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Classifier based methods

Object detection and recognition is formulated as a classification problem.
The image is partitioned into a set of overlapping windows

... and a decision is taken at each window about if it contains a target object or not.

Background
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Supervised classification

Given a collection of labeled examples, come up with a function
that will predict the labels of new examples.

Training examples Novel input

1o |1 A A A
A
?

How good is some function we come up with to do the
classification?

Depends on
— Mistakes made
— Cost associated with the mistakes

Kristen Grauman



Supervised classification

* Given a collection of labeled examples, come up with a
function that will predict the labels of new examples.

e Consider the two-class (binary) decision problem
— L(4->9): Loss of classifyinga4asa9
— L(9->4): Loss of classifyinga9asa 4

* Risk of a classifier s is expected loss:

R(s) =Pr(4 — 9| using s)L(4 — 9)+Pr(9 — 4| using s)L(9 — 4)

* We want to choose a classifier so as to minimize this total risk

Kristen Grauman



Supervised classification

I Optimal classifier will
minimize total risk.

I
“ At decision boundary,

e ——————y @[ ther choice of [abel

" yields same expected
Feature value x oSS

So, best decision boundary is at point x where
P(classis9|x) L(9—4)=P(classis4|x)L(4 —9)

To classify a new point, choose class with lowest expected loss;
i.e., choose “four” if

P(4|x)L(4—9) >P(9|x)L(9—4)

Kristen Grauman



Supervised classification

Optimal classifier will
minimize total risk.

At decision boundary,
either choice of label

" yields same expected
Feature value x oSS

So, best decision boundary is at point x where
P(classis9|x) L(9—4)=P(classis4|x)L(4 —9)

To classify a new point, choose class with lowest expected loss;
i.e., choose “four” if

P(4|xX)L(4—9) > P9|x)L(9—4)

How t hese probabilities? ... ..o




Probability

* Basic probability
— Xis a random variable
— P(X) is the probability that X achieves a certain value

A

P(X) ‘ called a PDF

-probability distribution/density function

X
— 0< P(X) <1
oo
— / P(X)diX=1 or Y PX)=1
— 0
continuous X discrete X

— Conditional probability: P(X | Y)
* probability of X given that we already know Y

Source: Steve Seitz



Example: learning skin colors

* We can represent a class-conditional density using a
histogram (a “non-parametric” distribution)

Percentage of skin
pixels in each bin

Feature x = Hue

P(x | not skin)

Feature x = Hue

Kristen Grauman



Example: learning skin colors

* We can represent a class-conditional density using a
histogram (a “non-parametric” distribution)

P(x | skin)

Feature x = Hue

Now we get a new image, and
want to label each pixel as skin
or non-skin.

What’s the probability we care
about to do skin detection?

P(x | not skin)

Feature x = Hue

Kristen Grauman



Bayes rule

posterior Iikelihood prior
( \ ( - |
P(skin| x) = P(x | skin) P(skin)
P(X)

P(skin| x) o P(x| skin)P(skin)



Example: classifying skin pixels

Now for every pixel in a new image, we can
estimate probability that it is generated by skin.

Brighter pixels -2
higher probability
of being skin

Classify pixels based on these probabilities
e if p(skin|x) > 6, classify as skin

o if p(skin|z) < 0, classify as not skin

Kristen Grauman



Example: classifying skin pixels

Figure 7: Orientation of the flesh probability distribution
marked on the source video image

Gary Bradski, 1998

Kristen Grauman



Example: classifying skin pixels

Figure 12: CAMSHIFT-based face tracker used to play
Quake 2 hands free by inserting control variables into the
mouse queue

Figure 13: CAMSHIFT-based face tracker used to
over a 3D graphic’s model of Hawaii

Using skin color-based face detection and pose estimation as a
video-based interface

Gary Bradski, 1998

Kristen Grauman



Supervised classification

 Want to minimize the expected misclassification

* Two general strategies

— Use the training data to build representative probability
model; separately model class-conditional densities and
priors (generative)

— Directly construct a good decision boundary, model the
posterior (discriminative)



Discriminative classifiers for image

recognition
— nearest neighbors (+ scene match app)

— support vector machines (+ gender, person app)



Nearest Neighbor classification

» Assign label of nearest training data
point to each test data point

X
_ : : Ocev
Black = negative A Novel test example

Red = positive

Closest to a
positive example
from the training
set, so classify it
as positive.

from Duda et al.

