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Classifier based methods
Object detection and recognition is formulated as a classification problem. 

Bag of image patches

… and a decision is taken at each window about if it contains a target object or not.

Decision 
boundary

Computer screen

Background

In some feature space

Where are the screens?

The image is partitioned into a set of overlapping windows



Face detection



Learning Models

Prediction

Training 
Labels

Training 

Images

Training

Training

Image 
Features

Image 
Features

Testing

Test Image

Learned 
model

Learned 
model

Slide credit: Derek Hoiem
Pinar Duygulu, ENLG 2015 5



Supervised classification

• Given a collection of labeled examples, come up with a function 
that will predict the labels of new examples.

• How good is some function we come up with to do the 
classification?  

• Depends on
– Mistakes made
– Cost associated with the mistakes

“four”

“nine”

?

Training examples Novel input

Kristen Grauman



Supervised classification

• Given a collection of labeled examples, come up with a 
function that will predict the labels of new examples.

• Consider the two-class (binary) decision problem
– L(4→9): Loss of classifying a 4 as a 9

– L(9→4): Loss of classifying a 9 as a 4

• Risk of a classifier s is expected loss:

• We want to choose a classifier so as to minimize this total risk
       49 using|49Pr94 using|94Pr)(  LsLssR
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Supervised classification

Feature value x

Optimal classifier will 
minimize total risk. 

At decision boundary, 
either choice of label 
yields same expected 
loss.

So, best decision boundary is at point x where

To classify a new point, choose class with lowest expected loss; 
i.e., choose “four” if

9)(4) |4 is P(class4)(9 )|9 is class(  LLP xx

)49()|9()94()|4(  LPLP xx
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Supervised classification

Feature value x

Optimal classifier will 
minimize total risk. 

At decision boundary, 
either choice of label 
yields same expected 
loss.

So, best decision boundary is at point x where

To classify a new point, choose class with lowest expected loss; 
i.e., choose “four” if

9)(4) |4 is P(class4)(9 )|9 is class(  LLP xx

)49()|9()94()|4(  LPLP xx
How to evaluate these probabilities?

P(4 | x) P(9 | x)

Kristen Grauman



Probability
• Basic probability

– X is a random variable
– P(X) is the probability that X achieves a certain value

–

– or 

– Conditional probability:   P(X | Y)
• probability of X given that we already know Y

continuous X discrete X

called a PDF
-probability distribution/density function

Source: Steve Seitz



Example: learning skin colors

• We can represent a class-conditional density using a 
histogram (a “non-parametric” distribution)

Feature x = Hue 

P(x|skin)

Feature x = Hue 

P(x|not skin)

Percentage of skin 
pixels in each bin

Kristen Grauman



Example: learning skin colors

• We can represent a class-conditional density using a 
histogram (a “non-parametric” distribution)

Feature x = Hue 

P(x|skin)

Feature x = Hue 

P(x|not skin)
Now we get a new image, and 
want to label each pixel as skin 
or non-skin. 

What’s the probability we care 
about to do skin detection?

Kristen Grauman



Bayes rule
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Example: classifying skin pixels

Now for every pixel in a new image, we can 
estimate probability that it is generated by skin.

Classify pixels based on these probabilities

Brighter pixels 
higher probability 
of being skin

Kristen Grauman



Example: classifying skin pixels

Gary Bradski, 1998
Kristen Grauman



Gary Bradski, 1998

Example: classifying skin pixels

Using skin color-based face detection and pose estimation as a 
video-based interface

Kristen Grauman



Supervised classification

• Want to minimize the expected misclassification

• Two general strategies

– Use the training data to build representative probability 
model; separately model class-conditional densities and 
priors (generative)

– Directly construct a good decision boundary, model the 
posterior (discriminative)



Discriminative classifiers for image 

recognition
– nearest neighbors  (+ scene match app)

– support vector machines (+ gender, person app)



Nearest Neighbor classification

• Assign label of nearest training data 

point to each test data point 

Voronoi partitioning of feature space 
for 2-category 2D data

from Duda et al.

Black = negative
Red = positive

Novel test example

Closest to a 

positive example 

from the training 

set, so classify it 

as positive.



