BSB663
Image Processing

Pinar Duygulu

Slides are adapted from
Gonzales & Woods,
Emmanuel Agu
Suleyman Tosun

Filters

e Capabilities of point operations are limited
e Filters: combine pixel’s value + values of neighbors
e E.g blurring: Compute average intensity of block of pixels

e Combining multiple pixels needed for certain operations:
e Blurring, Smoothing
e Sharpening

Spatial Filter

e® An image operation that combines each pixel’s
intensity I(u, v) with that of neighboring pixels

e E.g: average/weighted average of group of pixels

Average (Mean) of a 3x3 neighborhood

v-1
pixel v
8 neighbor v+1

pixel

u-1 u wu+l

Blurring: Replace each pixel with AVERAGE Intensity of pixel + neighbors

Smoothing an image by averaging

e Replace each pixel by average of pixel + neighbors
e For 3x3 neighborhood:

/ Po+p1+pP2+pP3s+pPs+ps+pe+pr+ps
I'(u,v) «

Ru.r I’(u, I.'J

Smoothing an image by averagin%

Ryv I'(u,v)

Po +p1+p2+p3+pg+ ps+ pe + pr+ ps
9

I'(u,v) «

I'(u,v) —5-[I(u—1,v—1) +I(u,v—1) +I(u+1,0v-1)
I(u—1,v) + I(u,v) +I(u+1,v)
I(u—1,v+1) + I(u,v+1) + I(u+1,v+1)]

1

I'(u,v) « éz Z I(u+i,v+7)

j=—1 i=—1

...|..
+

-1 w wu+l

Smoothing as filtering

Origin X
» -

104

100

108

99

106

98

Ok

95

90

85

433 S

Simple 31314
: Iter

Neighbourhood T

y' Image f (x, y)

generate the smoothed image

ginal Image
Pixels

e = 1,*106 +
/%104 + 1/,*100 + 1/,*108 +
1/4*99 + 1/,%98 +
1/5%95 + 1/5%90 + 1/,*85

= 98.3333

The above is repeated for every pixel in the original image to

1/9

1/9

‘1[9

1/9

1;9

1/9

Filter

Smoothing as filtering

Previous example:
Filter size: 3x3

Many possible filter parameters (size, weights, function, etc)

Filter size (size of neighborhood): 3x3, 5x5, 7x7, ...,21x21,..

Filter shape: not necessarily square. Can be rectangle, circle, etc
Filter weights: May apply unequal weighting to different pixels
Filters function: can be linear (a weighted summation) or nonlinear

Filter

I'(u,v) — Po+Pp1+p2+p3+ps+ps+pe+pr+ps
1
9

I'(u,v) «35-[I(u—1,v-1) +(u,v—-1) +I(u+1,v-1) +
I(u—1,v) + I(u,v) +I(ut+l,v) +
I(u—1,v+1) +I(u,v+1) + I{u+1,v+1) |

o 1 1fg 0 I S Filter operation can be
i (et R B | Al) i =t (SR T LR) expressed as a matrix
o 1o 1 9 LU Example: averaging filter

(0,0) = Hot Spot

Filter matrix also called
filter mask H(i,j)

H = -4-2

i

What does this filter do?

|dentity function (leaves image alone)

Wh—'\-l- A~~~ +hhic Fil+Ar AAD

(o) =N

Mean (averages neighborhood)

Mean filters: effect of filter size

Original 7 WY 15 % 15 41 x 41

Convolution

For each image position I(u,v): 2. :ﬂ:‘gg f:;:::::; ;‘;E:ii:z“ts H(i.j)

u+i, v+))

1. Move filter matrix H over
::n;?ng;dseu::ﬂttzact:fr{;%r?{ image /%/ 3. Sum up results and store
o —— sum in corresponding position

osition (u,v,
p (u,v) in new image I'(u, v)

Stated formally:

I'(u,v) — Y I(u+iv+j)-H(i,j)
(i,j)ERH

7
R, is set of all pixels /f(u,ﬂ) — Z Z I(u+i,v+j)- H(i,j)

Covered by filter. i=—1 j=—1
For 3x3 filter, this is:

e Filter matrix H moves over each pixel in original image /|to |
compute corresponding pixel in new image I’

e Cannot overwrite new pixel value in original image / Why?

