Bag of Words

BIL719– Computer Vision Pinar Duygulu Hacettepe University

Revisit Texture

- Texture depicts spatially repeating patterns
- Many natural phenomena are textures

radishes

rocks

yogurt

Texton Discrimination (Julesz)

バママンド アンシャマンシアレシャ アンフレム くつく マレフト シートションドイシアシストレイシストレイシスションションシア ハンインナナンシャンションシンシンシンシンシンシンシン イン* +* +*+ ** ノベルドシンイアレスレクハハノシレシレ シュレキャキキャキャンイレングシアレイノットインレント シード * * * + * * * * シアマンドラインインインインマンイ - ハンキャ××× * × × ハノハンシーバレイシーン ノイン コレントシーン シーン ノー・ ノー・ アイン・ ノーン・ ノーン・ - イトンシャイトハント ートト ーレイト トレイイ・アートシャーハ 「シンドベルーレンハンハンシンハンショントーレンシン リートハンコートシアトアランシンシンシンシアアンシンコンシンコ コンドベンバイトレイシアレトレイアイシントベイレンイレ

Human vision is sensitive to the difference of some types of elements and appears to be "numb" on other types of differences.

Search Experiment I

(a)

The subject is told to detect a target element in a number of background elements. In this example, the detection time is independent of the number of background elements.

Search Experiment II

In this example, the detection time is proportional to the number of background elements, And thus suggests that the subject is doing element-by-element scrutiny.

Heuristic (Axiom) I

Julesz then conjectured the following axiom:

Human vision operates in two distinct modes:

1. Preattentive vision

parallel, instantaneous (~100--200ms), without scrutiny, independent of the number of patterns, covering a large visual field.

2. Attentive vision

serial search by focal attention in 50ms steps limited to small aperture.

Then what are the basic elements?

Heuristic (Axiom) II

Julesz's second heuristic answers this question:

Textons are the fundamental elements in preattentive vision, including

1. Elongated blobs

rectangles, ellipses, line segments with attributes color, orientation, width, length, flicker rate.

2. Terminators

ends of line segments.

3. Crossings of line segments.

But it is worth noting that Julesz's conclusions are largely based by ensemble of artificial texture patterns. It was infeasible to synthesize natural textures for controlled experiments at that time.

Bag of words

I 🔨 / -

 $\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i$ 뷥말 Torralba, MIT

Bag of words & spatial pyramid matching

Grauman & Darell, S. Lazebnik, et al, CVPR 2006 Torralba, MIT

Histogram Intersection

Histogram intersection

Slide credit: Kristen Grauman

Histogram based distances

Given two histograms: h1, h2, such that sum(h1)=sum(h2)=1

- Euclidean
 D(h1, h2) = sum ((h1 h2).^2)
- Histogram intersection
 D(h1, h2) = 1-sum (min (h1, h2))
- X²
 D(h1, h2) = sum((h1-h2).^2 ./ (h1+h2))

Capturing the "essence" of texture

• ...for re

- We don't want an actual texture realization, we want a texture invariant
- What are the tools for capturing <u>statistical</u> properties of some signal?

Multi-scale filter decomposition

Filter bank

Input image

Alyosha Efros, CMU

Filter response histograms

Alyosha Efros, CMU

Textons (Malik et al, IJCV 2001)

• K-means on vectors of filter responses

Textons (cont.)

