BBS654
 Data Mining

Pinar Duygulu

Slides are adapted from
Nazli Ikizler

Sequence Data

Sequence Database:

Object	Timestamp	Events
A	10	$2,3,5$
A	20	6,1
A	23	1
B	11	$4,5,6$
B	17	2
B	21	$7,8,1,2$
B	28	1,6
C	14	$1,8,7$

Timeline

Object A:

Mining Time-Series Data

- Time-series database
- Consists of sequences of values or events changing with time
- Data is recorded at regular intervals
- Characteristic time-series components
- Trend, cycle, seasonal, irregular
- Applications
- Financial: stock price, inflation
- Industry: power consumption
- Scientific: experiment results
- Meteorological: precipitation

Examples of Sequence Data

Sequence Database	Sequence	Element (Transaction)	Event (Item)
Customer	Purchase history of a given customer	A set of items bought by a customer at time t	Books, diary products, CDs, etc
Web Data	Browsing activity of a particular Web visitor	A collection of files viewed by a Web visitor after a single mouse click	Home page, index page, contact info, etc
Event data	History of events generated by a given sensor	Events triggered by a sensor at time t	Types of alarms generated by sensors
Genome sequences	DNA sequence of a particular species	An element of the DNA sequence	Bases A,T,G,C

Sequence Mining

Formal Definition of a Sequence

- A sequence is an ordered list of elements (transactions)

$$
\mathrm{S}=\left\langle\mathrm{e}_{1} \mathrm{e}_{2} \mathrm{e}_{3} \ldots\right\rangle
$$

- Each element contains a collection of events (items)

$$
e_{i}=\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}
$$

- Each element is attributed to a specific time or location
- Length of a sequence, $|s|$, is given by the number of elements of the sequence
- A k-sequence is a sequence that contains k events (items)

Formal Definition of a Subsequence

- A sequence $<a_{1} a_{2} \ldots a_{n}>$ is contained in another sequence $<b_{1}$ $b_{2} \ldots b_{m}>(m \geq n)$ if there exist integers
$i_{1}<i_{2}<\ldots<i_{n}$ such that $a_{1} \subseteq b_{i 1}, a_{2} \subseteq b_{i 1}, \ldots, a_{n} \subseteq b_{i n}$

Data sequence	Subsequence	Contain?
$<\{2,4\}\{3,5,6\}\{8\}>$	$<\{2\}\{3,5\}>$	Yes
$<\{1,2\}\{3,4\}>$	$<\{1\}\{2\}>$	No
$<\{2,4\}\{2,4\}\{2,5\}>$	$<\{2\}\{4\}>$	Yes

- The support of a subsequence w is defined as the fraction of data sequences that contain w
- A sequential pattern is a frequent subsequence (i.e., a subsequence whose support is \geq minsup)

Sequential Pattern Mining: Definition

- Given:
- a database of sequences
- a user-specified minimum support threshold, minsup
- Task:
- Find all subsequences with support \geq minsup

What Is Sequential Pattern Mining?

- Given a set of sequences, find the complete set of frequent subsequences
A sequence: < (ef) (ab) (df) cb >

SID	sequence
10	$<a(\underline{a b c})(\mathrm{ac}) \mathrm{d}(\mathrm{cf})>$
20	$<(\mathrm{ad}) \mathrm{c}(\mathrm{bc})(\mathrm{ae})>$
30	$<(\mathrm{ef})(\mathrm{ab})(\mathrm{df}) \underline{\mathrm{cb}}>$
40	$<e \mathrm{eg}(\mathrm{af}) \mathrm{cbc}>$

$<\mathrm{a}(\mathrm{bc}) \mathrm{dc}>$ is a subsequence
of $<\underline{a}(\mathrm{abc})(\mathrm{ac}) \underline{d}(\underline{\mathrm{c}})>$

Given support threshold min_sup $=2,<(a b) \mathrm{c}>$ is a sequential pattern
J. Han and M. Kamber. Data Mining: Concepts and Techniques, www.cs.uiuc.edu/~hanji

