Filters

CMP 719 - Computer Vision Pinar Duygulu
Hacettepe University

Today's topics

- Image Formation
- Image filters in spatial domain
- Filter is a mathematical operation of a grid of numbers
- Smoothing, sharpening, measuring texture
- Image filters in the frequency domain
- Filtering is a way to modify the frequencies of images
- Denoising, sampling, image compression
- Templates and Image Pyramids
- Filtering is a way to match a template to the image
- Detection, coarse-to-fine registration

Images as functions

Source: S. Seitz

Images as functions

- We can think of an image as a function, f, from R^{2} to R :
- $f(x, y)$ gives the intensity at position (x, y)
- Realistically, we expect the image only to be defined over a rectangle, with a finite range:

$$
-f:[a, b] \times[c, d] \rightarrow[0,255]
$$

- A color image is just three functions pasted together. We can write this as a "vector-valued" function:

$$
f(x, y)=\left[\begin{array}{l}
r(x, y) \\
g(x, y) \\
b(x, y)
\end{array}\right]
$$

Digital images

- In computer vision we operate on digital (discrete) images:
- Sample the 2D space on a regular grid
- Quantize each sample (round to nearest integer)
- Image thus represented as a matrix of integer values.

Images as discrete functions

- Cartesian Coordinates

$$
f[n, m]=\left[\begin{array}{ccccc}
\ddots & & \vdots & & \\
& f[-1,1] & f[0,1] & f[1,1] & \\
\cdots & f[-1,0] & \underline{f[0,0]} & f[1,0] & \cdots \\
& f[-1,-1] & f[0,-1] & f[1,-1] & \\
& & \vdots & & \ddots
\end{array}\right]
$$

Today's topics

- Image Formation
- Image filters in spatial domain
- Filter is a mathematical operation of a grid of numbers
- Smoothing, sharpening, measuring texture
- Image filters in the frequency domain
- Filtering is a way to modify the frequencies of images
- Denoising, sampling, image compression
- Templates and Image Pyramids
- Filtering is a way to match a template to the image
- Detection, coarse-to-fine registration

Zebras vs. Dalmatians

Both zebras and dalmatians have black and white pixels in about the same number

- if we shuffle the images point-wise processing is not affected

Need to measure properties relative to small neighborhoods of pixels

- find different image patterns

Filtering

We want to remove unwanted sources of variation, and keep the information relevant for whatever task we need to solve

Filters

- Filtering:
- Form a new image whose pixels are a combination of original pixel values
- compute function of local neighborhood at each position
- Goals:
- Extract useful information from the images

Features (textures, edges, corners, distinctive points, blobs...)

- Modify or enhance image properties:
super-resolution; in-painting; de-noising, resizing
- Detect patterns

Template matching

Find edges...

Find waldo...

De-noising

In-painting

Common types of noise

- Salt and pepper noise: random occurrences of black and white pixels
- Impulse noise: random occurrences of white pixels
- Gaussian noise: variations in intensity drawn from a Gaussian normal distribution

Original

Impulse noise

Salt and pepper noise

Gaussian noise

Gaussian noise

$$
\begin{aligned}
& f(x, y)=\overbrace{\overbrace{f(x, y)}^{\text {Image }}}^{\text {Idea }}+\overbrace{\eta(x, y)}^{\text {Noise process }} \\
& \text { Gaussian i.i.d. ("white") noise: } \\
& \eta(x, y) \sim \mathcal{N}(\mu, \sigma)
\end{aligned}
$$

Fig: M. Hebert

First attempt at a solution

- Let's replace each pixel with an average of all the values in its neighborhood
- Assumptions:
- Expect pixels to be like their neighbors
- Expect noise processes to be independent from pixel to pixel

First attempt at a solution

- Let's replace each pixel with an average of all the values in its neighborhood
- Moving average in 1D:

