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Today’s topics

• Image Formation

• Image filters in spatial domain
– Filter is a mathematical operation of a grid of numbers
– Smoothing, sharpening, measuring texture

• Image filters in the frequency domain
– Filtering is a way to modify the frequencies of images
– Denoising, sampling, image compression

• Templates and Image Pyramids
– Filtering is a way to match a template to the image
– Detection, coarse-to-fine registration



Images as functions

Source: S. Seitz



Images as functions

• We can think of an image as a function, f, from 

R2 to R:
• f( x, y ) gives the intensity at position ( x, y ) 

• Realistically, we expect the image only to be defined over a 

rectangle, with a finite range:

– f: [a,b] x [c,d]  [0, 255]

• A color image is just three functions pasted 

together.  We can write this as a “vector-valued” 

function: 

Source: S. Seitz
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Digital images
• In computer vision we operate on digital (discrete) images:

• Sample the 2D space on a regular grid

• Quantize each sample (round to nearest integer)

• Image thus represented as a matrix of integer values.

Adapted from S. Seitz
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Images as discrete functions

• Cartesian Coordinates

Source: Fei Feli Li, Stanford University



Today’s topics

• Image Formation

• Image filters in spatial domain
– Filter is a mathematical operation of a grid of numbers
– Smoothing, sharpening, measuring texture

• Image filters in the frequency domain
– Filtering is a way to modify the frequencies of images
– Denoising, sampling, image compression

• Templates and Image Pyramids
– Filtering is a way to match a template to the image
– Detection, coarse-to-fine registration



Zebras vs. Dalmatians

Both zebras and dalmatians have black and white pixels in about the same 
number 

– if we shuffle the images point-wise processing is not affected

Need to measure properties relative to small neighborhoods of pixels
- find different image patterns



Filtering
g [m,n] f [m,n]

We want to remove unwanted sources of variation, and keep the 
information relevant for whatever task we need to solve

Source: Torralba, MIT



Filters

• Filtering:

– Form a new image whose pixels are a combination of 
original pixel values 

- compute function of local neighborhood at each position

• Goals:

• Extract useful information from the images

Features (textures, edges, corners, distinctive points, blobs…)

• Modify or enhance image properties:

super-resolution; in-painting; de-noising, resizing

• Detect patterns

Template matching

Source: Fei Feli Li, Stanford University; James Hays, Brown



Smooth/Sharpen Images...      Find edges...                  Find waldo…
Source: Darrell, Berkeley



Source: Fei Feli Li, Stanford University



Common types of noise

– Salt and pepper noise: 
random occurrences of   
black and white pixels

– Impulse noise: random 
occurrences of white pixels

– Gaussian noise: variations 
in intensity drawn from a 
Gaussian normal 
distribution

Source: S. SeitzSource: Darrell, Berkeley



Gaussian noise

Fig: M. Hebert

>> noise = randn(size(im)).*sigma;

>> output = im + noise;

Source: Darrell, Berkeley



First attempt at a solution

• Let’s replace each pixel with an average of all 
the values in its neighborhood

• Assumptions: 

– Expect pixels to be like their neighbors

– Expect noise processes to be independent from 
pixel to pixel

Source: Darrell, Berkeley



First attempt at a solution

• Let’s replace each pixel with an average of all 
the values in its neighborhood

• Moving average in 1D:

Source: S. MarschnerSource: Darrell, Berkeley



Weighted Moving Average

• Can add weights to our moving average

• Weights [1, 1, 1, 1, 1]  / 5 

Source: S. MarschnerSource: Darrell, Berkeley



Weighted Moving Average

• Non-uniform weights [1, 4, 6, 4, 1] / 16

Source: S. MarschnerSource: Darrell, Berkeley



Moving Average In 2D
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Moving Average In 2D
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Moving Average In 2D
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Moving Average In 2D
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Moving Average In 2D
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Moving Average In 2D
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Correlation filtering

Say the averaging window size is 2k+1 x 2k+1:

Loop over all pixels in neighborhood around  
image pixel F[i,j]

Attribute uniform weight 
to each pixel

Now generalize to allow different weights depending on  
neighboring pixel’s relative position:

Non-uniform weights

Source: Darrell, Berkeley



Correlation filtering

Filtering an image: replace each pixel with a linear combination of 
its neighbors.

The filter “kernel” or “mask” H[u,v] is the prescription for the 
weights in the linear combination.

This is called cross-correlation, denoted 

Source: Darrell, Berkeley



Averaging Filter

adapted from Darrell and Freeman, MIT



Averaging Filter

adapted from Darrell and Freeman, MIT

Averaging Filter



Averaging Filter

adapted from Darrell and Freeman, MIT



Averaging Filter

adapted from Darrell and Freeman, MIT



Averaging filter

• What values belong in the kernel H for the moving average 
example?
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?