Sequential Pattern Mining: Challenge

- Given a sequence: < $\{\mathrm{a} b\}\{c \mathrm{de}$ e $\{\mathrm{ff}\}\{\mathrm{ghi}$ >
- Examples of subsequences:

$$
<\{a\}\{c d\}\{f\}\{g\}>,<\{c d e\}>,<\{b\}\{g\}>, \text { etc. }
$$

- How many k-subsequences can be extracted from a given n -sequence?

$$
\begin{aligned}
& <\{a b\}\{c d e\}\{f\}\{g h i\}>n=9 \\
& \text { Answer : } \\
& \mathrm{k}=4: \underbrace{\mathrm{Y}_{2} \quad \mathrm{YY} \ldots \ldots \mathrm{Y}} \quad\binom{n}{k}=\binom{9}{4}=126 \\
& <\{a\} \quad\{d \text { e }\} \quad\{i\}>
\end{aligned}
$$

Challenges on Sequential Pattern Mining

- A huge number of possible sequential patterns are hidden in databases
- A mining algorithm should
- find the complete set of patterns, when possible, satisfying the minimum support (frequency) threshold
- be highly efficient, scalable, involving only a small number of database scans
- be able to incorporate various kinds of user-specific constraints

Sequential Pattern Mining Algorithms

- Concept introduction and an initial Apriori-like algorithm
- Agrawal \& Srikant. Mining sequential patterns, ICDE’95
- Apriori-based method: GSP (Generalized Sequential Patterns: Srikant \& Agrawal @ EDBT’96)
- Pattern-growth methods: FreeSpan \& PrefixSpan (Han et al.@KDD’00; Pei, et al.@ICDE’01)
- Vertical format-based mining: SPADE (Zaki@Machine Leanining'00)
- Constraint-based sequential pattern mining (SPIRIT: Garofalakis, Rastogi, Shim@VLDB'99; Pei, Han, Wang @ CIKM’O2)
- Mining closed sequential patterns: CloSpan (Yan, Han \& Afshar @SDM’03)

Sequential Pattern Mining: Example

Object	Timestamp	Events
A	1	$1,2,4$
A	2	2,3
A	3	5
B	1	1,2
B	2	$2,3,4$
C	1	1,2
C	2	$2,3,4$
C	3	$2,4,5$
D	1	2
D	2	3,4
D	3	4,5
E	1	1,3
E	2	$2,4,5$

$$
\text { Minsup }=50 \%
$$

Examples of Frequent Subsequences:

$<\{1,2\}>$	$\mathrm{S}=60 \%$
$<\{2,3\}>$	$\mathrm{S}=60 \%$
$<\{2,4\}>$	$\mathrm{S}=80 \%$
$<\{3\}\{5\}>$	$\mathrm{S}=80 \%$
$<\{1\}\{2\}>$	$\mathrm{S}=80 \%$
$<\{2\}\{2\}>$	$\mathrm{S}=60 \%$
$<\{1\}\{2,3\}>$	$\mathrm{S}=60 \%$
$<\{2\}\{2,3\}>$	$\mathrm{S}=60 \%$
$<\{1,2\}\{2,3\}>$	$\mathrm{S}=60 \%$

Extracting Sequential Patterns

- Given n events: $i_{1}, i_{2}, i_{3}, \ldots, i_{n}$
- Candidate 1-subsequences:

$$
\left\langle\left\{i_{1}\right\}>,\left\langle\left\{i_{2}\right\}>,\left\langle\left\{i_{3}\right\}\right\rangle, \ldots,<\left\{i_{n}\right\}\right\rangle\right.
$$

- Candidate 2-subsequences:

$$
\left\langle\left\{i_{1}, i_{2}\right\}>,<\left\{i_{1}, i_{3}\right\}>, \ldots,<\left\{i_{1}\right\}\left\{i_{1}\right\}>,<\left\{i_{1}\right\}\left\{i_{2}\right\}>, \ldots,<\left\{i_{n-1}\right\}\left\{i_{n}\right\}>\right.
$$