Weighted Moving Average

- Can add weights to our moving average
- Weights [1, 1, 1, 1, 1] / 5

Weighted Moving Average

- Non-uniform weights [1, 4, 6, 4, 1] / 16

Moving Average In 2D

$$
F[x, y]
$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

$G[x, y]$

	0								

Moving Average In 2D

$$
F[x, y]
$$

$$
G[x, y]
$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

	0	10							

Moving Average In 2D

$$
F[x, y]
$$

$G[x, y]$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

	0	10	20						

Moving Average In 2D

$$
F[x, y]
$$

$G[x, y]$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

	0	10	20	30					

Moving Average In 2D

$F[x, y]$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

$G[x, y]$

	0	10	20	30	30				

Moving Average In 2D

$F[x, y]$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

	0	10	20	30	30	30	20	10	
	0	20	40	60	60	60	40	20	
	0	30	60	90	90	90	60	30	
	0	30	50	80	80	90	60	30	
	0	30	50	80	80	90	60	30	
	0	20	30	50	50	60	40	20	
	10	20	30	30	30	30	20	10	
	10	10	10	0	0	0	0	0	

Correlation filtering

Say the averaging window size is $2 \mathrm{k}+1 \times 2 \mathrm{k}+1$:

$$
G[i, j]=\underbrace{\frac{1}{(2 k+1)^{2}}} \underbrace{\sum_{u=-k}^{k} \sum_{v=-k}^{k} F[i+u, j+v]}
$$

Attribute uniform weight Loop over all pixels in neighborhood around to each pixel image pixel F[i,j]

Now generalize to allow different weights depending on neighboring pixel's relative position:

$$
G[i, j]=\sum_{u=-k}^{k} \sum_{v=-k}^{k} \underbrace{H[u, v]}_{\text {Non-uniform weights }} F[i+u, j+v]
$$

Correlation filtering

$$
G[i, j]=\sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i+u, j+v]
$$

This is called cross-correlation, denoted

$$
G=H \otimes F
$$

Filtering an image: replace each pixel with a linear combination of its neighbors.

The filter "kernel" or "mask" $H[u, v]$ is the prescription for the weights in the linear combination.

Averaging Filter

original

Averaging Filter

original

Blurred (filter applied in both dimensions).

Averaging Filter

original

0
Pixel offset
2.4

filtered

Averaging Filter

Averaging filter

- What values belong in the kernel H for the moving average example?

$F[\mathscr{X}, \mathscr{Y}]$									
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

"box filter"

$$
G=H \otimes F
$$

Smoothing by averaging

$\longleftarrow \begin{aligned} & \text { depicts box filter: } \\ & \text { white = high value, black = low value }\end{aligned}$

original

filtered

Example

Example

Example

Smoothing by averaging

Original Image

Smoothing by averaging

Slight Blurring

Smoothing by averaging

Smoothing by averaging

Lots of Blurring

Gaussian filter

- What if we want nearest neighboring pixels to have the most influence on the output?

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

$$
F[x, y]
$$

A weighted average that weights pixels at its center much more strongly than its boundaries

Smoothing with a Gaussian

Smoothing with a Gaussian

Gaussian Blurring, $\sigma=5$

Smoothing with a Gaussian

Result of blurring using a uniform local model

Produces a set of narrow vertical horizontal and vertical bars - ringing effect

\square

Result of blurring using a set of Gaussian weights

Smoothing with a Gaussian

Gaussian filters

- What parameters matter here?
- Size of kernel or mask
- Note, Gaussian function has infinite support, but discrete filters use finite kernels

Gaussian filters

- What parameters matter here?
- Variance of Gaussian: determines extent of smoothing

$$
\begin{gathered}
\sigma=2 \text { with } 30 \\
\times 30 \text { kernel }
\end{gathered}
$$

$\sigma=5$ with 30
x 30 kernel

Smoothing with a Gaussian

If σ is small : the smoothing will have little effect
If σ is larger : neighboring pixels will have larger weights resulting in consensus of the neighbors

If σ is very large : details will disappear along with the noise

Effect of σ

Gaussian smoothing to remove noise

Gaussian smoothing to remove

 noise

No smoothing

$\sigma=2$

$\sigma=4$

Smoothing with a Gaussian

$\sigma=0.05$

$\sigma=1$ pixel

The effects of smoothing Each row shows smoothing with gaussians of different width; each column shows different realizations of an image of gaussian noise.

Smoothing with a Gaussian

- Filtered noise is sometimes useful
- looks like some natural textures, can be used to simulate fire, etc.

Gaussian kernel

$g(x, y)=\frac{1}{2 \pi \sigma^{2}} \exp \left(-\frac{\left(x^{2}+y^{2}\right)}{2 \sigma^{2}}\right)$

0.0751	0.1238	0.0751
0.1238	0.242	0.1238
0.0751	0.1238	0.0751

Gaussian is an approximation to the binomial distribution.