Source: Darrell, Berkeley



Smoothing by averaging

depicts box filter: 
white = high value, black = low value

original filtered

Source: Darrell, Berkeley



Example

Source: Martial Hebert, CMU



Example

Source: Martial Hebert, CMU



Example

Source: Martial Hebert, CMU



Smoothing by averaging

Source: Martial Hebert, CMU



Smoothing by averaging

Source: Martial Hebert, CMU



Smoothing by averaging

Source: Martial Hebert, CMU



Smoothing by averaging

Source: Martial Hebert, CMU



Gaussian filter
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• What if we want nearest 
neighboring pixels to have the 
most influence on the output?

This kernel is an 
approximation of a 
Gaussian function:

Source: S. SeitzSource: Darrell, Berkeley

A weighted average that 
weights pixels at its center
much more strongly than 
its boundaries



Smoothing with a Gaussian

Source: Darrell, Berkeley



Smoothing with a Gaussian

Source: Martial Hebert, CMU



Smoothing with a Gaussian

Result of blurring using 
a uniform local model

Produces a set of 
narrow vertical 
horizontal and vertical 
bars – ringing effect

Result of blurring 
using a set of 
Gaussian weights

Source: David Forsyth, UIUC



Smoothing with a Gaussian

Source: Martial Hebert, CMU



Gaussian filters
• What parameters matter here?

• Size of kernel or mask

– Note, Gaussian function has infinite support, but discrete filters 
use finite kernels

σ = 5 with 10 
x 10 kernel

σ = 5 with 30 
x 30 kernel

Source: Darrell, Berkeley



Gaussian filters
• What parameters matter here?

• Variance of Gaussian: determines extent of 
smoothing

σ = 2 with 30 
x 30 kernel

σ = 5 with 30 
x 30 kernel

Source: Darrell, Berkeley



Smoothing with a Gaussian

If  is small : the smoothing will have little effect

If  is larger : neighboring pixels will have larger 
weights resulting in consensus of the neighbors

If  is very large : details will disappear along 
with the noise

Source: Martial Hebert, CMU



Gaussian filter

=1

=2

=4

Source: Torralba, MIT



Gaussian smoothing to remove 
noise

Source: Martial Hebert, CMU



Gaussian smoothing to remove 
noise

Source: Martial Hebert, CMU



Smoothing with a Gaussian

The effects of smoothing
Each row shows smoothing
with gaussians of different
width; each column shows
different realizations of 
an image of gaussian noise.

Source: David Forsyth, UIUC



Smoothing with a Gaussian

• Filtered noise is sometimes useful

– looks like some natural textures, can be used to 
simulate fire, etc.

Source: David Forsyth, UIUC



Gaussian kernel

Source:  from Michael Black



Matlab
>> hsize = 10;

>> sigma = 5;

>> h = fspecial(‘gaussian’ hsize, sigma);

>> mesh(h);

>> imagesc(h);

>> outim = imfilter(im, h);

>> imshow(outim);

outim
Source: Darrell, Berkeley



Smoothing with a Gaussian

for sigma=1:3:10 

h = fspecial('gaussian‘, fsize, sigma);

out = imfilter(im, h); 

imshow(out);

pause; 

end

…

Parameter σ is the “scale” / “width” / “spread” of the Gaussian 
kernel, and controls the amount of smoothing.

Source: Darrell, Berkeley



Convolution

• Convolution: 
– Flip the filter in both dimensions (bottom to top, right to left)

– Then apply cross-correlation

Notation for 
convolution 
operator

F

H

Source: Darrell, Berkeley



Convolution vs. correlation
Convolution

Cross-correlation

For a Gaussian or box filter, how will the outputs differ?

If the input is an impulse signal, how will the outputs differ?
Source: Darrell, Berkeley



Predict the filtered outputs

000

010

000

* = ?

000

100

000
* = ?

111
111
111

000
020
000

-* = ?

Source: Darrell, Berkeley



Practice with linear filters

adapted from Darrell and Freeman, MIT



Practice with linear filters

adapted from Darrell and Freeman, MIT



Practice with linear filters

000

010

000

Original Filtered 

(no change)

Source: D. LoweSource: Darrell, Berkeley



Impulse





0 0 0 0 0

0 0 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0



f [m,n] I  g  h[m  k,n  l]g[k,l]
k,l



g[m,n]

h[m,n]

f[m,n]

=

Source: Torralba, MIT



Practice with linear filters

000

100

000

Original

?