K-Nearest Neighbors classification

k = 5

Source: D. Lowe

• For a new point, find the k closest points 
from training data

• Labels of the k points “vote” to classify

If query lands here, the 5 

NN consist of 3 negatives 

and 2 positives, so we 

classify it as negative.

Black = negative
Red = positive



A nearest neighbor

recognition example



Where in the World?

[Hays and Efros. im2gps: Estimating  Geographic Information from a Single Image. 
CVPR 2008.] Slides: James Hays



Where in the World?

Slides: James Hays



Where in the World?

Slides: James Hays



6+ million geotagged photos
by 109,788 photographers

Annotated by Flickr users
Slides: James Hays



Which scene properties are relevant?



A scene is a single surface that can be
represented by global (statistical) descriptors

Spatial Envelope Theory of Scene Representation
Oliva & Torralba (2001)

Slide Credit: Aude Olivia



Global texture: 
capturing the “Gist” of the scene

Oliva & Torralba IJCV 2001, Torralba et al. CVPR 2003

Capture global image properties while keeping some spatial 
information

Gist 
descriptor



Which scene properties are relevant?

• Gist scene descriptor

• Color Histograms  - L*A*B* 4x14x14 histograms

• Texton Histograms – 512 entry, filter bank based

• Line Features – Histograms of straight line stats



Scene Matches

[Hays and Efros. im2gps: Estimating  Geographic Information from a Single Image. CVPR 2008.] Slides: James Hays
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Scene Matches

[Hays and Efros. im2gps: Estimating  Geographic Information from a Single Image. CVPR 2008.] Slides: James Hays
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Scene Matches

[Hays and Efros. im2gps: Estimating  Geographic Information from a Single Image. CVPR 2008.] Slides: James Hays



[Hays and Efros. im2gps: Estimating  Geographic Information from a Single Image. CVPR 2008.] Slides: James Hays



The Importance of Data

[Hays and Efros. im2gps: Estimating  Geographic Information from a Single Image. CVPR 2008.]
Slides: James Hays



Feature Performance

Slides: James Hays



Nearest neighbors: pros and cons

• Pros: 

– Simple to implement

– Flexible to feature / distance choices

– Naturally handles multi-class cases

– Can do well in practice with enough representative data

• Cons:

– Large search problem to find nearest neighbors

– Storage of data

– Must know we have a meaningful distance function



Linear classifiers
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Lines in R2
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Lines in R2
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Lines in R2
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Lines in R2
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Linear classifiers
• Find linear function to separate positive and 

negative examples

0:negative

0:positive





b

b

ii

ii

wxx

wxx

Which line
is best?



Support Vector Machines (SVMs)

• Discriminative 

classifier based on 

optimal separating 

line (for 2d case)

• Maximize the margin

between the positive 

and negative training 

examples



Support vector machines
• Want line that maximizes the margin.

1:1)(negative

1:1)( positive


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MarginSupport vectors

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,  Data Mining and 
Knowledge Discovery, 1998 

For support, vectors, 1 bi wx

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf


Support vector machines
• Want line that maximizes the margin.
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Support vector machines
• Want line that maximizes the margin.

1:1)(negative

1:1)( positive
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Support vectors

For support, vectors, 1 bi wx

Distance between point 
and line: ||||

||

w

wx bi 

Therefore, the margin is  2 / ||w||

Margin M



Finding the maximum margin line

1. Maximize margin 2/||w||

2. Correctly classify all training data points:

• Quadratic optimization problem:

• Minimize

Subject to  yi(w·xi+b) ≥ 1

ww
T
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Finding the maximum margin line
• Solution:  i iii y xw 

Support 
vector

learned
weight



Finding the maximum margin line
• Solution:

b = yi – w·xi (for any support 
vector)

• Classification function:

 i iii y xw 

byb
i iii   xxxw 

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,  Data Mining and Knowledge Discovery, 1998 
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xw

i isign         

b)(sign   )(



If f(x) < 0, classify as 
negative, 
if f(x) > 0, classify as 
positive

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf


Questions

• What if the features are not 2d?

• What if the data is not linearly separable?

• What if we have more than just two 
categories?



Questions

• What if the features are not 2d?

– Generalizes to d-dimensions – replace line with 
“hyperplane”

• What if the data is not linearly separable?