- Candidate 3-subsequences:

$$
\begin{aligned}
& <\left\{i_{1}, i_{2}, i_{3}\right\}>,<\left\{i_{1}, i_{2}, i_{4}\right\}>, \ldots,<\left\{i_{1}, i_{2}\right\}\left\{i_{1}\right\}>,<\left\{i_{1}, i_{2}\right\}\left\{i_{2}\right\}>, \ldots, \\
& <\left\{i_{1}\right\}\left\{i_{1}, i_{2}\right\rangle>,<\left\{i_{1}\right\}\left\{i_{1}, i_{3}\right\}>, \ldots,<\left\{i_{1}\right\}\left\{i_{1}\right\}\left\{i_{1}\right\}>,<\left\{i_{1}\right\}\left\{i_{1}\right\}\left\{i_{2}\right\} \gg,
\end{aligned}
$$

The Apriori Property of Sequential Patterns

- A basic property: Apriori (Agrawal \& Sirkant'94)
- If a sequence S is not frequent
- Then none of the super-sequences of S is frequent
- E.g, <hb> is infrequent \rightarrow so do <hab> and <(ah)b>

Seq. ID	Sequence
10	$<(\mathrm{bd}) \mathrm{cb}(\mathrm{ac})>$
20	$<(\mathrm{bf})(\mathrm{ce}) \mathrm{b}(\mathrm{fg})>$
30	$<(\mathrm{ah})(\mathrm{bf}) \mathrm{abf}>$
40	$<(\mathrm{be})(\mathrm{ce}) \mathrm{d}>$
50	$<\mathrm{a}(\mathrm{bd}) \mathrm{bcb}(\mathrm{ade})>$

Given support threshold min_sup $=2$

Generalized Sequential Pattern (GSP)

- Step 1:
- Make the first pass over the sequence database D to yield all the 1element frequent sequences
- Step 2:

Repeat until no new frequent sequences are found

- Candidate Generation:
- Merge pairs of frequent subsequences found in the ($k-1$)th pass to generate candidate sequences that contain k items
- Candidate Pruning:
- Prune candidate k-sequences that contain infrequent ($k-1$)-subsequences
- Support Counting:
- Make a new pass over the sequence database D to find the support for these candidate sequences
- Candidate Elimination:
- Eliminate candidate k-sequences whose actual support is less than minsup

Finding Length-1 Sequential Patterns

- Initial candidates:
- <a>, , <c>, <d>, <e>, <f>, <g>, <h>
- Scan database once, count support for candidates
min_sup $=2$

Seq. ID	Sequence
10	$<(\mathrm{bd}) \mathrm{cb}(\mathrm{ac})>$
20	$<(\mathrm{bf})(\mathrm{ce}) \mathrm{b}(\mathrm{fg})>$
30	$<(\mathrm{ah})(\mathrm{bf}) \mathrm{abf}>$
40	$<(\mathrm{be})(\mathrm{ce}) \mathrm{d}>$
50	$<\mathrm{a}(\mathrm{bd}) \mathrm{bcb}(\mathrm{ade})>$

Cand	Sup
$<\mathrm{a}>$	3
$<\mathrm{b}\rangle$	5
$<\mathrm{c}\rangle$	4
$<\mathrm{d}\rangle$	3
$<\mathrm{e}>$	3
$<\mathrm{f}\rangle$	2
<g>	1
<ns	1

Generating Length-2 Candidates

51 length-2
Candidates

	<a>		<c>	<d>	<e>	<f>
<a>	<aa>	<ab>	<ac>	<ad>	<ae>	<af>
	<ba>	<bb>	<bc>	<bd>	<be>	<bf>
<c>	<ca>	<cb>	<cc>	<cd>	<ce>	<cf>
<d>	<da>	<db>	<dc>	<dd>	<de>	<df>
<e>	<ea>	<eb>	<ec>	<ed> $>$	<ee>	<ef>
<f>	<fa>	<fb>	<fc>	<fd>	<fe>	<ff>

	<a>		<C>	<d>	<e>	<f>
<a>		<(ab)>	<(ac)>	$<(\mathrm{ad})>$	<(ae)>	< af) $>$
			<(bc)>	$<(\mathrm{bd})>$	<(be)>	<(bf)>
<c>				<(cd) $>$	<(ce)>	<(cf)>
<d>					<(de)>	<(df)>
<e>						<(ef)>
<f>						

Without Apriori property, $8 * 8+8 * 7 / 2=92$
candidates
Apriori prunes
44.57% candidatess

Finding Lenth-2 Sequential Patterns

- Scan database one more time, collect support count for each length-2 candidate
- There are 19 length- 2 candidates which pass the minimum support threshold
- They are length-2 sequential patterns

The GSP Mining Process

$5^{\text {th }}$ scan: 1 cand. 1 length-5 seq. <(bd)cba> pat.