Source: D. LoweSource: Darrell, Berkeley



Practice with linear filters

000

100

000

Original Shifted left

by 1 pixel 

with 

correlation

Source: D. LoweSource: Darrell, Berkeley



Shifts





0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0



f [m,n] I  g  h[m  k,n  l]g[k,l]
k,l



g[m,n]

h[m,n]

f[m,n]

=

2pixels

Source: Torralba, MIT



Practice with linear filters

adapted from Darrell and Freeman, MIT



Practice with linear filters

adapted from Darrell and Freeman, MIT



Practice with linear filters

adapted from Darrell and Freeman, MIT



Sharpening

adapted from Darrell and Freeman, MIT



Sharpening

adapted from Darrell and Freeman, MIT



Practice with linear filters

Original

111
111
111

000
020
000

-

Sharpening filter
- Accentuates differences with 
local average

Source: D. LoweSource: Darrell, Berkeley



Filtering examples: sharpening

Source: Darrell, Berkeley



Rectangular filter





g[m,n]

h[m,n]

=

f[m,n]

Source: Torralba, MIT



Source: Fei Fei Li, Stanford



Rectangular filter





g[m,n]

h[m,n]

=

f[m,n]

Source: Torralba, MIT



Rectangular filter





g[m,n]

h[m,n]

=

f[m,n]

Source: Torralba, MIT



Integral image

Source: Torralba, MIT



Shift invariant linear system

• Shift invariant: 

– Operator behaves the same everywhere, i.e. the value of 
the output depends on the pattern in the image 
neighborhood, not the position of the neighborhood.

• Linear:

– Superposition: h * (f1 + f2) = (h * f1) +  (h * f2) 

– Scaling: h * (k f) = k (h * f)

Source: Darrell, Berkeley



Properties of convolution
• Linear & shift invariant

• Commutative:

f * g = g * f

• Associative

(f * g) * h = f * (g * h)

• Identity:

unit impulse e = […, 0, 0, 1, 0, 0, …].  f * e = f

• Differentiation:

Source: Darrell, Berkeley



Separability

• In some cases, filter is separable, and we can factor into two 
steps:

– Convolve all rows

– Convolve all columns

Source: Darrell, Berkeley



Separability

• In some cases, filter is separable, and we can factor into two 
steps: e.g.,

What is the computational 
complexity advantage for a 
separable filter of size k x k, in 
terms of number of operations 
per output pixel?

f * (g * h) = (f * g) * h 

g

h

f

Source: Darrell, Berkeley



Advantages of separability

adapted from Larry Davis, University of Maryland



Seperable Gaussian



Advantages of Gaussians

adapted from Larry Davis, University of Maryland



Effect of smoothing filters

Additive Gaussian noise Salt and pepper noise

Source: Darrell, Berkeley



Median filter

• No new pixel values 

introduced

• Removes spikes: good 

for impulse, salt & 

pepper noise

Source: Darrell, Berkeley



Median filter

Salt and 
pepper noise

Median 
filtered

Source: M. Hebert

Plots of a row of the image

Source: Darrell, Berkeley



Median filter

• Median filter is edge preserving

Source: Darrell, Berkeley



Boundary issues

• What is the size of the output?

• MATLAB: filter2(g, f, shape)

– shape = ‘full’: output size is sum of sizes of f and g

– shape = ‘same’: output size is same as f

– shape = ‘valid’: output size is difference of sizes of f and g 

f

gg

gg

f

gg

gg

f

gg

gg

full same valid

Source: S. LazebnikSource: Darrell, Berkeley



Boundary issues
• What about near the edge?

– the filter window falls off the edge of the image

– need to extrapolate

– methods:

• clip filter (black)

• wrap around

• copy edge

• reflect across edge

Source: S. MarschnerSource: Darrell, Berkeley



Boundary issues

• What about near the edge?

– the filter window falls off the edge of the image

– need to extrapolate

– methods (MATLAB):

• clip filter (black): imfilter(f, g, 0)

• wrap around: imfilter(f, g, ‘circular’)

• copy edge: imfilter(f, g, ‘replicate’)

• reflect across edge: imfilter(f, g, ‘symmetric’)

Source: S. MarschnerSource: Darrell, Berkeley



Borders

From Rick’s bookSource: Torralba, MIT



Today’s topics

• Image Formation

• Image filters in spatial domain
– Filter is a mathematical operation of a grid of numbers
– Smoothing, sharpening, measuring texture

• Image filters in the frequency domain
– Filtering is a way to modify the frequencies of images
– Denoising, sampling, image compression

• Templates and Image Pyramids
– Filtering is a way to match a template to the image
– Detection, coarse-to-fine registration



Why does the Gaussian give a nice smooth 
image, but the square filter give edgy artifacts?

Gaussian Box filter

Source: James Hays, Brown



Why does a lower resolution image still make 
sense to us?  What do we lose?

Image: http://www.flickr.com/photos/igorms/136916757/ Slide: HoiemSource: James Hays, Brown

http://www.flickr.com/photos/igorms/136916757/


Jean Baptiste Joseph Fourier (1768-
1830)

had crazy idea (1807):
Any univariate function can be 
rewritten as a weighted sum of 
sines and cosines of different 
frequencies. 