Original Original [-f
Image | = Image h\ o il
i s -
©,
Filter
(’1‘\ Filter
S
Inter- Inter-
mediate mediate
Image Image [

Version A Version B
Store results / in intermediate Copy original image / to intermediate
image, then copy back to replace / image, use it as source, then store

results /’ to replace original image

Weighted smoothing filters

eMore effective smoothing filters can be generatled
by allowing different pixels in the neighbourhood
different weights in the averaging function

o Pixels closer to central 1 , 1
pixel more important l6 | “l1e | 16

o Often referred to as a ,) ,
weighted averaging l16 | *l1e | “l16

1 2 1
/16 /16 /16

Weighted
averaging filter

e Instead of floating point coeffients, more efficient,
simpler to use:

scaling factor +integer coefficients

[0.075 0.125 0.075 [3 75 3
H(i,j)= | 0.125 0200 0125 | =5 Ril-5
VA fS7RE opemd sig [s

H(i,j) = s- H'(i,)

Computation range

e For a filter of size (2K+1) x (2L+1), if image size is \
MxN, filter is computed over the range:

K<u<(M-K-1)

K . no coverage

- -

and

ih,‘ll'r

M

L<v <(N-L-1)

u

- full coverage

Filter can only be applied at image
locations (u, v) where filter matrix H
is fully contained in the image

What to do at image boundaries?

a) Crop

a) Crop
b) Pad

a) Crop
b) Pad
c) Extend

Crop
Pad
Extend
Wrap

e 2 main classes of linear filters:
e Smoothing: +ve coeffients (weighted average). E.g box, gaussian
e Difference filters: +ve and —ve weights. E.g. Laplacian

(b) (c)

Gaussian Laplacian

Gaussian Filter

2 21,2

G (r) =€ 22 or Gx(2,0) = e 303

e Wwhere
e o is width (standard deviation))
e ris distance from center '

Gaussian
filter

Difference Filters
e Coefficients: some +ve, some negative
e Example: Laplacian filter
e Computation is difference

Z(+ve coef fients) — Z(—ve coef fients)

I'(wv)= Y I(utiv+j)- [H(,)
(i,7)ER7,

— > I(u+i,v+j) - [H(i,)
(i.4)ERy

00

Laplacian
filter

Mathematical Properties of convolution

e Applying a filter as described called linear convolution|
e For discrete 2D signal, convolution defined as:

X o
I'(u,v) = Z Z I(u—i,v—73)- H(3,5)
I=—00 j==—0C
Formal definition: / =1I%H
Sumto + o
I(u,v) I'(u,v)
“““’:;‘" > -

Same result if we convolve
@ Commutativity image with filter or vice versa

IxH=H=xI
If image muiltiplied by scalar

e Linearity / Result multiplied by same scalar
(s-I)*xH T# (s=H) (I« H)

— p— s .

(h+I)xH = (LxH)+(I2%H)

. If 2 images added and convolve
(notice) .
result with a kernel H,
b+D)*xH # b+(I*H) Same result if each image
is convolved individually + added

e Associativity

Ax(BxC)=(AxB)xC

\ Order of filter application irrelevant

Any order, same result

e Separability
H=HxHyx*...xH,

I+H=1x(Hy*Hyx*...xH,)
:(___((I*Hl)*Hg)*---*Hn)

e If a kernel H can be separated into multiple smaller

kernels Applying smaller kernels H, H, ... Hy H one by one
computationally cheaper than apply 1 large kernel H

