ac)d(cf)>

20 <(ad)c(bc)(ae)>

30 <(ef)(ab)(df)cb>

40 <eg(af)cbc>

32

Completeness of PrefixSpan

SID sequence

10 <a(abc)(ac)d(cf)>

20 <(ad)c(bc)(ae)>

30 <(ef)(ab)(df)cb>

40 <eg(af)cbc>

SDB

Length-1 sequential patterns
<a>, , <c>, <d>, <e>, <f>

<a>-projected database
<(abc)(ac)d(cf)>
<(_d)c(bc)(ae)>
<(_b)(df)cb>
<(_f)cbc>

Length-2 sequential
patterns
<aa>, <ab>, <(ab)>,
<ac>, <ad>, <af>

Having prefix <a>

Having prefix <aa>

<aa>-proj. db … <af>-proj. db

Having prefix <af>

-projected database …

Having prefix

Having prefix <c>, …, <f>

… …

33

The Algorithm of PrefixSpan

• Input: A sequence database S, and the minimum
support threshold min_sup

• Output: The complete set of sequential patterns

• Method: Call PrefixSpan(<>,0,S)

• Subroutine PrefixSpan(α, l, S|α)

• Parameters:
– α: sequential pattern,

– l: the length of α;

– S|α: the α-projected database, if α ≠<>; otherwise; the
sequence database S

34

The Algorithm of PrefixSpan(2)

• Method
1. Scan S|α once, find the set of frequent items b such

that:
a) b can be assembled to the last element of α to form

a sequential pattern; or
b) can be appended to α to form a sequential

pattern.

2. For each frequent item b, append it to α to form a
sequential pattern α’, and output α’;

3. For each α’, construct α’-projected database S|α’,
and call PrefixSpan(α’, l+1, S|α’).

PrefixSpan

35

Minsup = 3

36

Efficiency of PrefixSpan

• No candidate sequence needs to be generated

• Projected databases keep shrinking

• Major cost of PrefixSpan: constructing

projected databases

– Can be improved by bi-level projections

Timing Constraints

{A B} {C} {D E}

<= ms

<= xg >ng

xg: max-gap

ng: min-gap

ms: maximum span

• Maxspan: maximum allowed time difference between the latest and the

earliest occurrences of events in the entire sequence.

• Mingap: minimum time difference between consecutive elements of a

sequence

• Maxgap: maximum time difference between consecutive elements of a

sequence

Timing Constraints

{A B} {C} {D E}

<= ms

<= xg >ng

xg: max-gap

ng: min-gap

ms: maximum span

Data sequence Subsequence Contain?

< {2,4} {3,5,6} {4,7} {4,5} {8} > < {6} {5} > Yes

< {1} {2} {3} {4} {5}> < {1} {4} > No

< {1} {2,3} {3,4} {4,5}> < {2} {3} {5} > Yes

< {1,2} {3} {2,3} {3,4} {2,4} {4,5}> < {1,2} {5} > No

xg = 2, ng = 0, ms= 4

Mining Sequential Patterns with Timing Constraints

• Approach 1:

– Mine sequential patterns without timing constraints

– Postprocess the discovered patterns

• Approach 2:

– Modify GSP to directly prune candidates that violate
timing constraints

39

Other Formulation

• In some domains, we may have only one very long
time series

– Example:
• monitoring network traffic events for attacks

• monitoring telecommunication alarm signals

• Goal is to find frequent sequences of events in the
time series

– This problem is also known as frequent episode mining

E1

E2

E1

E2

E1

E2

E3

E4 E3

E4

E1

E2

E2 E4

E3 E5

E2

E3 E5

E1

E2 E3 E1

Pattern: <E1> <E3>

40

Ref: Mining Sequential Patterns

• R. Srikant and R. Agrawal. Mining sequential patterns: Generalizations and performance
improvements. EDBT’96.

• H. Mannila, H Toivonen, and A. I. Verkamo. Discovery of frequent episodes in event sequences.
DAMI:97.

• M. Zaki. SPADE: An Efficient Algorithm for Mining Frequent Sequences. Machine Learning, 2001.

• J. Pei, J. Han, H. Pinto, Q. Chen, U. Dayal, and M.-C. Hsu. PrefixSpan: Mining Sequential Patterns
Efficiently by Prefix-Projected Pattern Growth. ICDE'01 (TKDE’04).

• J. Pei, J. Han and W. Wang, Constraint-Based Sequential Pattern Mining in Large Databases,
CIKM'02.

• X. Yan, J. Han, and R. Afshar. CloSpan: Mining Closed Sequential Patterns in Large Datasets.
SDM'03.

• J. Wang and J. Han, BIDE: Efficient Mining of Frequent Closed Sequences, ICDE'04.

• H. Cheng, X. Yan, and J. Han, IncSpan: Incremental Mining of Sequential Patterns in Large
Database, KDD'04.

• J. Han, G. Dong and Y. Yin, Efficient Mining of Partial Periodic Patterns in Time Series Database,
ICDE'99.

• J. Yang, W. Wang, and P. S. Yu, Mining asynchronous periodic patterns in time series data, KDD'00.

41