Cand. not in DB at all
$4^{\text {th }}$ scan: 8 cand. 6 length 4 seq. $<a b b a><(b d) b c>\ldots$ pat.
$3^{\text {rd }}$ scan: 46 cand. 19 length-3 seq. pat. 20 cand. not in DB at all $2^{\text {nd }}$ scan: 51 cand. 19 length-2 seq. pat. 10 cand. not in DB at all $1^{\text {st }}$ scan: 8 cand. 6 length- 1 seq. pat.

min_sup $=2$

Seq. ID	Sequence
10	$<(\mathrm{bd}) \mathrm{cb}(\mathrm{ac})>$
20	$<$ (bf)(ce)b(fg)>
30	$<$ (ah)(bf)abf>
40	$<$ (be)(ce)d>
50	$<\mathrm{a}(\mathrm{bd}) \mathrm{bcb}(\mathrm{ade})>$

Candidate Generation

- Base case (k=2):
- Merging two frequent 1-sequences $<\left\{i_{1}\right\}>$ and $<\left\{i_{2}\right\}>$ will produce two candidate 2 -sequences: $<\left\{i_{1}\right\}\left\{i_{2}\right\}>$ and $<\left\{i_{1} i_{2}\right\}>$
- General case ($k>2$):
- A frequent (k-1)-sequence w_{1} is merged with another frequent (k - 1)-sequence w_{2} to produce a candidate k-sequence if the subsequence obtained by removing the first event in w_{1} is the same as the subsequence obtained by removing the last event in w_{2}
- The resulting candidate after merging is given by the sequence w_{1} extended with the last event of w_{2}.
- If the last two events in w_{2} belong to the same element, then the last event in w_{2} becomes part of the last element in w_{1}
- Otherwise, the last event in w_{2} becomes a separate element appended to the end of w_{1}

Candidate Generation Examples

- Merging the sequences $\left.w_{1}=<1\right\}\{23\}\{4\}>$ and $w_{2}=<\{23\}\{45\}>$ will produce the candidate sequence $<\{1\}\{23\}\{45\}>$ because the last two events in $\mathrm{w}_{2}(4$ and 5) belong to the same element
- Merging the sequences
$w_{1}=<\{1\}\{23\}\{4\}>$ and $w_{2}=<\{23\}\{4\}\{5\}>$
will produce the candidate sequence $<\{1\}\{23\}\{4\}\{5\}>$ because the last two events in $\mathrm{w}_{2}(4$ and 5$)$ do not belong to the same element
- We do not have to merge the sequences $w_{1}=<\{1\}\{26\}\{4\}>$ and $w_{2}=<\{1\}\{2\}\{45\}>$ to produce the candidate $<\{1\}\{26\}\{45\}>$ because if the latter is a viable candidate, then it can be obtained by merging w_{1} with $<\{1\}\{26\}\{5\}>$

GSP Example

The SPADE Algorithm

- SPADE (Sequential PAttern Discovery using Equivalent Class) developed by Zaki 2001
- A vertical format sequential pattern mining method
- A sequence database is mapped to a large set of
- Item: <SID, EID>
- Sequential pattern mining is performed by
- growing the subsequences (patterns) one item at a time by Apriori candidate generation

The SPADE Algorithm

SID	EID	Items
1	1	a
1	2	abc
1	3	ac
1	4	d
1	5	cf
2	1	ad
2	2	c
2	3	bc
2	4	ae
3	1	ef
3	2	ab
3	3	df
3	4	c
3	5	b
4	1	e
4	2	g
4	3	af
4	4	c
4	5	b
4	6	c

a		b		\cdots
SID	EID	SID	EID	\cdots
1	1	1	2	
1	2	2	3	
1	3	3	2	
2	1	3	5	
2	4	4	5	
3	2			
4	3			

