BBS654 Data Mining

Pinar Duygulu

Slides are adapted from

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org **Note to other teachers and users of these slides:** We would be delighted if you found this our material useful in giving your own lectures. Feel free to use these slides verbatim, or to modify them to fit your own needs. If you make use of a significant portion of these slides in your own lecture, please include this message, or a link to our web site: <u>http://www.mmds.org</u>

Advertising on the Web

Mining of Massive Datasets Jure Leskovec, Anand Rajaraman, Jeff Ullman Stanford University http://www.mmds.org

Online Algorithms

Classic model of algorithms

- You get to see the entire input, then compute some function of it
- In this context, "offline algorithm"

Online Algorithms

- You get to see the input one piece at a time, and need to make irrevocable decisions along the way
- Similar to the data stream model

Online Bipartite Matching

Example: Bipartite Matching

Nodes: Boys and Girls; Edges: Preferences Goal: Match boys to girls so that maximum number of preferences is satisfied

Example: Bipartite Matching

M = {(1,a),(2,b),(3,d)} is a matching Cardinality of matching = |M| = 3

Example: Bipartite Matching

M = {(1,c),(2,b),(3,d),(4,a)} is a perfect matching

Perfect matching ... all vertices of the graph are matched **Maximum matching** ... a matching that contains the largest possible number of matches

Matching Algorithm

- Problem: Find a maximum matching for a given bipartite graph
 - A perfect one if it exists
- There is a polynomial-time offline algorithm based on augmenting paths (Hopcroft & Karp 1973, see <u>http://en.wikipedia.org/wiki/Hopcroft-Karp_algorithm</u>)
- But what if we do not know the entire graph upfront?

Online Graph Matching Problem

- Initially, we are given the set **boys**
- In each round, one girl's choices are revealed
 That is, girl's edges are revealed
- At that time, we have to decide to either:
 - Pair the girl with a boy
 - Do not pair the girl with any boy
- Example of application: Assigning tasks to servers

Online Graph Matching: Example

(1,a) (2,b) (3,d)

Worst-case Scenario

Web Advertising

History of Web Advertising

- Banner ads (1995-2001)
 - Initial form of web advertising
 - Popular websites charged
 X\$ for every 1,000
 "impressions" of the ad
 - Called "CPM" rate (Cost per thousand impressions)

CPM...cost per *mille Mille...thousand in Latin*

- Modeled similar to TV, magazine ads
- From untargeted to demographically targeted
- Low click-through rates
 - Low ROI for advertisers

Performance-based Advertising

- Introduced by Overture around 2000
 - Advertisers bid on search keywords
 - When someone searches for that keyword, the highest bidder's ad is shown
 - Advertiser is charged only if the ad is clicked on
- Similar model adopted by Google with some changes around 2002

– Called Adwords

Ads vs. Search Results

Web

GEICO Car Insurance. Get an auto insurance quote and save today

GEICO auto insurance, online car insurance quote, motorcycle insurance quote, online insurance sales and service from a leading insurance company. www.geico.com/ - 21k - Sep 22, 2005 - Cached - Similar pages

Auto Insurance - Buy Auto Insurance Contact Us - Make a Payment More results from www.geico.com »

Geico, Google Settle Trademark Dispute

The case was resolved out of court, so advertisers are still left without legal guidance on use of trademarks within ads or as keywords. www.clickz.com/news/article.php/3547356 - 44k - <u>Cached</u> - <u>Similar pages</u>

Google and GEICO settle AdWords dispute | The Register

Google and car insurance firm **GEICO** have settled a trade mark dispute over ... Car insurance firm **GEICO** sued both Google and Yahoo! subsidiary Overture in ... www.theregister.co.uk/2005/09/09/google_geico_settlement/ - 21k - <u>Cached</u> - <u>Similar pages</u>

GEICO v. Google

... involving a lawsuit filed by Government Employees Insurance Company (GEICO). GEICO has filed suit against two major Internet search engine operators, ... www.consumeraffairs.com/news04/geico_google.html - 19k - Cached - Similar pages Results 1 - 10 of about 2,230,000 for geico. (0.04 secc

Sponsored Links

<u>Great Car Insurance Rates</u> Simplify Buying Insurance at Safeco See Your Rate with an Instant Quote www.Safeco.com

Free Insurance Quotes Fill out one simple form to get multiple quotes from local agents. www.HometownQuotes.com