Modelling I – Learning the Texton Dictionary

Varma, M. and Zisserman, A., IJCV 2005

Modelling II - Multiple Models Per Texture

Varma, M. and Zisserman, A., IJCV 2005

Textons

Walker, Malik, 2004

Torralba, MIT

Revisit Keypoint Matching

1. Find a set of distinctive keypoints

- 2. Define a region around each keypoint
- 3. Extract and normalize the region content
- 4. Compute a local descriptor from the normalized region
- 5. Match local descriptors

K. Grauman, B. Leibe

Hayes, Brown

Finding the objects (overview)

- 1. Match interest points from input image to database image
- 2. Matched points vote for rough position/orientation/scale of object
- 3. Find triplets of position/orientation/scale that have at least three votes
- 4. Compute affine registration and matches using iterative least squares with outlier check
- 5. Report object if there are at least T matched points

Matching Keypoints

- Want to match keypoints between:
 - 1. Query image
 - 2. Stored image containing the object
- Given descriptor x₀, find two nearest neighbors x₁, x₂ with distances d₁, d₂
- x_1 matches x_0 if $d_1/d_2 < 0.8$
 - This gets rid of 90% false matches, 5% of true matches in Lowe's study

Hayes, Brown

Simple idea

See how many keypoints are close to keypoints in each other image

Few or No Matches

But this will be really, really slow!

Hayes, Brown

Indexing local features

• Each patch / region has a descriptor, which is a point in some high-dimensional feature space (e.g., SIFT)

Indexing local features

• When we see close points in feature space, we have similar descriptors, which indicates similar local content.

Kristen Graun

Indexing local features: inverted file index

"Along I-75," From Detroit to	Butterfly Center, McGuire; 134	Driving Lanes; 85
Florida; inside back cover	CAA (see AAA)	Duval County; 163
"Drive I-95," From Boston to	CCC, The; 111,113,115,135,142	Eau Gallie; 175
Florida; inside back cover	Ca d'Zan; 147	Edison, Thomas; 152
1929 Spanish Trail Roadway; 101-102-104	Caloosahatchee River; 152	Eglin AFB; 116-118 Fight Repla: 176
E11 Traffic Information: 92	Consumed Natel Constants 172	Elight Heale, 176
A1A (Darries Int) 1 OF Assass: PF	Canaveral Nathi Seashore, 173	Emerginal Relat Minada 100
ATA (barrier isi) - 1-90 Access, oo	Cannon Creek Airpark, 130	Emanuel Point Wreck, 120
AAA National Officer 88	Canopy Hoad, 100, 109	Eniologency Galacters, 65 Eniologies, 142, 149, 157, 150
Abbraviations	Castillo San Manner 160	Epiphysia, 142, 140, 157, 159 Escambia Base 110
Colored 25 mile Mapp: court	Case Dising: 121	Dridge /L 10/: 110
Exit Canadae: 106	Cave Onning, 131 Cave Costa, Nama: 150	County 120
Travelogue: 85	Calabration: 02	Edam: 152
Africa: 177	Charlotte Country 149	Evendede 00 05 130-140 154-1
Auricetteral Inconcition Street 506	Charlotte Harbor: 150	Draining of 156 181
Ab-Tab-Tbi-Ki Musaum: 180	Chautauaua: 116	Wildlife MA: 160
Air Conditioning First 112	Chinlau: 114	Wonder Gardens: 154
Alahama: 124	Mama: 115	Falling Waters SP 115
Alachear 132	Chortewatchee Name: 115	Fantasy of Flight 95
County 131	Circus Museum Binding: 147	Fauer Dukes SP- 171
Aladia River: 143	Citrus: 88 97 130 136 140 180	Fires Forest 166
Alanaha Name: 126	CityPlace W Palm Beach: 180	Fires Prescribed 148
Alfred B Maclay Gardens: 106	City Mans.	Fisherman's Village: 151
Allicator Alley: 154-155	Ft Lauderdale Experts: 194-195	Flagler County: 171
Allicator Farm, St Augustine: 169	Jacksonville: 163	Flagler, Henry: 97, 165, 167, 171
Alligator Hole (definition): 157	Kissimmee Expwys: 192-193	Florida Aquarium: 186
Alligator, Buddy: 155	Miami Expressways: 194-195	Florida.
Alligators: 100.135.138.147.156	Orlando Expresswavs: 192-193	12.000 years ago: 187
Anastasia Island: 170	Pensacola: 26	Cavern SP: 114
Anhaica: 108-109,146	Tallahassee: 191	Map of all Expressways; 2-3
Apalachicola River; 112	Tampa-St. Petersburg: 63	Mus of Natural History; 134
Appleton Mus of Art; 136	St. Augsutine; 191	National Cemetery ; 141
Aquifer; 102	Civil War; 100,108,127,138,141	Part of Africa; 177
Arabian Nights; 94	Clearwater Marine Aquarium: 187	Platform; 187
Art Museum, Ringling; 147	Collier County; 154	Sheriff's Boys Camp; 126
Aruba Beach Cafe; 183	Collier, Barron; 152	Sports Hall of Fame; 130
Aucilla River Project; 106	Colonial Spanish Quarters; 168	Sun 'n Fun Museum; 97
Babcock-Web WMA; 151	Columbia County; 101,128	Supreme Court; 107
Bahia Mar Marina; 184	Coquina Building Material; 165	Florida's Turnpike (FTP), 178,1
Baker County; 99	Corkscrew Swamp, Name; 154	25 mile Strip Maps; 66
Barefoot Mailmen; 182	Cowboys; 95	Administration; 189
Barge Canal; 137	Crab Trap II; 144	Coin System; 190
Bee Line Expy; 80	Cracker, Florida; 88,95,132	Exit Services; 189
Belz Outlet Mall; 89	Crosstown Expy; 11,35,98,143	HEFT; 76,161,190
Bernard Castro; 136	Cuban Bread; 184	History; 189
Big 'l'; 165	Dade Battlefield; 140	Names; 189
Big Cypress; 155,158	Dade, Maj. Francis; 139-140,161	Service Plazas; 190
Big Foot Monster; 105	Dania Beach Hurricane; 184	Spur SR91; 76
Billie Swamp Safari; 160	Daniel Boone, Florida Walk; 117	Ticket System; 190
Blackwater River SP; 117	Daytona Beach; 172-173	Toli Plazas; 190
Blue Angels	De Land; 87	Ford, Henry; 152