Can approximate Gaussian using binomial

$$
a_{n r} \equiv \frac{n!}{r!(n-r)!} \equiv\binom{n}{r}
$$ coefficients.

$$
\begin{aligned}
& n=\text { number of elements in the 1D filter minus } 1 \\
& r=\text { position of element in the filter kernel }(0,1,2 \ldots)
\end{aligned}
$$

$$
\left.\begin{aligned}
& \mathrm{g}=1 / 4 \\
& \cline { 2 - 4 } \\
& \cline { 2 - 4 } \\
& \cline { 2 - 3 } \\
& \hline
\end{aligned} \right\rvert\, \begin{array}{lll|}
& 2 & 1 \\
\hline
\end{array}
$$

\square

Matlab

>> hsize = 10;
>> sigma = 5;
>> h = fspecial('gaussian' hsize, sigma);
>> mesh(h);

>> imagesc(h); 0
>> outim = imfilter(im, h);
>> imshow (outim);

outim

Smoothing with a Gaussian

Parameter σ is the "scale" / "width" / "spread" of the Gaussian kernel, and controls the amount of smoothing.

for sigma=1:3:10
h = fspecial('gaussian', fsize, sigma);
out $=$ imfilter (im, h);
imshow (out) ;
pause;
end

Convolution

- Convolution:
- Flip the filter in both dimensions (bottom to top, right to left)
- Then apply cross-correlation

$$
G[i, j]=\sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i-u, j-v]
$$

Notation for convolution
operator

Convolution vs. correlation

Convolution

$$
\begin{aligned}
G[i, j] & =\sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i-u, j-v] \\
G & =H \star F
\end{aligned}
$$

Cross-correlation

$$
\begin{aligned}
G[i, j] & =\sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i+u, j+v] \\
G & =H \otimes F
\end{aligned}
$$

For a Gaussian or box filter, how will the outputs differ?
If the input is an impulse signal, how will the outputs differ?

Predict the filtered outputs

Practice with linear filters

original

Practice with linear filters

original

Filtered
(no change)

Practice with linear filters

Original

Filtered
(no change)

Impulse

$$
f[m, n]=I \otimes g=\sum_{k, l} h[m-k, n-l] g[k, l]
$$

$\mathrm{f}[\mathrm{m}, \mathrm{n}]$

Practice with linear filters

0	0	0
0	0	1
0	0	0

?

Original

Practice with linear filters

Original

Shifted left
by 1 pixel
with
correlation

Shifts

$$
f[m, n]=I \otimes g=\sum_{k, l} h[m-k, n-l] g[k, l]
$$

2pixels

$\mathrm{f}[\mathrm{m}, \mathrm{n}]$

Practice with linear filters

Practice with linear filters

Practice with linear filters

original

Sharpening

Sharpening

Practice with linear filters

Original

0	0	0
0	2	0
0	0	0

$-\frac{1}{9}$| 1 | 1 | 1 |
| :--- | :--- | :--- |
| 1 | 1 | 1 |
| 1 | 1 | 1 |

Sharpening filter

- Accentuates differences with local average

Filtering examples: sharpening

before

after

Rectangular filter

What does blurring take away?

- Let's add it back:

Rectangular filter

Rectangular filter

$g[m, n]$

$\mathrm{f}[\mathrm{m}, \mathrm{n}]$

Integral image

Shift invariant linear system

- Shift invariant:
- Operator behaves the same everywhere, i.e. the value of the output depends on the pattern in the image neighborhood, not the position of the neighborhood.
- Linear:
- Superposition: h * $(\mathrm{f} 1+\mathrm{f} 2)=(\mathrm{h} * \mathrm{f} 1)+(\mathrm{h} * \mathrm{f} 2)$
- Scaling: $h^{*}(k f)=k(h * f)$

Properties of convolution

- Linear \& shift invariant
- Commutative:

$$
f * g=g * f
$$

- Associative

$$
(f * g) * h=f *(g * h)
$$

- Identity:
unit impulse $e=[\ldots, 0,0,1,0,0, \ldots] . f * e=f$
- Differentiation:

$$
\frac{\partial}{\partial x}(f * g)=\frac{\partial f}{\partial x} * g
$$

Separability

- In some cases, filter is separable, and we can factor into two steps:
- Convolve all rows
- Convolve all columns