— \

H:Hl*HQ*...*Hn

Computationally Computationally
More expensive Cheaper

Separability

e Sometimes we can separate a kernel into “vertical”
and “horizontal” components

e Consider the kernels

H.=[11111], and H, =

Then

H:HV*H*;:

e What is the number of operations for 3 x 5 kernel H
Ans: 15wh

e What is the number of operations for H, followed by H,?
Ans: 3wh + 5wh = 8wh

H.o=[11111], and H, =

e What is the number of operations for 3 x 5 kernel H
Ans: 15wh

e What is the number of operations for H, followed by H,?
Ans: 3wh + 5wh = 8wh

e What about M x M kernel?
O(M?) — no separability (M?wh operations, grows quadratically!)
O(M?) — with separability (2Mwh operations, grows linearly!)

Gaussian Kernel

e 1D

e 2D

Seperability of Gaussian

e 2D gaussian is just product of 1D gaussians:

| ..2_'_ 2
(6. y)= =~ exp (— v o >

2102 2072

— — 2 . X — 5
2o b 20- 20 P 20*

= 8go(X) - &5(¥)

\ Separable!

e Consequently, convolution with a gaussian is
separable

[G =1%G,*Gy

e Where G is the 2D discrete gaussian kernel;

e G, is “horizontal” and G, is “vertical” 1D discrete
Gaussian kernels

Impulse (or Dirac) Function

e In discrete 2D case, impulse function defined as:

1l for u=v=0
O(u,v) = { 0 otherwise.

e Impulse function on image?
e A white pixel at origin, on black background

o .
- - B i & o dorvabhasndonemnntnnn
P e G P bk e el et
....... L R T
-r < 4 . ' . X ¢ .
B e LR T B L T T decadanes
prassbesytongt]speeniceny
’ X ’
‘ o t--:,...-.-- $anaptnnfanmysnanhsas ’ u
. ~ . "y ’
. cevpfensnpesuvensnbonn el e
"""""""""""""""
........ :/..-.4---.‘.-.--,.-.-,..--..-.-A....,.---
e
B T LT T Ay LTI P
’
»

e Impulse function neutral under convolution (no effectl)
e Convolving an image using impulse function as filter = image

Ix0=.1

A4

’(/-‘ p—

ﬂln“;.\ i ' l-

A o O “ﬂ
——— f' ;

- O//

I'(u, v,) = I(u,v)

(i)

S
Y
N
|
|

e Reverse case? Apply filter H to impulse function |

e Using fact that convolution is commutative
Hxo=0«xH=H

e Resultis the filter H

Noise
e While taking picture (during capture), noise may oj:cur
e Noise? Errors, degradations in pixel values
e Examples of causes:
e Focus blurring
e Blurring due to camera motion

e Additive model for noise: P

e Removing noise called Image Restoration

e Image restoration can be done in:
e Spatial domain, or
e Frequency domain

Type of noise determines best types of filters for removiné it!!
Salt and pepper noise: Randomly scattered black + white pixels
Also called impulse noise, shot noise or binary noise

Caused by sudden sharp disturbance

Courtesy
Allasdair McAndrews

(a) Original image (b) With added salt & pepper noise

e Gaussian Noise: idealized form of white noise added to
image, normally distributed I+ Noise

e Speckle Noise: pixel values multiplied by random noise
I(1+ Noise)

Courtesy
Allasdair McAndrews

(a) Gaussian noise (b) Speckle noise

e Periodic Noise: caused by
disturbances of a periodic
nature

e Salt and pepper, gaussian
and speckle noise can be
cleaned using spatial filters

e Periodic noise can be Figure 5.3: The twins image corrupted by peri-
" odic noise
cleaned using frequency
domain filtering (later) Courtesy

Allasdair McAndrews

Non-linear filters

e Linear filters blurs all image structures points, edges bnd
lines, reduction of image quality (bad!)

