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Filters for features

• Previously, thinking of filtering as a 
way to remove or reduce noise

• Now, consider how filters will allow 
us to abstract higher-level 
“features”.

– Map raw pixels to an intermediate 
representation that will be used for 
subsequent processing

– Goal: reduce amount of data, discard 
redundancy, preserve what’s useful

Source: Darrell, Berkeley



Edge detection
• Goal:  Identify sudden 

changes (discontinuities) in 
an image
– Intuitively, most semantic and 

shape information from the 
image can be encoded in the 
edges

– More compact than pixels

• Ideal: artist’s line drawing 
(but artist is also using 
object-level knowledge)

Source: D. Lowe
Source: Hays, Brown



Edge detection

• Goal: map image from 2d array of pixels to a set of curves 
or line segments or contours.

• Why?

• Main idea: look for strong gradients, post-process

Figure from J. Shotton et al., PAMI 2007

Source: Darrell, Berkeley



Why do we care about edges?

• Extract information, 
recognize objects

• Recover geometry and 
viewpoint

Vanishing
point

Vanishing
line

Vanishing
point

Vertical vanishing
point

(at infinity)

Source: Hays, Brown



Origin of Edges

• Edges are caused by a variety of factors

depth discontinuity

surface color discontinuity

illumination discontinuity

surface normal discontinuity

Source: Steve Seitz
Source: Hays, Brown



What can cause an edge?

Depth discontinuity: 
object boundary

Change in surface 
orientation: shape

Cast shadows

Reflectance change: 
appearance 
information, texture

Source: Darrell, Berkeley



Contrast and invariance

Source: Darrell, Berkeley



Closeup of edges

Source: D. Hoiem
Source: Hays, Brown



Closeup of edges

Source: D. Hoiem
Source: Hays, Brown



Closeup of edges

Source: D. Hoiem
Source: Hays, Brown



Closeup of edges

Source: D. Hoiem
Source: Hays, Brown



Characterizing edges
• An edge is a place of rapid change in the 

image intensity function

image
intensity function

(along horizontal scanline) first derivative

edges correspond to
extrema of derivative

Source: Hays, Brown



Differentiation and convolution

For 2D function, f(x,y), the partial derivative is:

For discrete data, we can approximate using finite differences:

To implement above as convolution, what would be the associated 
filter?
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Source: Darrell, Berkeley



Partial derivatives of an image

Which shows changes with respect to x?
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Assorted finite difference filters

>> My = fspecial(‘sobel’);

>> outim = imfilter(double(im), My); 

>> imagesc(outim);

>> colormap gray;

Source: Darrell, Berkeley



Image gradient
The gradient of an image: 

The gradient points in the direction of most rapid change in intensity

The gradient direction (orientation of edge normal) is given by:

The edge strength is given by the gradient magnitude

Slide credit S. SeitzSource: Darrell, Berkeley



Intensity profile

Source: D. Hoiem
Source: Hays, Brown



With a little Gaussian noise

Gradient

Source: D. Hoiem
Source: Hays, Brown



Effects of noise
• Consider a single row or column of the image

– Plotting intensity as a function of position gives a signal

Where is the edge?
Source: S. Seitz

Source: Hays, Brown



Effects of noise

• Difference filters respond strongly to noise

– Image noise results in pixels that look very 
different from their neighbors

– Generally, the larger the noise the stronger the 
response

• What can we do about it?

Source: D. Forsyth
Source: Hays, Brown



Solution: smooth first

• To find edges, look for peaks in )( gf
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Source: S. Seitz
Source: Hays, Brown



• Differentiation is convolution, and convolution is 
associative:

• This saves us one operation:
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Source: S. Seitz
Source: Hays, Brown



Derivative of Gaussian filter

* [1 -1] = 

Source: Hays, Brown



Derivative of Gaussian filters

x-direction y-direction

Source: L. LazebnikSource: Darrell, Berkeley



Laplacian of Gaussian

Consider  

Laplacian of Gaussian
operator

Where is the edge?  Zero-crossings of bottom graph
Source: Darrell, Berkeley



2D edge detection filters

• is the Laplacian operator:

Laplacian of Gaussian

Gaussian derivative of Gaussian

Source: Darrell, Berkeley



Smoothing with a Gaussian

Recall: parameter σ is the “scale” / “width” / “spread” of the 
Gaussian kernel, and controls the amount of smoothing.

