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Online Algorithms

• Classic model of algorithms

– You get to see the entire input, then compute 
some function of it

– In this context, “offline algorithm”

• Online Algorithms

– You get to see the input one piece at a time, and 
need to make irrevocable decisions along the way

– Similar to the data stream model



Online Bipartite Matching



Example: Bipartite Matching
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Nodes: Boys and Girls; Edges: Preferences
Goal: Match boys to girls so that maximum 

number of preferences is satisfied



Example: Bipartite Matching

M = {(1,a),(2,b),(3,d)} is a matching
Cardinality of matching = |M| = 3
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Example: Bipartite Matching
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M = {(1,c),(2,b),(3,d),(4,a)} is a 
perfect matching

Perfect matching … all vertices of the graph are matched

Maximum matching …  a matching that contains the largest possible number of matches



Matching Algorithm

• Problem: Find a maximum matching for a 
given bipartite graph

– A perfect one if it exists

• There is a polynomial-time offline algorithm 
based on augmenting paths (Hopcroft & Karp 1973,

see http://en.wikipedia.org/wiki/Hopcroft-Karp_algorithm)

• But what if we do not know the entire 
graph upfront?

http://en.wikipedia.org/wiki/Hopcroft-Karp_algorithm


Online Graph Matching Problem

• Initially, we are given the set boys

• In each round, one girl’s choices are revealed

– That is, girl’s edges are revealed

• At that time, we have to decide to either:

– Pair the girl with a boy

– Do not pair the girl with any boy

• Example of application: 
Assigning tasks to servers



Online Graph Matching: Example

1

2

3

4

a

b

c

d

(1,a)

(2,b)

(3,d)



Worst-case Scenario
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Web Advertising



History of Web Advertising

• Banner ads (1995-2001)

– Initial form of web advertising

– Popular websites charged 
X$ for every 1,000 
“impressions” of the ad

• Called “CPM” rate 
(Cost per thousand impressions)

• Modeled similar to TV, magazine ads

– From untargeted to demographically targeted

– Low click-through rates

• Low ROI for advertisers

CPM…cost per mille

Mille…thousand in Latin



Performance-based Advertising

• Introduced by Overture around 2000

– Advertisers bid on search keywords

– When someone searches for that keyword, the 
highest bidder’s ad is shown

– Advertiser is charged only if the ad is clicked on

• Similar model adopted by Google with some 
changes around 2002

– Called Adwords



Ads vs. Search Results



Web 2.0

• Performance-based advertising works!

– Multi-billion-dollar industry

• Interesting problem:
What ads to show for a given query? 

– (Today’s lecture)

• If I am an advertiser, which search terms 
should I bid on and how much should I bid? 

– (Not focus of today’s lecture)



Adwords Problem

• Given:
– 1. A set of bids by advertisers for search queries

– 2. A click-through rate for each advertiser-query pair

– 3. A budget for each advertiser (say for 1 month)

– 4. A limit on the number of ads to be displayed with 
each search query

• Respond to each search query with a set of 
advertisers such that:
– 1. The size of the set is no larger than the limit on the 

number of ads per query

– 2. Each advertiser has bid on the search query

– 3. Each advertiser has enough budget left to pay for 
the ad if it is clicked upon



Adwords Problem

• A stream of queries arrives at the search 
engine: q1, q2, …

• Several advertisers bid on each query
• When query qi arrives, search engine must 

pick a subset of advertisers whose ads are 
shown

• Goal: Maximize search engine’s revenues
– Simple solution: Instead of raw bids, use the 

“expected revenue per click” (i.e., Bid*CTR)

• Clearly we need an online algorithm!



The Adwords Innovation
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Complications: Budget

• Two complications:

– Budget

– CTR of an ad is unknown

• Each advertiser has a limited budget

– Search engine guarantees that the advertiser 
will not be charged more than their daily budget



Complications: CTR

• CTR: Each ad has a different likelihood of 
being clicked

– Advertiser 1 bids $2, click probability = 0.1

– Advertiser 2 bids $1, click probability = 0.5

– Clickthrough rate (CTR) is measured historically

• Very hard problem: Exploration vs. exploitation
Exploit: Should we keep showing an ad for which we 
have 
good estimates of click-through rate 
or
Explore:  Shall we show a brand new ad to get a better 
sense of its click-through rate



Greedy Algorithm

• Our setting: Simplified environment

– There is 1 ad shown for each query

– All advertisers have the same budget B

– All ads are equally likely to be clicked

– Value of each ad is the same (=1)

• Simplest algorithm is greedy:

– For a query pick any advertiser who has 
bid 1 for that query

– Competitive ratio of greedy is 1/2



Bad Scenario for Greedy

• Two advertisers A and B

– A bids on query x, B bids on x and y

– Both have budgets of $4

• Query stream: x x x x y y y y

– Worst case greedy choice: B B B B _ _ _ _ 

– Optimal: A A A A B B B B

– Competitive ratio = ½

• This is the worst case!
– Note: Greedy algorithm is deterministic – it always 

resolves draws in the same way



BALANCE Algorithm [MSVV]

• BALANCE Algorithm by Mehta, Saberi, 
Vazirani, and Vazirani

– For each query, pick the advertiser with the 
largest unspent budget

• Break ties arbitrarily (but in a deterministic way)



Example: BALANCE

• Two advertisers A and B

– A bids on query x, B bids on x and y

– Both have budgets of $4

• Query stream: x x x x y y y y

• BALANCE choice: A B A B B B _ _

– Optimal: A A A A B B B B

• In general: For BALANCE on 2 advertisers
Competitive ratio = ¾



General Version of the Problem

• Arbitrary bids and arbitrary budgets!

• Consider we have 1 query q, advertiser i
– Bid = xi

– Budget = bi

• In a general setting BALANCE can be terrible
– Consider two advertisers A1 and A2

– A1: x1 = 1, b1 = 110

– A2: x2 = 10, b2 = 100

– Consider we see 10 instances of q

– BALANCE always selects A1 and earns 10

– Optimal earns 100