• What if we have more than just two 
categories?



Dalal & Triggs, CVPR 2005

• Map each grid cell in the 

input window to a histogram 

counting the gradients per 

orientation.

• Train a linear SVM using 

training set of pedestrian vs. 

non-pedestrian windows.

Code available: 

http://pascal.inrialpes.fr/soft/olt/

Person detection

with HoG’s & linear SVM’s



Person detection

with HoG’s & linear SVM’s

• Histograms of Oriented Gradients for Human Detection, Navneet Dalal, Bill Triggs, 

International Conference on Computer Vision & Pattern Recognition - June 2005 

• http://lear.inrialpes.fr/pubs/2005/DT05/

http://lear.inrialpes.fr/people/dalal
http://lear.inrialpes.fr/people/triggs


Histograms of oriented gradients



Histograms of oriented gradients

Shape context

Belongie, Malik, Puzicha, NIPS 2000SIFT, D. Lowe, ICCV 1999



Image features:

Bin gradients from 8x8 pixel neighborhoods into 9 

orientations

(Dalal & Triggs CVPR 05)

Histograms of oriented gradients (HOG)

Source: Deva Ramanan
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A Support Vector Machine (SVM) learns a classifier with the form:

Where {xm, ym}, for m = 1 . . .M, are the training data with xm being

the input feature vector and ym = +1,-1 the class label. k(x, xm) is the kernel and 

it can be any symmetric function satisfying the Mercer Theorem. 

The classification is obtained by thresholding the value of H(x).

There is a large number of possible kernels, each yielding a different

family of decision boundaries: 

• Linear kernel: k(x, xm) = xT xm

• Radial basis function: k(x, xm) = exp(−|x − xm|2/σ2).

• Histogram intersection: k(x,xm) = sumi(min(x(i), xm(i)))

SVM



Linear SVM

f(x) = (w . x + b) 

w

margin



Scanning-window templates
Dalal and Triggs CVPR05 (HOG)

w·x > 0

w
w = weights for orientation and spatial bins

Papageorgiou and Poggio ICIP99 (wavelets)

Train with a linear classifier (perceptron, logistic regression, SVMs...)

neg

pos

Source: Deva Ramanan



How to interpret positive and negative weights?
w·x > 0

(wpos - wneg)·x > 0

wpos·x > wneg·x

>

Right approach is to compete pedestrian, pillar, doorway... models

Pedestrian 

template

Pedestrian 

background

template

Background class is hard to model - easier to penalize particular vertical 

edges

wpos,wneg = weighted average of positive, negative support vectors

Source: Deva Ramanan



Histograms of oriented gradients
Dalal & Trigs, 2006

x
Not a person

x person





Questions

• What if the features are not 2d?

• What if the data is not linearly separable?

• What if we have more than just two 
categories?



Non-linear SVMs

 Datasets that are linearly separable with some noise 

work out great:

 But what are we going to do if the dataset is just too hard? 

 How about… mapping data to a higher-dimensional 

space:

0 x

0 x

0 x

x2



Non-linear SVMs: feature spaces

 General idea: the original input space can be mapped to 

some higher-dimensional feature space where the 

training set is separable:

Φ:  x→ φ(x)

Slide from Andrew Moore’s tutorial: http://www.autonlab.org/tutorials/svm.html



The “Kernel Trick”
 The linear classifier relies on dot product between 

vectors K(xi,xj)=xi
Txj

 If every data point is mapped into high-dimensional 
space via some transformation Φ:  x → φ(x), the dot 
product becomes:

K(xi,xj)= φ(xi)
Tφ(xj)

 A kernel function is similarity function that corresponds 
to an inner product in some expanded feature space.

