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Filters for features

* Previously, thinking of filtering as a
way to remove or reduce noise

* Now, consider how filters will allow
us to abstract higher-level
“features”.

— Map raw pixels to an intermediate
representation that will be used for
subsequent processing

— Goal: reduce amount of data, discard
redundancy, preserve what’s useful

Source: Darrell, Berkeley



Edge detection

e Goal: Identify sudden
changes (discontinuities) in
an image rac
— Intuitively, most semantic and | %

shape information from the
image can be encoded in the

edges
— More compact than pixels

e |deal: artist’s line drawing
(but artist is also using
object-level knowledge)

Source: D. Lowe

Source: Hays, Brown



Edge detection

* Goal: map image from 2d array of pixels to a set of curves

or line segments or contours.
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Figure from J. Shotton et al., PAMI 2007

Main idea: look for strong gradients, post-process

Source: Darrell, Berkeley



Why do we care about edges?

e Extract information,
recognize objects

* Vertical vanishing
point
; r (at infinity)

Vanishing 8

* Recover geometry and P
viewpoint N L ——

Vanishing — Vanishing
point e point

Source: Hays, Brown



Origin of Edges

surface normal discontinuity

. < depth discontinuity
AO ‘/;(\ surface color discontinuity
\a_______../érl illumination discontinuity
\'\___________.-’)

* Edges are caused by a variety of factors

Source: Steve Seitz
Source: Hays, Brown



What can cause an edge?

Depth discontinuity:
Reflectance change: object boundary
appearance

information, texture

Cast shadows

Change in surface
orientation: shape

Source: Darrell, Berkeley



Contrast and invariance

Source: Darrell, Berkeley



Closeup of edges
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Source: D. Hoiem
Source: Hays, Brown



Closeup of edges

Source: D. Hoiem
Source: Hays, Brown



Closeup of edges

Source: D. Hoiem

Source: Hays, Brown



Closeup of edges

Source: D. Hoiem
Source: Hays, Brown



Characterizing edges

e An edge is a place of rapid change in the
image intensity function

intensity function
image (along horizontal scanline) first derivative

\

edges correspond to
extrema of derivative

Source: Hays, Brown



Differentiation and convolution

For 2D function, f(x,y), the partial derivative is:

o (%) _ i F+2Y) = F(x,Y)
8)( e—0 E

For discrete data, we can approximate using finite differences:

To impaljmgaﬂt—a'x,yb)o\% f (X +1,_Y) o (X’ Y e the associated

filter? OX I

Source: Darrell, Berkeley



Partial derivatives of an image

Which shows changes with respect to x?

Source: Darrell, Berkeley (showing flipped filters)



Assorted finite difference filters

-1 10 11171
Prewitt: M, = [-1]0 M, = 1] 0
-1 10 -1 -17-1
Lfo]1l L 211
Sobel: M, = 1 E | M, = I IE
Ljogpl 1 ]1-271-1
01 ) 1
Roberts: M: = 7715 v My = T

>> My = fspecial(‘'sobel’);

>> outim = imfilter (double (im), My);
>> 1magesc (outim) ;

>> colormap gray;

Source: Darrell, Berkeley



Image gradient

The gradient of an image:
_ [9f Of
V= [8:{:’ Gy]

The gradient points in the direction of most rapid change in intensity

vf=1%L0] l MW
V=10 %] k
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The gradient direction (orientation of edge normal) is given by:
_ -1 (9f a_f)
0 = tan ( 9y / T
The edge strength is given by the gradient magnitude
o 2
VA= /(D + (D)

Source: Darrell, Berkeley Slide credit S. Seitz
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Effects of noi

* Consider a single row or column o t%e image
— Plotting intensity as a function of position gives a signal
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Where is the edge?

Source: Hays, Brown Source: S. Seitz



Effects of noise

e Difference filters respond strongly to noise

— Image noise results in pixels that look very
different from their neighbors

— Generally, the larger the noise the stronger the
response

e \What can we do about it?

