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Networks & Communities

• We often think of networks being organized 
into modules, cluster, communities:



Goal: Find Densely Linked Clusters



Micro-Markets in Sponsored Search

• Find micro-markets by partitioning the query-
to-advertiser graph:
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[Andersen, Lang: Communities from seed sets, 2006]



Movies and Actors

• Clusters in Movies-to-Actors graph:

[Andersen, Lang: Communities from seed sets, 2006]



Twitter & Facebook

• Discovering social circles, circles of trust:

[McAuley, Leskovec: Discovering social circles in ego networks, 2012]



COMMUNITY DETECTION

How to find communities?

We will work with undirected (unweighted) networks



Method 1: Strength of Weak Ties
• Edge betweenness: Number of 

shortest paths passing over the edge

• Intuition:

Edge strengths (call volume) 
in a real network

Edge betweenness
in a real network

b=16
b=7.5



Method 1: Girvan-Newman

• Divisive hierarchical clustering based on the 
notion of edge betweenness:

Number of shortest paths passing through the edge

• Girvan-Newman Algorithm:
» Undirected unweighted networks

– Repeat until no edges are left:

• Calculate betweenness of edges

• Remove edges with highest betweenness

– Connected components are communities

– Gives a hierarchical decomposition of the network

[Girvan-Newman ‘02]



Girvan-Newman: Example

Need to re-compute 

betweenness at 

every step
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Girvan-Newman: Example
Step 1: Step 2:

Step 3: Hierarchical network decomposition:



Girvan-Newman: Results

Communities in physics collaborations 



Girvan-Newman: Results

• Zachary’s Karate club: 
Hierarchical decomposition



WE NEED TO RESOLVE 2 QUESTIONS

1. How to compute betweenness?

2. How to select the number of clusters?



How to Compute Betweenness?

• Want to compute 
betweenness of 
paths starting at 
node 𝑨

• Breath first search 
starting from 𝑨:
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How to Compute Betweenness?

• Count the number of shortest paths from 
𝑨 to all other nodes of the network:



How to Compute Betweenness?

• Compute betweenness by working up the 
tree: If there are multiple paths count them 
fractionally

1 path to K.

Split evenly

1+0.5 paths to J

Split 1:2

1+1 paths to H

Split evenly

The algorithm:

•Add edge flows:

-- node flow = 

1+∑child edges 

-- split the flow up 

based on the parent 

value

• Repeat the BFS 

procedure for each 

starting node 𝑈
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WE NEED TO RESOLVE 2 QUESTIONS

1. How to compute betweenness?

2. How to select the number of clusters?



Network Communities

• Communities: sets of 
tightly connected nodes

• Define: Modularity 𝑸

– A measure of how well 
a network is partitioned 
into communities

– Given a partitioning of the 
network into groups 𝒔 𝑺:

Q  ∑s S [ (# edges within group s) –

(expected # edges within group s) ]



Modularity: Number of clusters

• Modularity is useful for selecting the 
number of clusters:

Next time: Why not optimize Modularity directly?

Q



Spectral Clustering



Graph Partitioning

• Undirected graph 𝑮(𝑽, 𝑬):

• Bi-partitioning task:
– Divide vertices into two disjoint groups 𝑨,𝑩

• Questions:
– How can we define a “good” partition of 𝑮?
– How can we efficiently identify such a partition?
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Graph Partitioning

• What makes a good partition?

– Maximize the number of within-group 
connections

– Minimize the number of between-group 
connections
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A B

Graph Cuts

• Express partitioning objectives as a function 
of the “edge cut” of the partition

• Cut: Set of edges with only one vertex in a 
group:

cut(A,B) = 2
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Graph Cut Criterion

• Criterion: Minimum-cut
– Minimize weight of connections between groups

• Degenerate case:

• Problem:
– Only considers external cluster connections
– Does not consider internal cluster connectivity

arg minA,B cut(A,B)

“Optimal cut”

Minimum cut



Graph Cut Criteria

• Criterion: Normalized-cut [Shi-Malik, ’97]

– Connectivity between groups relative to the 
density of each group

𝒗𝒐𝒍(𝑨): total weight of the edges with at least 
one endpoint in 𝑨: 𝒗𝒐𝒍 𝑨 =  𝒊∈𝑨𝒌𝒊

Why use this criterion?
 Produces more balanced partitions

• How do we efficiently find a good partition?
– Problem: Computing optimal cut is NP-hard

[Shi-Malik]



Analysis of Large Graphs:
Trawling



Trawling

• Searching for small communities in 
the Web graph

• What is the signature of a community / 
discussion in a Web graph?