Separability

- In some cases, filter is separable, and we can factor into two steps: e.g.,
g

Source: Darrell, Berkeley $f^{*}\left(g^{*} h\right)=\left(f^{*} g\right)^{*} h$

Advantages of separability

First convolve the image with a one dimensional horizontal filter

Then convolve the result of the first convolution with a one dimensional vertical filter

For a kxk Gaussian filter, 2D convolution requires k^{2} operations per pixel
But using the separable filters, we reduce this to 2 k operations per pixel.

Seperable Gaussian

$$
\begin{aligned}
& g(x)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-x^{2} /\left(2 \sigma^{2}\right)\right) \\
& g(y)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-y^{2} /\left(2 \sigma^{2}\right)\right)
\end{aligned}
$$

Product?

$$
g(x, y)=\frac{1}{2 \pi \sigma^{2}} \exp \left(-\left(x^{2}+y^{2}\right) /\left(2 \sigma^{2}\right)\right)
$$

Advantages of Gaussians

> Convolution of a Gaussian with itself is another Gaussian
> so we can first smooth an image with a small Gaussian
$>$ then, we convolve that smoothed image with another small Gaussian and the result is equivalent to smoother the original image with a larger Gaussian.
$>$ If we smooth an image with a Gaussian having sd σ twice, then we get the same result as smoothing the image with a Gaussian having standard deviation $(2 \sigma)^{1 / 2}$

Effect of smoothing filters

Additive Gaussian noise

Salt and pepper noise

Median filter

- No new pixel values introduced
- Removes spikes: good for impulse, salt \& pepper noise

Median filter

Plots of a row of the image

Median filter

- Median filter is edge preserving

Boundary issues

- What is the size of the output?
- MATLAB: filter2(g, f, shape)
- shape = 'full': output size is sum of sizes of f and g
- shape = 'same': output size is same as f
- shape $=$ 'valid': output size is difference of sizes of f and g

valid

Boundary issues

- What about near the edge?
- the filter window falls off the edge of the image
- need to extrapolate
- methods:
- clip filter (black)
- wrap around
- copy edge
- reflect across edge

Boundary issues

- What about near the edge?
- the filter window falls off the edge of the image
- need to extrapolate
- methods (MATLAB):
- clip filter (black): imfilter(f, g, 0)
- wrap around: imfilter(f, g, 'circular')
- copy edge: imfilter(f, g, 'replicate')
- reflect across edge: imfilter(f, g, 'symmetric’)

Borders

Today's topics

- Image Formation
- Image filters in spatial domain
- Filter is a mathematical operation of a grid of numbers
- Smoothing, sharpening, measuring texture
- Image filters in the frequency domain
- Filtering is a way to modify the frequencies of images
- Denoising, sampling, image compression
- Templates and Image Pyramids
- Filtering is a way to match a template to the image
- Detection, coarse-to-fine registration

Why does the Gaussian give a nice smooth image, but the square filter give edgy artifacts?

Why does a lower resolution image still make sense to us? What do we lose?

Jean Baptiste Joseph Fourier (1768-

 10つの1had crazy idea (1807): Any univariate function can rewritten as a weighted sum sines and cosines of differen frequencies.

- Don't believe it?
- Neither did Lagrange, Laplace, Poisson and other big wigs
- Not translated into English until 1878!
- But it's (mostly) true!
- called Fourier Series
- there are some subtle restrictions
...the manner in which the author arrives at these equations is not exempt of difficulties and...his analysis to integrate them still leaves something to be desired on the score of generality and even rigour.

A sum of sines

Our building block:

$$
A \sin (\omega x+\phi)
$$

Add enough of them to get any signal $f(x)$ you want!

\section*{Filtering in spatial dom | 2 | 0 | -2 |
| :---: | :---: | :---: |
| 1 | 0 | -1 |
| 10 | | |}

Filtering in frequency domai

Filtering

Why does the Gaussian give a nice smooth image, but the square filter give edgy artifacts?