Source: Hays, Brown Source: D. Forsyth



Solution: smooth first

Sigma = 50
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e To find edges, look for peaks in &(f )

Source: Hays, Brown Source: S. Seitz



Derivative theorem of convolution

d d
e Differentiation is co&\ﬂld‘t%ﬁ, faﬁg}:@mvolution is

associative:

Sigma = 50
T

e This saves
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Source: Hays, Brown



Derivative of Gaussian filter
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Source: Hays, Brown



Derivative of Gaussian filters

x-direction y-direction

Source: Darrell, Berkeley Source: L. Lazebnik



Laplacian of Gaussian

Consider 5"—;@ *x f)

Signal

JF

Where is the edge?

Source: Darrell, Berkeley
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2D edge detection filters

Laplacian of Gaussian
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Source: Darrell, Berkeley



Smoothing with a Gaussian

Recall: parameter o is the “scale” / “width” / “spread” of the
Gaussian kernel, and controls the amount of smoothing.
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Source: Darrell, Berkeley



Effect of o on derivatives

o =1 pixel

o =3 pixels

The apparent structures differ depending on Gaussian’s
scale parameter.

Larger values: larger scale edges detected
Smaller values: finer features detected

Source: Darrell, Berkeley



So, what scale to choose?

It depends what we’re looking for.
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Too fine of a scale...can’t see the forest for the trees.
o0 Coarse of a scale...can’t tell the maple grain from the cherry.



Thresholding

* Choose a threshold value t
* Set any pixels less than t to zero (off)
* Set any pixels greater than or equal to t to one (on)

Source: Darrell, Berkeley



Original image




Gradient magnitude image




Thresholding gradient with a lower threshold
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Tradeoff between smoothing and Iocallzatlon

1 pixel 3 pixels 7 pixels

Smoothed derivative removes noise, but blurs
edge. Also finds edges at different “scales”.

Source: Hays, Brown Source: D. Forsyth
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— Good detection: the optlmal detector should find all
real edges, ignoring noise or other artifacts

— Good localization

* the edges detected must be as close as possible to
the true edges

* the detector must return one point only for each
true edge point
* Cues of edge detection

— Differences in color, intensity, or texture across the
boundary

— Continuity and closure
— High-level knowledge

Source: Hays, Brown Source: L. Fei-Fei



Canny edge detector
e This is probably the most widely used edge

detector in computer vision

e Theoretical model: step-edges corrupted by
additive Gaussian noise

e Canny has shown that the first derivative of

the Gaussian closely approximates the
operator that optimizes the product of
signal-to-noise ratio and localization

J. Canny, A Computational Approach To Edge Detection, |IEEE Trans. Pattern
Analysis and Machine Intelligence, 8:679-714, 1986.

Source: L. Fei-Fei

urce: Hays, Brown


http://ieeexplore.ieee.org/xpls/abs_all.jsp?isnumber=4767846&arnumber=4767851&count=16&index=4

Example

original image (Lena)

Source: Hays, Brown



Source: Hays, Brown

Derivative of Gatissian filter
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x-direction y-direction




The Canny edge detector

original image (Lena)

Source: Darrell, Berkeley



Compute Gradients (DoG)

X-Derivative of Gaussian Y-Derivative of Gaussian Gradient Magnitude

Source: Hays, Brown



The Canny edge detector

norm of the gradient

Source: Darrell, Berkeley



The Canny edge detector

thresholding

Source: Darrell, Berkeley



The Cannv edoce detector

How to turn
these thick
regions of the
gradient into
curves?

Source: Darrell, Berkeley



Non-maximum suppression
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Check if pixel is local maximum along gradient

direction, select single max across width of the edge

— requires checking interpolated pixels p and r

Source: Darrell, Berkeley




Get Orientation at Each Pixel

e Threshold at minimum level

theta = atan2(gy, gx)




Non-maximum suppression for each

orientation
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At g, we have a
maximum if the value
is larger than those at
both p and atr.
Interpolate to get
these values.