…

Source: Darrell, Berkeley



Effect of σ on derivatives

The apparent structures differ depending on Gaussian’s 
scale parameter.

Larger values: larger scale edges detected
Smaller values: finer features detected

σ = 1 pixel σ = 3 pixels

Source: Darrell, Berkeley



So, what scale to choose?
It depends what we’re looking for.

Too fine of a scale…can’t see the forest for the trees.
Too coarse of a scale…can’t tell the maple grain from the cherry.Source: Darrell, Berkeley



Thresholding

• Choose a threshold value t

• Set any pixels less than t to zero (off)

• Set any pixels greater than or equal to t to one (on)

Source: Darrell, Berkeley



Original image

Source: Darrell, Berkeley



Gradient magnitude image

Source: Darrell, Berkeley



Thresholding gradient with a lower threshold

Source: Darrell, Berkeley



Thresholding gradient with a higher threshold

Source: Darrell, Berkeley



• Smoothed derivative removes noise, but blurs 
edge. Also finds edges at different “scales”.

1 pixel 3 pixels 7 pixels

Tradeoff between smoothing and localization

Source: D. Forsyth
Source: Hays, Brown



Designing an edge detector
• Criteria for a good edge detector:

– Good detection: the optimal detector should find all 
real edges, ignoring noise or other artifacts

– Good localization
• the edges detected must be as close as possible to 

the true edges
• the detector must return one point only for each 

true edge point

• Cues of edge detection
– Differences in color, intensity, or texture across the 

boundary
– Continuity and closure
– High-level knowledge

Source: L. Fei-FeiSource: Hays, Brown



Canny edge detector
• This is probably the most widely used edge 

detector in computer vision

• Theoretical model: step-edges corrupted by 
additive Gaussian noise

• Canny has shown that the first derivative of 
the Gaussian closely approximates the 
operator that optimizes the product of 
signal-to-noise ratio and localization

J. Canny, A Computational Approach To Edge Detection, IEEE Trans. Pattern 
Analysis and Machine Intelligence, 8:679-714, 1986. 

Source: L. Fei-FeiSource: Hays, Brown

http://ieeexplore.ieee.org/xpls/abs_all.jsp?isnumber=4767846&arnumber=4767851&count=16&index=4


Example

original image (Lena)

Source: Hays, Brown



Derivative of Gaussian filter

x-direction y-direction

Source: Hays, Brown



The Canny edge detector

original image (Lena)

Source: Darrell, Berkeley



Compute Gradients (DoG)

X-Derivative of Gaussian Y-Derivative of Gaussian Gradient Magnitude

Source: Hays, Brown



The Canny edge detector

norm of the gradient

Source: Darrell, Berkeley



The Canny edge detector

thresholding

Source: Darrell, Berkeley



The Canny edge detector

thresholding

How to turn 
these thick 
regions of the 
gradient into 
curves?

Source: Darrell, Berkeley



Non-maximum suppression

Check if pixel is local maximum along gradient 
direction, select single max across width of the edge
– requires checking interpolated pixels p and r

Source: Darrell, Berkeley



Get Orientation at Each Pixel

• Threshold at minimum level

• Get orientation theta = atan2(gy, gx)

Source: Hays, Brown



Non-maximum suppression for each 
orientation

At q, we have a 
maximum if the value 
is larger than those at 
both p and at r. 
Interpolate to get 
these values.

Source: D. ForsythSource: Hays, Brown



Before Non-max Suppression

Source: Hays, Brown



After non-max suppression

Source: Hays, Brown



The Canny edge detector

thinning

(non-maximum suppression)

Problem: 
pixels along 
this edge 
didn’t survive 
the 
thresholding

Source: Darrell, Berkeley



Hysteresis thresholding

• Check that maximum value of gradient value is 
sufficiently large

– drop-outs?  use hysteresis

• use a high threshold to start edge curves and a low 
threshold to continue them.