5 Free Quotes. 1 Form. Get 5 Free Quotes In Minutes! You Have Nothing To Lose. It's Free sayyessoftware.com/Insurance Missouri

Web 2.0

- Performance-based advertising works!
 - Multi-billion-dollar industry
- Interesting problem: What ads to show for a given query?
 – (Today's lecture)
- If I am an advertiser, which search terms should I bid on and how much should I bid?
 - (Not focus of today's lecture)

Adwords Problem

• Given:

- 1. A set of bids by advertisers for search queries
- 2. A click-through rate for each advertiser-query pair
- 3. A budget for each advertiser (say for 1 month)
- 4. A limit on the number of ads to be displayed with each search query
- Respond to each search query with a set of advertisers such that:
 - 1. The size of the set is no larger than the limit on the number of ads per query
 - 2. Each advertiser has bid on the search query
 - 3. Each advertiser has enough budget left to pay for the ad if it is clicked upon

Adwords Problem

- A stream of queries arrives at the search engine: q₁, q₂, ...
- Several advertisers bid on each query
- When query *q_i* arrives, search engine must pick a subset of advertisers whose ads are shown
- Goal: Maximize search engine's revenues

 Simple solution: Instead of raw bids, use the
 "expected revenue per click" (i.e., Bid*CTR)
- Clearly we need an online algorithm!

The Adwords Innovation

Advertiser	Bid	CTR	Bid * CTR
Α	\$1.00	1%	1 cent
В	\$0.75	2%	1.5 cents
С	\$0.50	2.5%	1.125 cents
		Click through rate	Expected revenue

The Adwords Innovation

Advertiser	Bid	CTR	Bid * CTR
В	\$0.75	2%	1.5 cents
С	\$0.50	2.5%	1.125 cents
Α	\$1.00	1%	1 cent

Complications: Budget

- Two complications:
 - Budget
 - CTR of an ad is unknown

- Each advertiser has a limited budget
 - Search engine guarantees that the advertiser
 will not be charged more than their daily budget

Complications: CTR

- CTR: Each ad has a different likelihood of being clicked
 - Advertiser 1 bids \$2, click probability = 0.1
 - Advertiser 2 bids \$1, click probability = 0.5
 - Clickthrough rate (CTR) is measured historically
 - Very hard problem: Exploration vs. exploitation
 Exploit: Should we keep showing an ad for which we have

good estimates of click-through rate

or

Explore: Shall we show a brand new ad to get a better sense of its click-through rate

Greedy Algorithm

• Our setting: Simplified environment

- There is 1 ad shown for each query
- All advertisers have the same budget B
- All ads are equally likely to be clicked
- Value of each ad is the same (=1)
- Simplest algorithm is greedy:
 - For a query pick any advertiser who has bid **1** for that query
 - Competitive ratio of greedy is 1/2

Bad Scenario for Greedy

- Two advertisers A and B
 - A bids on query x, B bids on x and y
 - Both have budgets of \$4
- Query stream: x x x x y y y y
 - Worst case greedy choice: **B B B B**
 - Optimal: AAAABBBB
 - Competitive ratio = ½

• This is the worst case!

Note: Greedy algorithm is deterministic – it always resolves draws in the same way

BALANCE Algorithm [MSVV]

- BALANCE Algorithm by Mehta, Saberi, Vazirani, and Vazirani
 - For each query, pick the advertiser with the largest unspent budget
 - Break ties arbitrarily (but in a deterministic way)

Example: BALANCE

- Two advertisers A and B
 - A bids on query x, B bids on x and y
 - Both have budgets of \$4
- Query stream: x x x x y y y y
- BALANCE choice: A B A B B B _ _ _
 Optimal: A A A A B B B B
- In general: For BALANCE on 2 advertisers
 Competitive ratio = ³/₄

General Version of the Problem

- Arbitrary bids and arbitrary budgets!
- Consider we have 1 query *q*, advertiser *i*
 - Bid = x_i
 - Budget = b_i

• In a general setting BALANCE can be terrible

- Consider two advertisers A₁ and A₂

$$-A_1: x_1 = 1, b_1 = 110$$

$$-A_2: x_2 = 10, b_2 = 100$$

- Consider we see 10 instances of q
- BALANCE always selects A₁ and earns 10
- Optimal earns 100