The main advantage of the vertical approach is that it enables different search strategies over the sequence search space, including breadth or depth-first search

ab				ba				\cdots
SID	EID (a)	EID(b)	SID	EID (b)	EID(a)	\cdots		
1	1	2	1	2	3			
2	1	3	2	3	4			
3	2	5						
4	3	5						

aba				\cdots
SID	EID (a)	EID(b)	EID(a)	\cdots
1	1	2	3	
2	1	3	4	

Bottlenecks of GSP and SPADE

- A huge set of candidates could be generated
- 1,000 frequent length -1 sequences generate s huge number of length2 candidates! $1000 \times 1000+\frac{1000 \times 999}{2}=1,499,500$
- Multiple scans of database in mining
- Mining long sequential patterns
- Needs an exponential number of short candidates
- A length-100 sequential pattern needs 10^{30}
candidate sequences!

$$
\sum_{i=1}^{100}\binom{100}{i}=2^{100}-1 \approx 10^{30}
$$

Projection-Based Sequence Mining:
 PrefixSpan

- PrefixSpan : Prefix-Projected Sequential Pattern Growth
- Projection-based
- But only prefix-based projection: less projections and quickly shrinking sequences
- J.Pei, J.Han,... PrefixSpan : Mining sequential patterns efficiently by prefix-projected pattern growth. ICDE' 01.
- The main idea in PrefixSpan is to compute the support for only the individual symbols in the projected database Ds , and then to perform recursive projections on the frequent symbols in a depth-first manner.

Prefix and Suffix (Projection)

- <a>, <aa>, <a(ab)> and <a(abc)> are prefixes of sequence <a(abc)(ac)d(cf)>
- Given sequence <a(abc)(ac)d(cf)>

Prefix	Suffix (Prefix-Based Projection)
<a>	$<(\mathrm{abc})(\mathrm{ac}) \mathrm{d}(\mathrm{cf})>$
<aa>	$<\left(_\mathrm{bc}\right)(\mathrm{ac}) \mathrm{d}(\mathrm{cf})>$
<ab>	$<\left(_c\right)(\mathrm{ac}) \mathrm{d}(\mathrm{cf})>$

Mining Sequential Patterns by Prefix Projections

- Step 1: find length-1 sequential patterns
- <a>, , <c>, <d>, <e>, <f>
- Step 2: divide search space. The complete set of seq. pat. can be partitioned into 6 subsets:
- The ones having prefix <a>;
- The ones having prefix ;
- The ones having prefix <f>

SID	sequence
10	$<a(\mathrm{abc})(\mathrm{ac}) \mathrm{d}(\mathrm{cf})>$
20	$<(\mathrm{ad}) \mathrm{c}(\mathrm{bc})(\mathrm{ae})>$
30	$<(\mathrm{ef})(\mathrm{ab})(\mathrm{df}) \mathrm{cb}>$
40	$<e \mathrm{~g}(\mathrm{af}) \mathrm{cbc}>$

Finding Seq. Patterns with Prefix <a>

- Only need to consider projections w.r.t. <a>
- <a>-projected database: <(abc)(ac)d(cf)>, <(_d)c(bc)(ae)>, <(_b)(df)cb>, <(_f)cbc>
- Find all the length-2 seq. pat. Having prefix <a>: <aa>, <ab>, <(ab)>, <ac>, <ad>, <af>
- Further partition into 6 subsets
- Having prefix <aa>;
- ...
- Having prefix <af>

SID	sequence
10	$<a(\mathrm{abc})(\mathrm{ac}) \mathrm{d}(\mathrm{cf})>$
20	$<(\mathrm{ad}) \mathrm{c}(\mathrm{bc})(\mathrm{ae})>$
30	$<(\mathrm{ef})(\mathrm{ab})(\mathrm{df}) \mathrm{cb}>$
40	$<e g(\mathrm{af}) \mathrm{cbc}>$

Completeness of PrefixSpan

The Algorithm of PrefixSpan

- Input: A sequence database S, and the minimum support threshold min_sup
- Output: The complete set of sequential patterns
- Method: Call PrefixSpan(<>,0,S)
- Subroutine PrefixSpan($\alpha, I, S \mid \alpha$)
- Parameters:
$-\alpha$: sequential pattern,
-1 : the length of α;
$-S \mid \alpha$: the α-projected database, if $\alpha \neq<>$; otherwise; the sequence database S