- For text documents, an efficient way to find all *pages* on which a *word* occurs is to use an index...
- We want to find all *images* in which a *feature* occurs.
- To use this idea, we'll need to map our features to "visual words".

Kristen Grauman

Visual words

• Map high-dimensional descriptors to tokens/words by quantizing the feature space

- Quantize via clustering, let cluster centers be the prototype "words"
- Determine which word to assign to each new image region by finding the closest cluster center.

Visual words

• Example: each group of patches belongs to the same visual word

Figure from Sivic & Zisserman, ICCV 2003 Kristen Grauman

Inverted file index

 Database images are loaded into the index mapping words to image numbers

Inverted file index

 New query image is mapped to indices of database images that share a word.

Kristen Grauman

Analogy to documents

China is forecasting a trade surplus of \$90bn (£51bn) to \$100bn this year, a threefold increase on 2004's \$32bn. The Commerce Ministry said the surplus would dicted 30% jump in expo a 18% China, trade, rise in imp elv to further a surplus, commerce, at China's exports, imports, US, deliber yuan, bank, domestic, the sur one fact foreign, increase, Xiaochua trade, value more to bo stayed within value of the yuan July and permitted it to band, but the US wants the yuan to be d to trade freely. However, Beijing has made that it will take its time and tread careful allowing the yuan to rise further in value.