Voronoi partitioning of feature space
for 2-category 2D data



K-Nearest Neighbors classification

* For a new point, find the k closest points
from training data

* Labels of_.the K points “vkoIeS” to classify

Black = negative T l_' " . ** Ifquerylands here, the 5

Red = positive » > _“.. * NN consist of 3 negatives
1, ' - and 2 positives, so we
ol " <" classify it as negative.

.-\

Source: D. Lowe



A nearest neighbor
recognition example



Where in the World?

[Hays and Efros. im2gps: Estimating Geographic Information from a Single Image.
CVPR 2008.] Slides: James Hays



Where in the World?
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Slides: James Hays



Where in the World?

Slides: James Hays



6+ million geotagged photos
by 109,788 photographers

Annotated by Flickr users

Slides: James Hays



Which scene properties are relevant?



Spatial Envelope Theory of Scene Representation
Oliva & Torralba (2001)

A scene is a single surface that can be
represented by global (statistical) descriptors

Slide Credit: Aude Olivia



Global texture:
capturing the “Gist” of the scene

Capture global image properties while keeping some spatial
information

Steerable
pryramid

vV = [energy at each orientation and
scalel = 6 x 4 dimensions

= L a0 fe aitm'es

— |V, |_.- PCA— %

G

Gist
descriptor

Oliva & Torralba 1JCV 2001, Torralba et al. CVPR 2003



Which scene properties are relevant?

Gist scene descriptor

Color Histograms - L*A*B* 4x14x14 histograms
Texton Histograms — 512 entry, filter bank based
Line Features — Histograms of straight line stats



Scene Matches

england France

Croatia

europe Barcelona Austria

[Hays and Efros. im2gps: Estimating Geographic Information from a Single Image. CVPR 2008.] Slides: James Hays



heidelberg

France

Slides: James Hays



Scene Matches

Madrid

=

Paris

[Hays and Efros. im2gps: Estimating Geographic Information from a Single Image. CVPR 2008.] Slides: James Hays



[Hays and Efros. im2g lides: James Hays



Scene Matches

Thailand Houston

Thailand

[Hays and Efros. im2gps: Estimating Geographic Information from a Single Image. CVPR 2008.] Slides: James Hays



Thailand

[Hays and Efros. im2gps: Estimating Geographic Information from a Single Image. CVPR 2008.] Slides: James Hays



The Importance of Data
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Feature Performance
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Feature Used to Estimate Geolocation Slides: James Hays



Nearest neighbors: pros and cons

* Pros:
— Simple to implement
— Flexible to feature / distance choices
— Naturally handles multi-class cases
— Can do well in practice with enough representative data

 Cons:
— Large search problem to find nearest neighbors
— Storage of data
— Must know we have a meaningful distance function



Linear classifiers




AN

Lines in R?

AN

DN

Let

4 X
W = X =
C Y
ax+cy+b=0



Lines in R?

_a_ "N

ax+cy+b=0

\ W-XJirb:O
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W= X =
C Y
ax+cy+b=0

!

W-X+b=0




Lines in R?

d X
let W= X=
C B
W
ax+cy+b=0
\ wW-X+b=0
D= ‘aXO T CYp + b‘ distance from

\/az +c2 point to line



= -
W = X =
¢ B
ax+cy+b=0
W-X+b=0

~ distance from
point to line




- Linear classifiers
e Find linear function to separate positive and

negative examples

O
® X. positive:  X.-wW+b>0
® o X. hegative :  X.-w+b <0
O
O
® e e o
O N
O
O
o O
Which line
© is best?



Support Vector Machines (SVMs)

* Discriminative
classifier based on
optimal separating
line (for 2d case)

« Maximize the margin
between the positive
and negative training
examples




. wdupport vector machines

aximizes the margin.

X. positive (y; =1): X -W+b>1
X. negative (y. =-1): X, -w+b<-1

For support, vectors, X W+ b=+1

Support vectors Margin

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and
Knowledge Discovery, 1998



http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

antlmetlpcgort Ve r maChIneS

aximizes the ma gl

o Y. @ x. positive (y, =1):  X,-w+b>1
X. negative (y. =-1): X, -w+b<-1

P For support, vectors, X W+ b=+1

®
° e Distance between point | X -W+D]
and line: | w |
For support vectors:
wix+b  +1 1 -1 2
= M = — -
Support vectors Margin M 0 — Iwl - w||  [w)




aximizes the m

Support vectors

antlmetlpcgort VEC Or maChIneS

margin.