[Kumar et al. ‘99]

Dense 2-layer graph

Intuition: Many people all talking about the same things

… …
Use this to define “topics”:

What the same people on 

the left talk about on the right

Remember HITS!



Searching for Small Communities

• A more well-defined problem:
Enumerate complete bipartite subgraphs Ks,t
– Where Ks,t : s nodes on the “left” where each links 

to the same t other nodes on the “right”

K3,4

|X| = s = 3

|Y| = t = 4
X Y

Fully connected



Frequent Itemset Enumeration

• Market basket analysis. Setting:

– Market: Universe U of n items

– Baskets: m subsets of U: S1, S2, …, Sm  U

(Si is a set of items one person bought)

– Support: Frequency threshold f

• Goal:

– Find all subsets T s.t. T  Si of at least  f sets Si

(items in T were bought together at least f times)

• What’s the connection between the 
itemsets and complete bipartite graphs?

[Agrawal-Srikant ‘99]



From Itemsets to Bipartite Ks,t

Frequent itemsets = complete bipartite graphs!

• How?
– View each node i as a 

set Si of nodes i points to

– Ks,t = a set Y of size t
that occurs in s sets Si

– Looking for Ks,t set of 
frequency threshold to s
and look at layer t – all 
frequent sets of size t

[Kumar et al. ‘99]
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s … minimum support (|X|=s)

t … itemset size (|Y|=t)



From Itemsets to Bipartite Ks,t

[Kumar et al. ‘99]
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Find frequent itemsets:

s … minimum support

t … itemset size
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We found Ks,t! 
Ks,t = a set Y of size t
that occurs in s sets Si

View each node i as a 
set Si of nodes i points to

Say we find a frequent 
itemset Y={a,b,c} of supp s
So, there are s nodes that 
link to all of {a,b,c}:
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Example (1)

• Support threshold s=2

– {b,d}: support 3

– {e,f}: support 2

• And we just found 2 bipartite 
subgraphs:

c

a b

d

f

Itemsets:

a = {b,c,d}

b = {d}

c = {b,d,e,f}

d = {e,f}

e = {b,d}
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Example (2)

• Example of a community from a web graph

Nodes on the right Nodes on the left

[Kumar, Raghavan, Rajagopalan, Tomkins: Trawling the Web for emerging cyber-communities 1999]
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Identifying Communities

Nodes: Football 

Teams

Edges: Games 

played

Can we identify 
node groups?
(communities, 

modules, clusters)



NCAA Football Network

NCAA conferences



Protein-Protein Interactions

Can we identify 
functional modules?

Nodes: Proteins

Edges: Physical 

interactions



Protein-Protein Interactions

Functional modules

Nodes: Proteins

Edges: Physical 

interactions



Facebook Network

Can we identify 
social communities?

Nodes: Facebook 

Users

Edges: Friendships



Facebook Network

High school Summer
internship

Stanford (Squash)

Stanford (Basketball)

Social communities



More details at…

• Overlapping Community Detection at Scale: A Nonnegative Matrix 
Factorization Approach by J. Yang, J. Leskovec. ACM International 
Conference on Web Search and Data Mining (WSDM), 2013.

• Detecting Cohesive and 2-mode Communities in Directed and Undirected 
Networks by J. Yang, J. McAuley, J. Leskovec. ACM International Conference 
on Web Search and Data Mining (WSDM), 2014.

• Community Detection in Networks with Node Attributes by J. Yang, J. 
McAuley, J. Leskovec. IEEE International Conference On Data Mining 
(ICDM), 2013.

http://cs.stanford.edu/people/jure/pubs/bigclam-wsdm13.pdf
http://cs.stanford.edu/people/jure/pubs/coda-wsdm14.pdf
http://cs.stanford.edu/people/jure/pubs/cesna-icdm13.pdf