Alyosha Efros, CMU

1.Feature detection and representation

- Sliding Window
 - Leung et al, 1999
 - Viola et al, 1999
 - Renninger et al 2002

- Sliding Window
 - Leung et al, 1999
 - Viola et al, 1999
 - Renninger et al 2002
- Regular grid
 - Vogel et al. 2003
 - Fei-Fei et al. 2005

- Sliding Window
 - Leung et al, 1999
 - Viola et al, 1999
 - Renninger et al 2002
- Regular grid
 - Vogel et al. 2003
 - Fei-Fei et al. 2005
- Interest point detector
 - Csurka et al. 2004
 - Fei-Fei et al. 2005
 - Sivic et al. 2005

- Sliding Window
 - Leung et al, 1999
 - Viola et al, 1999
 - Renninger et al 2002
- Regular grid
 - Vogel et al. 2003
 - Fei-Fei et al. 2005
- Interest point detector
 - Csurka et al. 2004
 - Fei-Fei et al. 2005
 - Sivic et al. 2005
- Other methods
 - Random sampling (Ullman et al. 2002)
 - Segmentation based patches
 - Barnard et al. 2003, Russell et al 2006, etc.)

Feature Representation

Visual words, aka textons, aka keypoints: K-means clustered pieces of the image

- Various Representations:
 - Filter bank responses
 - Image Patches
 - SIFT descriptors

All encode more-or-less the same thing...

Interest Point Features

Detect patches

[Mikojaczyk and Schmid '02] [Matas et al. '02] [Sivic et al. '03]

Slide credit: Josef Sivic

Interest Point Features

Alyosha Efros, CMU

Patch Features

Alyosha Efros, CMU

dictionary formation

Clustering (usually k-means)

Slide credit: Josef Sivic

Clustered Image Patches

Fei-Fei et al. 2005

Image patch examples of codewords

Sivic et al. 2005

Visual synonyms and polysemy

Visual Polysemy. Single visual word occurring on different (but locally similar) parts on different object categories.

Visual Synonyms. Two different visual words representing a similar part of an object (wheel of a motorbike).

Alyosha Efros, CMU

Image representation

Alyosha Efros, CMU

Bags of visual words

- Summarize entire image based on its distribution (histogram) of word occurrences.
- Analogous to bag of words representation commonly used for documents.

Comparing bags of words

 Rank frames by normalized scalar product between their (possibly weighted) occurrence counts---*nearest neighbor* search for similar images.

$$sim(d_j,q) = \frac{\langle d_j,q \rangle}{\|d_j\|\|q\|}$$

$$=\frac{\sum_{i=1}^{V} d_{j}(i) * q(i)}{\sqrt{\sum_{i=1}^{V} d_{j}(i)^{2}} * \sqrt{\sum_{i=1}^{V} q(i)}}$$

for vocabulary of V words

Kristen Grauman

Vocabulary size

Influence on performance, sparsity

Results for recognition task wit 6347 images

Nister & Stewenius, CVPR 2006 Kristen Grauman

Can we be more accurate?

Can we be more accurate?

So far, we treat each image as containing a "bag of words", with no spatial information

Real objects have consistent geometry

Spatial Verification

DB image with high BoW similarity

Both image pairs have many visual words in common.

Slide credit: Ondrej Chum

Spatial Verification

DB image with high BoW similarity

Only some of the matches are mutually consistent

Slide credit: Ondrej Chum

What else can we borrow from text retrieval?

Index

"Along I-75," From Detroit to Florida; inside back cover "Drive I-95," From Boston to Florida; inside back cover 1929 Spanish Trail Roadway; 101-102,104 511 Traffic Information: 83 A1A (Barrier Isi) - I-95 Access; 86 AAA (and CAA); 83 AAA National Office: 88 Abbreviations, Colored 25 mile Maps; cover Exit Services; 196 Travelogue; 85 Africa: 177 Agricultural Inspection Stns; 126 Ah-Tah-Thi-Ki Museum: 160 Air Conditioning, First; 112 Alabama: 124 Alachua: 132 County; 131 Alafia River: 143 Alapaha, Name; 126 Alfred B Maclay Gardens; 106 Alligator Alley; 154-155 Alligator Farm, St Augustine; 169 Alligator Hole (definition): 157 Alligator, Buddy; 155 Alligators; 100,135,138,147,156 Anastasia Island; 170 Anhaica: 108-109,146 Apalachicola River; 112 Appleton Mus of Art; 136 Aquifer: 102 Arabian Nights; 94 Art Museum, Ringling; 147 Aruba Beach Cale; 183 Aucilla River Project; 106 Babcock-Web WMA; 151 Bahia Mar Marina; 184 Baker County; 99 Barefoot Mailmen; 182 Barge Canal; 137 Bee Line Expy; 80 Belz Outlet Mall; 89 Bernard Castro: 136 Big 'l'; 165 Big Cypress; 155,158 Big Foot Monster; 105