Slide from Andrew Moore’s tutorial: http://www.autonlab.org/tutorials/svm.html



Example

2-dimensional vectors x=[x1   x2]; 

let K(xi,xj)=(1 + xi
Txj)

2

Need to show that K(xi,xj)= φ(xi)
Tφ(xj):

K(xi,xj)=(1 + xi
Txj)

2
,

= 1+ xi1
2xj1

2 + 2 xi1xj1 xi2xj2+ xi2
2xj2

2 + 2xi1xj1 + 2xi2xj2

= [1  xi1
2  √2 xi1xi2  xi2

2  √2xi1  √2xi2]
T 

[1  xj1
2  √2 xj1xj2  xj2

2  √2xj1  √2xj2] 

= φ(xi)
Tφ(xj),   

where φ(x) = [1  x1
2  √2 x1x2  x2

2   √2x1  √2x2]
from Andrew Moore’s tutorial: http://www.autonlab.org/tutorials/svm.html



Nonlinear SVMs
• The kernel trick: instead of explicitly 

computing the lifting transformation φ(x), 

define a kernel function K such that

K(xi,xjj) = φ(xi ) · φ(xj)

• This gives a nonlinear decision boundary in 
the original feature space:

bKy
i

iii  ),( xx



Examples of kernel functions

 Linear:

 Gaussian RBF:

 Histogram intersection:
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SVMs for recognition
1. Define your representation for each 

example.

2. Select a kernel function.

3. Compute pairwise kernel values 
between labeled examples

4. Use this “kernel matrix” to solve for 
SVM support vectors & weights.

5. To classify a new example: compute 
kernel values between new input and 
support vectors, apply weights, check 
sign of output.



Example: learning gender with SVMs

Moghaddam and Yang, Learning Gender with Support Faces, TPAMI 
2002.

Moghaddam and Yang, Face & Gesture 2000.



Moghaddam and Yang, Learning Gender with Support Faces, TPAMI 2002.

Processed faces

Face alignment 
processing



• Training examples:

– 1044 males

– 713 females

• Experiment with various kernels, select 
Gaussian RBF

Learning gender with SVMs
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Support Faces

Moghaddam and Yang, Learning Gender with Support Faces, TPAMI 2002.



Moghaddam and Yang, Learning Gender with Support Faces, TPAMI 2002.



Gender perception experiment:
How well can humans do?

• Subjects: 

– 30 people (22 male, 8 female)

– Ages mid-20’s to mid-40’s

• Test data:

– 254 face images (6 males, 4 females)

– Low res and high res versions

• Task:

– Classify as male or female, forced choice

– No time limit

Moghaddam and Yang, Face & Gesture 2000.



Moghaddam and Yang, Face & Gesture 2000.

Gender perception experiment:
How well can humans do?

Error Error



Human vs. Machine

• SVMs performed 
better than any 
single human test 
subject, at either 
resolution



Hardest examples for humans

Moghaddam and Yang, Face & Gesture 2000.



Questions

• What if the features are not 2d?

• What if the data is not linearly separable?

• What if we have more than just two 
categories?



Multi-class SVMs

• Achieve multi-class classifier by combining a number of 

binary classifiers

• One vs. all

– Training: learn an SVM for each class vs. the rest

– Testing: apply each SVM to test example and assign 

to it the class of the SVM that returns the highest 

decision value

• One vs. one

– Training: learn an SVM for each pair of classes

– Testing: each learned SVM “votes” for a class to 

assign to the test example



SVMs: Pros and cons• Pros
– Many publicly available SVM packages:

http://www.kernel-machines.org/software
– http://www.csie.ntu.edu.tw/~cjlin/libsvm/
– Kernel-based framework is very powerful, flexible
– Often a sparse set of support vectors – compact at test time
– Work very well in practice, even with very small training 

sample sizes

• Cons
– No “direct” multi-class SVM, must combine two-class SVMs
– Can be tricky to select best kernel function for a problem
– Computation, memory 

• During training time, must compute matrix of kernel values for 
every pair of examples

• Learning can take a very long time for large-scale problems

Adapted from Lana Lazebnik

http://www.kernel-machines.org/software
http://www.csie.ntu.edu.tw/~cjlin/libsvm/


Summary

• Discriminative classifiers

– Boosting 

– Nearest neighbors

– Support vector machines

• Useful for object recognition when combined 

with “window-based” or holistic appearance 

descriptors



Global window-based 
appearance representations

• These examples are truly global; each pixel in the 
window contributes to the representation.

• Classifier can account for relative relevance…

• When might this not be ideal?

Gist

Histograms of 
oriented 
gradients

Map of local 
orientations

Kristen Grauman



Generic category recognition:

representation choice

Window-based Part-based