Source: S. SeitzSource: Darrell, Berkeley



Hysteresis thresholding
• Threshold at low/high levels to get weak/strong edge pixels

• Do connected components, starting from strong edge pixels

Source: Hays, Brown



Hysteresis thresholding

original image

high threshold
(strong edges)

low threshold
(weak edges)

hysteresis threshold

Source: L. Fei-FeiSource: Darrell, Berkeley



Final Canny Edges

Source: Hays, Brown



Canny edge detector

1. Filter image with x, y derivatives of Gaussian 

2. Find magnitude and orientation of gradient

3. Non-maximum suppression:
– Thin multi-pixel wide “ridges” down to single pixel width

4. Thresholding and linking (hysteresis):
– Define two thresholds: low and high

– Use the high threshold to start edge curves and the low 
threshold to continue them

• MATLAB: edge(image, ‘canny’)

Source: D. Lowe, L. Fei-FeiSource: Hays, Brown



Effect of  (Gaussian kernel 
spread/size)

Canny with Canny with original 

The choice of  depends on desired behavior
• large  detects large scale edges

• small  detects fine features

Source: S. SeitzSource: Hays, Brown



Object boundaries vs. edges

Background Texture Shadows

Source: Darrell, Berkeley



Edge detection is just the beginning…

Berkeley segmentation database:
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

image human segmentation gradient magnitude

Source: L. Lazebnik

Much more on segmentation later in term…

Source: Darrell, Berkeley

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/


Representing Texture

Source: ForsythSource: Hays, Brown



Texture and Material

http://www-cvr.ai.uiuc.edu/ponce_grp/data/texture_database/samples/Source: Hays, Brown



Texture and Orientation

http://www-cvr.ai.uiuc.edu/ponce_grp/data/texture_database/samples/Source: Hays, Brown



Texture and Scale

http://www-cvr.ai.uiuc.edu/ponce_grp/data/texture_database/samples/Source: Hays, Brown



What is texture?

Regular or stochastic patterns caused by 
bumps, grooves, and/or markings

Source: Hays, Brown



How can we represent texture?

• Compute responses of blobs and edges at 
various orientations and scales

Source: Hays, Brown



Overcomplete representation: filter 
banks

LM Filter Bank

Code for filter banks: www.robots.ox.ac.uk/~vgg/research/texclass/filters.html

Source: Hays, Brown



Filter banks

• Process image with each filter and keep 
responses (or squared/abs responses)

Source: Hays, Brown



How can we represent texture?

• Measure responses of blobs and edges at 
various orientations and scales

• Idea 1: Record simple statistics (e.g., mean, 
std.) of absolute filter responses

Source: Hays, Brown



Can you match the texture to the 
response?

Mean abs responses

Filters
A

B

C

1

2

3

Source: Hays, Brown



Representing texture

• Idea 2: take vectors of filter responses at each pixel and 
cluster them, then take histograms.

Source: Hays, Brown



Building Visual Dictionaries
1. Sample patches from 

a database
– E.g., 128 dimensional 

SIFT vectors

2. Cluster the patches
– Cluster centers are 

the dictionary

3. Assign a codeword 
(number) to each 
new patch, according 
to the nearest cluster

Source: Hays, Brown



pB boundary detector

Figure from Fowlkes

Martin, Fowlkes, Malik 2004: Learning to Detect 
Natural Boundaries…
http://www.eecs.berkeley.edu/Research/Projects/CS/vi
sion/grouping/papers/mfm-pami-boundary.pdf

Source: Hays, Brown

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/papers/mfm-pami-boundary.pdf


pB Boundary Detector

Figure from FowlkesSource: Hays, Brown



Brightness

Color

Texture

Combined

Human

Source: Hays, Brown



Global pB boundary detector

Figure from FowlkesSource: Hays, Brown



45 years of boundary detection

Source: Arbelaez, Maire, Fowlkes, and Malik. TPAMI 2011 (pdf)
Source: Hays, Brown