-

Box filter
-

Gaussian

Box Filter

Source: James Hays, Brown

Subsampling by a factor of 2

Throw away every other row and column to create a $1 / 2$ size image

Aliasing problem

- 1D example (sinewave):

Aliasing problem

- 1D example (sinewave):

Subsampling without pre-filtering

Subsampling with Gaussian prefiltering

Gaussian 1/2
G 1/4
G 1/8

Today's topics

- Image Formation
- Image filters in spatial domain
- Filter is a mathematical operation of a grid of numbers
- Smoothing, sharpening, measuring texture
- Image filters in the frequency domain
- Filtering is a way to modify the frequencies of images
- Denoising, sampling, image compression
- Templates and Image Pyramids
- Filtering is a way to match a template to the image
- Detection, coarse-to-fine registration

Template matching

A toy example

Template matching

Template

Template matching

Detected template

Correlation map

Where's Waldo?

Where's Waldo?

Template

Where's Waldo?

Detected template

Correlation map

Template matching

Template

Scene
What if the template is not identical to some subimage in the scene?

Template matching

Template

Detected template
Match can be meaningful, if scale, orientation, and general appearance is right.

Application

Figure from "Computer Vision for Interactive Computer Graphics," W.Freeman et al, IEEE Computer Graphics and Applications, 1998 copyright 1998, IEEE

Template matching

- Goal: find in image
- Main challenge: What is a good similarity or distance measure between two patches?
- Correlation
- Zero-mean correlation
- Sum Square Difference
- Normalized Cross Correlation

Matching with filters

- Goal: find in image
- Method 0: filter the image with eye patch

$$
h[m, n]=\sum_{k, l} g[k, l] f[m+k, n+l]
$$

Input

Filtered Image
$f=$ image
$\mathrm{g}=$ filter

What went wrong?
response is stronger for higher intensity

Matching with filters

- Goal: find in image
- Method 1: filter the image with zero-mean eye

$$
h[m, n]=\sum_{k, l}(f[k, l]-\bar{f}) \xlongequal{(g[m+k, n+l])}
$$

Input

Filtered Image (scaled)

True detections

Thresholded Image

Matching with filters

- Goal: find in image
- Method 2: SSD

$$
h[m, n]=\sum_{k, l}(g[k, l]-f[m+k, n+l])^{2}
$$

Thresholded Image

Matching with filters

- Goal: find in image
- Method 2: SSD

$$
h[m, n]=\sum_{k, l}(g[k, l]-f[m+k, n+l])^{2}
$$

Input

What's the potential downside of SSD?

SSD is sensitive to average intensity

Matching with filters

- Goal: find in image
- Method 3: Normalized cross-correlation

Matlab: normxcorr2(template, im)

Matching with filters

- Goal: find in image
- Method 3: Normalized cross-correlation

Input

Normalized X-Correlation

Thresholded Image

Matching with filters

- Goal: find in image
- Method 3: Normalized cross-correlation

Input

Normalized X-Correlation

Thresholded Image

Q: What is the best method to use?

A: Depends

- SSD: faster, sensitive to overall intensity
- Normalized cross-correlation: slower, invariant to local average intensity and contrast

Q: What if we want to find larger or smaller eyes?

Motivation for studying scale.

ELDER AND ZUGKER: LOGAL SCALE CONTROL FOR EDGE DETEGTION AND BLUR ESTIMATION

A: Image Pyramid

Irani \& Basri

Review of Sampling

Gaussian Pyramid

Template Matching with Image Pyramids

Input: Image, Template

1. Match template at current scale
2. Downsample image
3. Repeat $1-2$ until image is very small
4. Take responses above some threshold, perhaps with non-maxima suppression

Coarse-to-fine Image Registration

1. Compute Gaussian pyramid
2. Align with coarse pyramid
3. Successively align with finer pyramids

- Search smaller range

Why is this faster?

Are we guaranteed to get the same result?

Laplacian filter

Laplacian pvramid

| 512 | 256 | 128 | 64 | 32 | 16 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Computing Gaussian/Laplacian Diramid

Can we reconstruct the original from the laplacian pyramid?

Texture segmentation

Malik \& Perona, 1990. Preattentive texture discrimination with early vision mechanisms.

Clues from Human Perception

- Early processing in humans filters for various orientations and scales of frequency
- Perceptual cues in the mid-high frequencies dominate perception
- When we see an image from far away, we are effectively subsampling it

Early Visual Processing: Multi-scale edge and blob filters