Butterfly Center, McGuire; 134 CAA (see AAA) CCC. The: 111.113.115.135.142 Ca d'Zan; 147 Caloosahatchee River: 152 Name; 150 Canaveral Natni Seashore: 173 Cannon Creek Airpark; 130 Canopy Road; 106,169 Cape Canaveral: 174 Castillo San Marcos; 169 Cave Diving: 131 Cavo Costa, Name: 150 Celebration; 93 Charlotte County: 149 Charlotte Harbor; 150 Chautauoua: 116 Chipley; 114 Name; 115 Choctawatchee, Name; 115 Circus Museum, Ringling; 147 Citrus: 88.97.130.136.140.180 CityPlace, W Palm Beach; 180 City Maps, Ft Lauderdale Expwys; 194-195 Jacksonville: 163 Kissimmee Expwys: 192-193 Miami Expressways; 194-195 Orlando Expressways; 192-193 Pensacola; 26 Tallahassee; 191 Tampa-St. Petersburg: 63 St. Augsutine; 191 Civil War; 100,108,127,138,141 Clearwater Marine Aquarium; 187 Collier County; 154 Collier, Barron; 152 Colonial Spanish Quarters; 168 Columbia County; 101,128 Coquina Building Material; 165 Corkscrew Swamp, Name; 154 Cowboys; 95 Crab Trap II: 144 Cracker, Florida; 88,95,132 Crosstown Expy: 11,35,98,143 Cuban Bread: 184 Dade Battlefield; 140 Dade, Maj. Francis; 139-140,161 Dania Beach Hurricane; 184

Duval County; 163 Eau Gallie: 175 Edison, Thomas; 152 Eglin AFB: 116-118 Eight Reale; 176 Ellenton: 144-145 Emanuel Point Wreck: 120 Emergency Caliboxes; 83 Epiphyles; 142,148,157,159 Escambia Bay; 119 Bridge (I-10); 119 County; 120 Estero: 153 Everalade.90.95.139-140.154-160 Draining of; 156,181 Wildlife MA: 160 Wonder Gardens; 154 Falling Waters SP: 115 Fantasy of Flight: 95 Fayer Dykes SP; 171 Fires, Forest: 166 Fires, Prescribed ; 148 Fisherman's Village; 151 Flagler County; 171 Flagler, Henry; 97,165,167,171 Florida Aquarium: 186 Florida 12,000 years ago; 187 Cavern SP; 114 Map of all Expressways; 2-3 Mus of Natural History; 134 National Cemetery ; 141 Part of Africa: 177 Platform: 187 Sheriff's Boys Camp; 126 Sports Hall of Fame; 130 Sun 'n Fun Museum; 97 Supreme Court: 107 Florida's Turnpike (FTP), 178,189 25 mile Strip Maps: 66 Administration; 189 Coin System; 190 Exit Services; 189 HEFT; 76,161,190 History: 189 Names; 189 Service Plazas; 190 Spur SR91: 76

Driving Lanes; 85

tf-idf weighting

- Term frequency inverse document frequency
- Describe frame by frequency of each word within it, downweight words that appear often in the database
- (Standard weighting for text retrieval)

Query Expansion

Results

Spatial verification

Query image

New results

New query

Chum, Philbin, Sivic, Isard, Zisserman: Total Recall..., ICCV 2007

Slide credit: Ondrej Chum