X. positive (y; =1):
X; negative (y, =-1):

X.-W+b>1
X, -W+b<-1

For support, vectors, X W+ b=+1
Distance between point | X, W+ b |
and line: | w ||

Therefore, the marginis 2 / ||W|



Finding the maximum margin line

1. Maximize margin 2/||w||
2. Correctly classify all training data points:

X. positive (y. =1): X -W+hb>1
X. negative (y, =-1): X.-w+b<-1
* Quadratic optimization problem:
1 -
. Minimize EW W
Subject to y;(w-x;+b) > 1




Finding the maximum margin line

e Solution: WIZi a; YiX

learned Support
weight vector




Finding the maximum margin line
e Solution: WIZi(Ziini

b=y;—w-X; (for any support
vector) w-Xx+b=>" X -X +b

If f(x) < O, classify as

e Classification function: negative,
A— = if f(x) > 0, classify as

positive

___________________

f (x)=sign (wW-X+Dh)

= sign(ziaixi X+ b)

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery, 1998



http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

Questions

* What if the features are not 2d?
 What if the data is not linearly separable?

 What if we have more than just two
categories?



Questions

e What if the features are not 2d?

— Generalizes to d-dimensions — replace line with
“hyperplane”

 What if the data is not linearly separable?

 What if we have more than just two
categories?



Person detection
with HoG’s & linear SVM's

TEEEANM

Dalal & Triggs, CVPR 2005

* Map each grid cell in the
Input window to a histogram
counting the gradients per
orientation.

 Train a linear SVM using
training set of pedestrian vs.
non-pedestrian windows.

Code available:
http://pascal.inrialpes.fr/soft/olt/



Person detection
with HoG’s & linear SVM's



http://lear.inrialpes.fr/people/dalal
http://lear.inrialpes.fr/people/triggs

Histograms of oriented gradients



Histograms of oriented gradients

Shape context
SIFT, D. Lowe, ICCV 1999 Belongie, Malik, Puzicha, NIPS 2000

Count the number of points
A inside each bin, e.g.:

A

-

e |y x, ! . :
vie ey e/ Bl e TNy
NG e = LS \ Fa P Count =10
e . : .
Image gradients Keypoint descriptor N— T = Compact representation

of distribution of points
relative to each point
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Source: Deva Ramanan



Histograms of Oriented Gradients for Human Detection

Navneet Dalal and Bill Triggs

INRIA Rhone-Alps, 635 avenue de I'Europe, Montbonnot 38334, France
{Navneet.Dalal Bill. Triggs } @inrialpes.fr, http:/lear.inrialpes.fr

Inout Normalize Compute Weighted vote Contrast normalize Collect HOG s X Person /
i]“]-] o 7| SAmMma & > gradilznts —| into spatial & | —>| over overlapping | —| over detection |—» ]S“{:l;?r—l- non-person
g colour orientation cells spatial blocks window classification

Figure 1. An overview of our feature extraction and object detection chain. The detector window is tiled with a grid of overlapping blocks
in which Histogram of Oriented Gradient feature vectors are extracted. The combined vectors are fed to a linear SVM for object/non-object
classification. The detection window is scanned across the image at all positions and scales, and conventional non-maximum suppression
is run on the output pyramid to detect object instances, but this paper concentrates on the feature extraction process.



Histograms of Oriented Gradients for Human Detection

Navneet Dalal and Bill Triggs

INRIA Rhone-Alps, 635 avenue de I'Europe, Montbonnot 38334, France
{Navneet.Dalal Bill. Triggs } @inrialpes.fr, http:/lear.inrialpes.fr

Inout Normalize Compute Weighted vote Contrast normalize Collect HOG s X Person /
i]“]-] o 7| SAmMma & > gadilznts —| into spatial & | —>| over overlapping | —| over detection |—» ]S“{:l;?r—b non-person
g colour orientation cells spatial blocks window classification

Figure 1. An overview of our feature extraction and object detection chain. The detector window is tiled with a grid of overlapping blocks
in which Histogram of Oriented Gradient feature vectors are extracted. The combined vectors are fed to a linear SVM for object/non-object
classification. The detection window is scanned across the image at all positions and scales, and conventional non-maximum suppression
is run on the output pyramid to detect object instances, but this paper concentrates on the feature extraction process.
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SVM

A Support Vector Machine (SVM) learns a classifier with the form:

M

H(x) = Z o Ym k(T )

m—=1

Where {X,, Y.}, form =1 .. .M, are the training data with x,, being
the input feature vector and y,, = +1,-1 the class label. k(x, x.,) is the kernel and
it can be any symmetric function satisfying the Mercer Theorem.