Before Non-max Suppression




After non-max suppression

Source: Hays, Brown



The Canny edge detector

Problem:
pixels along
this edge

} didn’t survive
the
thresholding

thinning

(non-maximum suppression)

Source: Darrell, Berkeley



Hysteresis thresholding

* Check that maximum value of gradient value is
sufficiently large

— drop-outs? use hysteresis

* use a high threshold to start edge curves and a low
threshold to continue them.

Source: Darrell, Berkeley Source: S. Seitz



Hysteresis thresholding
* Threshold at low/high levels to get weak/strong edge pixels

Do connected components, starting from strong edge pixels
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Source: Hays, Brown



Hysteresis thresholding

high threshold low threshold hysteresis threshold
(strong edges) (weak edges)

Source: Darrell, Berkeley Source: L. Fei-Fei
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Canny edge detector

1. Filter image with x, y derivatives of Gaussian
2. Find magnitude and orientation of gradient

3. Non-maximum suppression:
— Thin multi-pixel wide “ridges” down to single pixel width
4. Thresholding and linking (hysteresis):

— Define two thresholds: low and high

— Use the high threshold to start edge curves and the low
threshold to continue them

« MATLAB: edge(image, ‘canny’)

Source: Hays, Brown Source: D. Lowe, L. Fei-Fei



Effect of o (Gaussian kernel
spread/size)

fa

original Cannywith 0 = 1 Canny with o = 2

The choice of 6 depends on desired behavior

e large o detects large scale edges
e small o detects fine features

Source: Hays, Brown Source: S. Seitz



Object boundaries vs. edges

Background

Source: Darrell, Berkeley



Edge detection is just the beginning...

image human segmentation gradient magnitude

. RS
Berkeley segmentation database:
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

Much more on segmentation later in term...

Source: Darrell, Berkeley Source: L. Lazebnik


http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

Representing Texture

Source: Hays, Brown Source: Forsyth



exture and Material

Source: Hays, Brown http://www-cvr.ai.uiuc.edu/ponce_grp/data/texture_database/samples/



Texture and Orientation

Source: Hays, Brown http://www-cvr.ai.uiuc.edu/ponce_grp/data/texture_database/samples/



Texture and Scale

Source: Hays, Brown http://www-cvr.ai.uiuc.edu/ponce_grp/data/texture_database/samples/



Source

What is texture?

Regular or stochastic patterns caused by
bumps, grooves, and/or markings

: Hays, Brown



Source

How can we represent texture?

 Compute responses of blobs and edges at
various orientations and scales

: Hays, Brown



Sourc

Overcomplete representation: filter
banks

LM Filter Bank
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Code for filter banks: www.robots.ox.ac.uk/~vgg/research/texclass/filters.html|

e: Hays, Brown



Filter banks

* Process image with each filter and keep

Source: Hays, Brown



Source

How can we represent texture?

* Measure responses of blobs and edges at
various orientations and scales

* |dea 1: Record simple statistics (e.g., mean,
std.) of absolute filter responses

: Hays, Brown



Can you match the texture to the
response?

Filters

Mean abs responses

Source: Hays, Brown



Representing texture

* Idea 2: take vectors of filter responses at each pixel and

Source: Hays, Brown



Building Visual Di
1. Sample patches ~a |
a database

— E.g., 128 dimensional
SIFT vectors

2. Cluster the patches

— Cluster centers are
the dictionary

3. Assign a codeword
(number) to each
new patch, according
to the nearest cluster

Source: Hays, Brown



Martin, Fowlkes, Malik 2004: Learning to Detect
Natural Boundaries...
http://www.eecs.berkeley.edu/Research/Projects/CS/vi
sion/grouping/papers/mfm-pami-boundary.pdf

Figure from Fowlkes

Source: Hays, Brown


http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/papers/mfm-pami-boundary.pdf

pB Boundary Detector

—— Non-Boundaries — Boundarnies

urce: Hays, Brown Flgu re from Fowlkes
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Source: Hays, Brown



Source: Hays, Brown

—)

Gradient of
eigenvectors

Figure from Fowlkes



45 years of boundary detection
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