The Algorithm of PrefixSpan(2)

- Method

1. Scan $S \mid \alpha$ once, find the set of frequent items b such that:
a) b can be assembled to the last element of α to form a sequential pattern; or
b) can be appended to α to form a sequential pattern.
2. For each frequent item b, append it to α to form a sequential pattern α^{\prime}, and output α^{\prime};
3. For each α^{\prime}, construct α^{\prime}-projected database $S \mid \alpha^{\prime}$, and call PrefixSpan($\left.\alpha^{\prime},|+1, S| \alpha^{\prime}\right)$.

PrefixSpan

Minsup $=3$

Efficiency of PrefixSpan

- No candidate sequence needs to be generated
- Projected databases keep shrinking
- Major cost of PrefixSpan: constructing projected databases
- Can be improved by bi-level projections

Timing Constraints

$$
\begin{aligned}
& x_{g}: \text { max-gap } \\
& \mathrm{n}_{\mathrm{g}}: \text { min-gap } \\
& \mathrm{m}_{\mathrm{s}}: \text { maximum span }
\end{aligned}
$$

- Maxspan: maximum allowed time difference between the latest and the earliest occurrences of events in the entire sequence.
- Mingap: minimum time difference between consecutive elements of a sequence
- Maxgap: maximum time difference between consecutive elements of a sequence

Timing Constraints

x_{g} : max-gap
n_{g} : min-gap
m_{s} : maximum span

$$
x_{g}=2, n_{g}=0, m_{s}=4
$$

Data sequence	Subsequence	Contain?
$<\{2,4\}\{3,5,6\}\{4,7\}\{4,5\}\{8\}>$	$<\{6\}\{5\}>$	Yes
$<\{1\}\{2\}\{3\}\{4\}\{5\}>$	$<\{1\}\{4\}>$	No
$<\{1\}\{2,3\}\{3,4\}\{4,5\}>$	$<\{2\}\{3\}\{5\}>$	Yes
$<\{1,2\}\{3\}\{2,3\}\{3,4\}\{2,4\}\{4,5\}>$	$<\{1,2\}\{5\}>$	No

Mining Sequential Patterns with Timing Constraints

- Approach 1:
- Mine sequential patterns without timing constraints
- Postprocess the discovered patterns
- Approach 2:
- Modify GSP to directly prune candidates that violate timing constraints

Other Formulation

- In some domains, we may have only one very long time series
- Example:
- monitoring network traffic events for attacks
- monitoring telecommunication alarm signals
- Goal is to find frequent sequences of events in the time series
- This problem is also known as frequent episode mining

Pattern: <E1> <E3>

Ref: Mining Sequential Patterns

- R. Srikant and R. Agrawal. Mining sequential patterns: Generalizations and performance improvements. EDBT'96.
- H. Mannila, H Toivonen, and A. I. Verkamo. Discovery of frequent episodes in event sequences. DAMI:97.
- M. Zaki. SPADE: An Efficient Algorithm for Mining Frequent Sequences. Machine Learning, 2001.
- J. Pei, J. Han, H. Pinto, Q. Chen, U. Dayal, and M.-C. Hsu. PrefixSpan: Mining Sequential Patterns Efficiently by Prefix-Projected Pattern Growth. ICDE'01 (TKDE'04).
- J. Pei, J. Han and W. Wang, Constraint-Based Sequential Pattern Mining in Large Databases, CIKM'02.
- X. Yan, J. Han, and R. Afshar. CloSpan: Mining Closed Sequential Patterns in Large Datasets. SDM'03.
- J. Wang and J. Han, BIDE: Efficient Mining of Frequent Closed Sequences, ICDE'04.
- H. Cheng, X. Yan, and J. Han, IncSpan: Incremental Mining of Sequential Patterns in Large Database, KDD'04.
- J. Han, G. Dong and Y. Yin, Efficient Mining of Partial Periodic Patterns in Time Series Database, ICDE'99.
- J. Yang, W. Wang, and P. S. Yu, Mining asynchronous periodic patterns in time series data, KDD'00.

