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Importance of neighborhood

• Both zebras and dalmatians have black and white pixels in similar 
numbers.

• The difference between the two is the characteristic appearance 
of small group of pixels rather than individual pixel values.

Adapted from Pinar Duygulu, Bilkent University
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Outline

• We will discuss neighborhood operations that work with the values of 
the image pixels in the neighborhood.

• Spatial domain filtering

• Frequency domain filtering

• Image enhancement

• Finding patterns
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Spatial domain filtering
• What is the value of the center 

pixel?

• What assumptions are you 
making to infer the center value?

3 3 3

3 ? 3

3 3 3

3 4 3

2 ? 3

3 4 2

3

3
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Spatial domain filtering

• Some neighborhood operations work with
• the values of the image pixels in the neighborhood, and

• the corresponding values of a subimage that has the same dimensions as the 
neighborhood.

• The subimage is called a filter (or mask, kernel, template, window).

• The values in a filter subimage are referred to as coefficients, rather 
than pixels.
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Spatial domain filtering

• Operation: modify the pixels in an image based on some function of 
the pixels in their neighborhood.

• Simplest: linear filtering (replace each pixel by a linear combination of 
its neighbors).

• Linear spatial filtering is often referred to as “convolving an image 
with a filter”.



Linear filtering
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Spatial domain filtering

• Be careful about indices, image borders and padding during 
implementation.
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Border padding examples.

zero fixed/clamp periodic/wrap reflected/mirror

Adapted from CSE 455, U of Washington
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Smoothing spatial filters

• Often, an image is composed of
• some underlying ideal structure, which we want to detect and describe,

• together with some random noise or artifact, which we would like to remove.

• Smoothing filters are used for blurring and for noise reduction.

• Linear smoothing filters are also called averaging filters.



10

Smoothing spatial filters
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Adapted from Octavia Camps, Penn State
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Smoothing spatial filters

1/9.(10x1 + 9x1 + 11x1 + 9x1 + 99x1 + 11x1 + 11x1 + 10x1 + 10x1) = 
1/9.( 180) = 20
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Smoothing spatial filters
• Common types of noise:

• Salt-and-pepper noise: 
contains random 
occurrences of black and 
white pixels.

• Impulse noise: contains 
random occurrences of 
white pixels.

• Gaussian noise: variations in 
intensity drawn from a 
Gaussian normal 
distribution.

Adapted from Linda Shapiro, U of Washington
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Adapted from Linda Shapiro,
U of Washington
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Smoothing spatial filters

Adapted from Gonzales and Woods
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Smoothing spatial filters

A weighted average that 
weighs pixels at its center 
much more strongly than 
its boundaries.

2D Gaussian filter

Adapted from Martial Hebert, CMU
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Smoothing spatial filters

• If σ is small: smoothing will have little 
effect.

• If σ is larger: neighboring pixels will 
have larger weights resulting in 
consensus of the neighbors.

• If σ is very large: details will disappear 
along with the noise.

Adapted from Martial Hebert, CMU
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Smoothing spatial filters

Adapted from Martial Hebert, CMU



Smoothing spatial filters
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…

Width of the Gaussian kernel controls the amount of smoothing.

Adapted from K. Grauman
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Smoothing spatial filters

Result of blurring 
using a uniform 
local model.

Produces a set of 
narrow horizontal 
and vertical bars –
ringing effect.

Result of 
blurring using a 
Gaussian filter.

Adapted from David Forsyth, UC Berkeley



Smoothing spatial filters
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Adapted from CSE 455, U of Washington

Gaussian versus mean filters
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Order-statistic filters

• Order-statistic filters are nonlinear spatial filters whose response is 
based on
• ordering (ranking) the pixels contained in the image area encompassed by the 

filter, and then

• replacing the value of the center pixel with the value determined by the 
ranking result.

• The best-known example is the median filter.

• It is particularly effective in the presence of impulse or salt-and-
pepper noise, with considerably less blurring than linear smoothing 
filters.
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Order-statistic filters
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Order-statistic filters
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Salt-and-pepper noise

Adapted from Linda Shapiro,
U of Washington
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Gaussian noise

Adapted from Linda Shapiro,
U of Washington
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Order-statistic filters

Adapted from Martial Hebert, CMU



Spatially varying filters
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Bilateral filter: kernel depends on the local image content.
See the Szeliski book for the math.

*

*

*

input output

Adapted from Sylvian Paris



Spatially varying filters
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Compare to the result of using the same Gaussian kernel everywhere

Adapted from Sylvian Paris

*

*

*

input output
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Sharpening spatial filters

• Objective of sharpening is to highlight or enhance fine detail in an 
image.

• Since smoothing (averaging) is analogous to integration, sharpening 
can be accomplished by spatial differentiation.

• First-order derivative of 1D function f(x)
f(x+1) – f(x).

• Second-order derivative of 1D function f(x)
f(x+1) – 2f(x) + f(x-1).
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Sharpening spatial filters

Robert’s cross-gradient operators

Sobel gradient operators
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Sharpening spatial filters
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Sharpening spatial filters

Adapted from Gonzales and Woods
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Sharpening spatial filters

High-boost filtering

Adapted from Darrell and Freeman, MIT
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Sharpening spatial filters

Adapted from Darrell and Freeman, MIT
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Combining spatial enhancement methods
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Template matching

• Correlation can also be used for matching.

• If we want to determine whether an image f contains a particular 
object, we let h be that object (also called a template) and compute 
the correlation between f and h.

• If there is a match, the correlation will be maximum at the location 
where h finds a correspondence in f.

• Preprocessing such as scaling and alignment is necessary in most 
practical applications.
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Template matching

Adapted from Gonzales and Woods
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Template matching

Face detection using template matching: face templates.
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Template matching

Face detection using template matching: detected faces.
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Template matching

Where is Waldo?
http://machinelearningmastery.com/using-opencv-python-and-template-matching-to-play-wheres-waldo/
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Resizing images

How can we generate a 
half-sized version of a 
large image?

Adapted from Steve Seitz, U of Washington
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Resizing images

Throw away every other row and column to create 
a 1/2 size image (also called sub-sampling).

1/4

1/8

Adapted from Steve Seitz, U of Washington
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Resizing images

Does this look nice?

1/4 (2x zoom) 1/8 (4x zoom)1/2

Adapted from Steve Seitz, U of Washington
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Resizing images
• We cannot shrink an image by simply taking every k’th pixel.

• Solution: smooth the image, then sub-sample.

Gaussian 1/4

Gaussian 1/8

Gaussian 1/2 Adapted from Steve Seitz, U of Washington
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Resizing images

Gaussian 1/4 
(2x zoom)

Gaussian 1/8 
(4x zoom)

Gaussian 1/2

Adapted from Steve Seitz, U of Washington
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Sampling and aliasing

Adapted from Steve Seitz, U of Washington
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Sampling and aliasing

• Errors appear if we do not sample properly.

• Common phenomenon:
• High spatial frequency components of the image appear as low spatial 

frequency components.

• Examples:
• Wagon wheels rolling the wrong way in movies.

• Checkerboards misrepresented in ray tracing.

• Striped shirts look funny on color television.
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Sampling and aliasing

Adapted from Ali Farhadi
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Gaussian pyramids

Adapted from Gonzales and Woods
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Gaussian pyramids

Adapted from Michael Black, Brown University
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Gaussian pyramids

Adapted from Michael Black, Brown University