The classification is obtained by thresholding the value of H(Xx).

There is a large number of possible kernels, each yielding a different
family of decision boundaries:

* Linear kernel: k(x, x,,) = X X,
- Radial basis function: k(x, X.,) = exp(—|x = x.,|?/0?).
* Histogram intersection: kK(x,X.,) = sum,(min(x(i), X.,(i)))



Linear SVM

O
@
margin ® @
W O
o O
@

f(x)=(w.x+Db)



Scanning-window templates

Dalal and Triggs CVPRO0O5 (HOG)

Papageorgiou and Poggio ICIP99 (wavelets)
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= weights for orientation and spatial bins

w-x >0

Train with a linear classifier (perceptron, logistic regression, SVMSs...)

Source: Deva Ramanan



How to interpret positive and weights?

w-x >0

(Wpos - Wneg)'X >0

Wopos*X = Wneg-X

i SN2 E estrian
Pedestrian NI
template  NeER¥ kground
xS n hlate
< ' !

ot

Wpos,Wneg = Weighted average of positive, negative support vectors

Right approach is to pedestrian, pillar, doorway... models

Background class is hard to model - easier to penalize particular vertical
edges

Source: Deva Ramanan



Histograms of oriented gradients
Dalal & Trigs, 2006

_’I X I Not a person




miss rate

DET - different descriptors on MIT database DET - different descriptors on INRIA database
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Figure 3. The performance of selected detectors on (left) MIT and (right) INRIA data sets. See the text for details.



Questions

 What if the features are not 2d?
 What if the data is not linearly separable?

 What if we have more than just two
categories?



Non-linear SVMs

Datasets that are linearly separable with some noise
work out great:
9 — | @._. -

But what are we going to do if the dataset is just too hard?

*—0 *—0—

0 X
How about... mapping data to a higher-dimensional
space:




Non-linear SVMs: feature spaces

General idea: the original input space can be mapped to
some higher-dimensional feature space where the
training set is separable:

. R34 N . .
o . *
O K .
%
I . . R
. E .
0’.
o

Slide from Andrew Moore’s tutorial: http://www.autonlab.org/tutorials/svm.html



The “Kernel Trick™

The linear classifier relies on dot product between
vectors K(x;,x)=x;'x;

If every data point is mapped into high-dimensional
space via some transformation @: x - ¢(x), the dot
product becomes:

K(Xilxj)z d(x;) T(I)(Xj)

A kernel function is similarity function that corresponds
to an inner product in some expanded feature space.

Slide from Andrew Moore’s tutorial: http://www.autonlab.org/tutorials/svm.html



Example

2-dimensional vectors X=[x; X,];
let K(x;,X)=(1 + %;TX;)?

Need to show that K(x;,X;)= o(X;) "e(X;):
K(Xi,%;)=(1 + x;"x;)*
= 1+ Xi1°X1 + 2 X Xjg XigXjo+ Xip™Xj2” + 2Xi X + 2Xi5X,
=1 x;y? V2 XipXip Xig? V25 N2xio]T
[1 %1% V2 XX, Xip2 V2Xi; V2X;]
= (X)) To(X)),
where o(x) = [1 %2 V2 X%, %,2 V2%, V2x,]

from Andrew Moore’s tutorial: http://www.autonlab.org/tutorials/svm.html



Nonlinear SVMs

e The kernel trick: instead of explicitly
computing the lifting transformation ¢(X),
define a kernel function K such that

KX %) = 9(X;) - (X))

e This gives a nonlinear decision boundary in
the original feature space:

ZaiyiK(xi,x) +b



Examples of kernel functlons
KX, X;) =X x
Linear:
2
i -x
20°

K (x:,X j) = exp(—

Gaussian RBF:

K (X, Xj) = Zmin(xi (k)ixj (k)
Histogram intersection: *



SVMs for recognition

. Define your representation for each
example.

. Select a kernel function.

. Compute pairwise kernel values
between labeled examples

. Use this “kernel matrix” to solve for
SVM support vectors & weights.