e Linear filters thus not used a lot for removing noise

Blurred

Linear Edge
Filter Results
Sharp
edge \ |

H /\ Blurred
sharp ___— S~ [pin
Thin Line

Line Results

N ; e
e Example: Using linear filter to clean salt and pepper noise just
causes smearing (not clean removal)

e Try non-linear filters? Courtesy
Allasdair McAndrews

(a) 3 x 3 averaging (b) 7 x 7 averaging

e Pixels in filter range combined by some non-linear funlction
e Simplest examples of nonlinear filters: Min and Max filters

I'(u,v) < min {I(u+i,v+7) | (,7) € R}
I'(u,v) « max {I(u+i,v+j) | (3,7) € R}

[:__a_

Before n
filtering
After a—

filtering B

—= +— width of filter
(a) (b) (c)
Effect of Step Edge rl;lalrrow Linear Ramp
Minimum (shifted to right) uise (shifted to right)
(removed)

filter

(b)

Original Image with Minimum filter removes Maximum filter (opposite effect):
Salt-and-pepper noise bright spots (maxima) and Removes dark spots (minima) and
widens dark image structures widens bright image structures

Median Filter

e Much better at removing noise and keeping the
structures

I'(u,v) «— median {I(u+1i,v+j) | (,j) € R}

3 0 Po
31712 7 0
1/0/0 % 1
91518 1 2| PK-1
—|0|— Sort ——|{3I—> PK =
I ('\A,v) 0 5|piy median
9 7
5 8
8 9| p2k

Sort pixel values

within filter region Replace filter “hot spot” pixel

with median of sorted values

Isolated pixels
are eliminated

=

(a)

)

(c)

A step edge is
unchanged

Thin lines
are eliminated

==

(b)

S

(d)

A corner is
rounded off

Linear filter re(moves some of Median filtengtgalt-and-pepper noise
the noise, but not completely. and keeps image structures largely
Smears noise intact. But also creates small spots
of flat intensity, that affect sharpness

Original Image with
Salt-and-pepper noise

Weighted Median Filter

e Color assigned by median filter determined by colors of
“the majority” of pixels within the filter region

e Considered robust since single high or low value cannot
influence result (unlike linear average)

e Median filter assigns weights (number of “votes”) to
filter positions
1
2
1

W (i, 5) = l ‘

e To compute result, each pixel value within filter region is
inserted W(i,j) times to create extended pixel vector

= b =
o 8 bO

e Extended pixel vector then sorted and median returned

Insert each pixel within filter Sort extended plxel
Pixels within region W(lj) times into vector and return median

filter region extended pixel vector

_—
—

i 3 0 %o
3) 0
110/0 i 0
9158 2 0
1 0
I(u,v) 1 I
0 1| Pk
¢ — BN — G PK =
f 0 3| Pkt weighted
W (i, §) 0 5 median
L1Z]1 g ;
a1 | 2 5 7
1[2]1 5 8
Weight 8 9| P2k
matrix

Note: assigning weight to center pixel larger than sum of all other pixel
weights inhibits any filter effect (center pixel always carries majority)!!

More formally, extended pixel vector defined as |

(i,)ER

For example, following weight matrix yields extended
pixel vector of length 15 (sum of weights)

1 2 1
W)= 2 3 2
1 2 1

Weighting can be applied to non-rectangular filters
Example: cross-shaped median filter may have weights

O | ({0
17 e N E R il S W
0l | (2L{ il

Outlier removal

e Median filter does sorting per pixel (computationally expensive)

e Alternate method for removing salt-and-pepper noise
o Define noisy pixels as outliers (different from neighboring pixels by an
amount > D)
e Algorithm:
e Choose threshold value D
o For given pixel, compare its value p to mean m of 8 neighboring pixels
o If |p—m]| > D, classifiy pixel as noise, otherwise not
o |If pixel is noise, replace its value with m; Otherwise leave its value
unchanged
e Method not automatic. Generate multiple images with
different values of D, choose the best looking one

e Effects of choosing different values of D

Courtesy
Allasdair McAndrews

(b) D = 0.4

D value too large: removes
noise from light regions

D value too small: removes
noise from dark regions

e D value of 0.3 performs best
e Overall outlier method not as good as median filter