. To classify a new example: compute
kernel values between new input and
support vectors, apply weights, check
sign of output.

NON-FACES

[ - :




Example: learning gender with SVMs

Gender | .. F ] M
Classifier

4... > F I

\ >

Moghaddam and Yang, Learning Gender with Support Faces, TPAMI
2002.

Moghaddam and Yang, Face & Gesture 2000.



Face alignment
processing

—m| Multiscale | Feature
Head Search Search

pl Scale ! I--

Processed faces

Moghaddam and Yang, Learning Gender with Support Faces, TPAMI 2002.




Learning gender with SVMs

* Training examples:
— 1044 males
— 713 females

* Experiment with various kernels, select
Gaussian RBF

2
i~

20°

)

K(X;,X;) =exp(-



Support Faces

FEMALE

Moghaddam and Yang, Learning Gender with Support Faces, TPAMI 2002.



Classifier Performance

Classifier | Error Rate

Overall Male Female
SVM with RBF kernel 3.38 % 2.05% 4.79%
SVM with cubic polynomial kernel 4.55 0 4.21% 5.59%
Large Ensemble of RBF 5.54% 4.59% 6.55%
Classical RBF 7.79% 6.89% 8.75%
Quadratic classifier 10.63% 9.44% | 11.88%
Fisher linear discriminant 13.03% | 12.31% | 13.78%
Nearest neighbor 27.16% | 26.53% | 28.04%
Linear classifier 58.95% | 58.47% | 59.45%

Moghaddam and Yang, Learning Gender with Support Faces, TPAMI 2002.




Gender perception experiment:
How well can humans do?

e Subjects:
— 30 people (22 male, 8 female)
— Ages mid-20’s to mid-40’s
* Test data:
— 254 face images (6 males, 4 females)
— Low res and high res versions
e Task:
— Classify as male or female, forced choice
— No time limit

Moghaddam and Yang, Face & Gesture 2000.



Gender perception experiment:
How well can humans do?

84 x 48 21 x 12

Sttmuli —

N =4032 N =252

Hich-R Low-R
Results — ISHITIRES  HOWTRES O =3.7%

6.54% 30.7%

Error Error

Moghaddam and Yang, Face & Gesture 2000.



Human vs. Machine

% Error Rates

* SVMs performed
better than any
single human test

30y B Low-Res
5| [ ] Hi-Res

20} subject, at either
15} resolution

101

5|

i

SVM Human

Figure 6. SVM vs. Human performance



Hardest examples for humans

o

Top five human misclassifications

Moghaddam and Yang, Face & Gesture 2000.



Questions

 What if the features are not 2d?
 What if the data is not linearly separable?

 What if we have more than just two
categories?



Multi-class SVMs

* Achieve multi-class classifier by combining a number of
binary classifiers

« Oneyvs. all
— Training: learn an SVM for each class vs. the rest

— Testing: apply each SVM to test example and assign
to it the class of the SVM that returns the highest
decision value

* Onevs.one
— Training: learn an SVM for each pair of classes

— Testing: each learned SVM “votes” for a class to
assign to the test example




. oo OVMs: Pros and cons

— Many publicly available SVM packages:
http://www.kernel-machines.org/software

— http://www.csie.ntu.edu.tw/~cjlin/libsvm/
— Kernel-based framework is very powerful, flexible
— Often a sparse set of support vectors — compact at test time

— Work very well in practice, even with very small training
sample sizes

e Cons
— No “direct” multi-class SVM, must combine two-class SVMs
— Can be tricky to select best kernel function for a problem

— Computation, memory

* During training time, must compute matrix of kernel values for
every pair of examples

* Learning can take a very long time for large-scale problems

Adapted from Lana Lazebnik


http://www.kernel-machines.org/software
http://www.csie.ntu.edu.tw/~cjlin/libsvm/

Summary

« Discriminative classifiers
— Boosting
— Nearest neighbors
— Support vector machines

« Useful for object recognition when combined
with “window-based” or holistic appearance
descriptors



Global window-based
appearance representations

il
Ul
—"A::.’w‘trg‘;!

S
Al

Histograms of
Gist Map of local oriented

orientations gradients

* These examples are truly global; each pixel in the
window contributes to the representation.

e (Classifier can account for relative relevance...
 When might this not be ideal?

Kristen Grauman



Generic category recognition:
representation choice

Window-based Part-based