• Don’t believe it?  
– Neither did Lagrange, 

Laplace, Poisson and 
other big wigs

– Not translated into 
English until 1878!

• But it’s (mostly) true!
– called Fourier Series

– there are some subtle 
restrictions

...the manner in which the author arrives at these 
equations is not exempt of difficulties and...his 

analysis to integrate them still leaves something to be 
desired on the score of generality and even rigour.

Laplace

Lagrange
Legendre

Source: James Hays, Brown



A sum of sines
Our building block:

Add enough of them to get 
any signal f(x) you want!

xAsin(

Source: James Hays, Brown



Filtering in spatial domain
-101

-202

-101

* =

Source: James Hays, Brown



Filtering in frequency domain

FFT

FFT

Inverse FFT

=

Slide: HoiemSource: James Hays, Brown



Why does the Gaussian give a nice smooth 
image, but the square filter give edgy artifacts?

Gaussian Box filter

Filtering

Source: James Hays, Brown



Gaussian

Source: James Hays, Brown



Box Filter

Source: James Hays, Brown



Throw away every other row and column 
to create a 1/2 size image

Subsampling by a factor of 2

Source: James Hays, Brown



• 1D example (sinewave):

Source: S. Marschner

Aliasing problem

Source: James Hays, Brown



Source: S. Marschner

• 1D example (sinewave):

Aliasing problem

Source: James Hays, Brown



Subsampling without pre-filtering

1/4  (2x zoom) 1/8  (4x zoom)1/2

Slide by Steve Seitz
Source: James Hays, Brown



Subsampling with Gaussian pre-
filtering

G 1/4 G 1/8Gaussian 1/2

Slide by Steve Seitz
Source: James Hays, Brown



Today’s topics

• Image Formation

• Image filters in spatial domain
– Filter is a mathematical operation of a grid of numbers
– Smoothing, sharpening, measuring texture

• Image filters in the frequency domain
– Filtering is a way to modify the frequencies of images
– Denoising, sampling, image compression

• Templates and Image Pyramids
– Filtering is a way to match a template to the image
– Detection, coarse-to-fine registration



Template matching

Scene

Template (mask)

A toy example

Source: Darrell, Berkeley



Template matching

Template

Detected template

Source: Darrell, Berkeley



Template matching

Detected template Correlation map

Source: Darrell, Berkeley



Where’s Waldo?

Scene

Template

Source: Darrell, Berkeley



Where’s Waldo?

Scene

Template

Source: Darrell, Berkeley



Where’s Waldo?

Detected template Correlation map

Source: Darrell, Berkeley



Template matching

Scene

Template

What if the template is not identical to some 
subimage in the scene?

Source: Darrell, Berkeley



Template matching

Detected template

Template

Match can be meaningful, if scale, orientation, and 
general appearance is right.

Source: Darrell, Berkeley



Application

Figure from “Computer Vision for Interactive Computer Graphics,” W.Freeman et al, IEEE Computer Graphics and Applications, 1998 
copyright 1998, IEEE



Template matching
• Goal: find       in image

• Main challenge: What is a 
good similarity or distance 
measure between two 
patches?
– Correlation

– Zero-mean correlation

– Sum Square Difference

– Normalized Cross 
Correlation

Slide: HoiemSource: Hays, Brown



Matching with filters
• Goal: find       in image

• Method 0: filter the image with eye patch

Input Filtered Image

],[],[],[
,

lnkmflkgnmh
lk



What went wrong?

response is stronger 
for higher intensity

f = image
g = filter

Slide: HoiemSource: Hays, Brown



Slide: Hoiem

Matching with filters
• Goal: find       in image

• Method 1: filter the image with zero-mean eye

Input Filtered Image (scaled) Thresholded Image

)],[()],[(],[
,

lnkmgflkfnmh
lk



True detections

False 
detections

mean of f

Source: Hays, Brown



Slide: Hoiem

Matching with filters
• Goal: find       in image

• Method 2: SSD

Input 1- sqrt(SSD) Thresholded Image

2

,

)],[],[(],[ lnkmflkgnmh
lk



True detections

Source: Hays, Brown



Matching with filters
• Goal: find       in image

• Method 2: SSD

Input 1- sqrt(SSD)

2

,

)],[],[(],[ lnkmflkgnmh
lk



What’s the potential downside 
of SSD?

Slide: HoiemSource: Hays, Brown

SSD is sensitive to 
average intensity



Matching with filters
• Goal: find       in image

• Method 3: Normalized cross-correlation

5.0

,

2

,

,

2

,

,

)],[()],[(

)],[)(],[(

],[

















 



lk

nm

lk

nm

lk

flnkmfglkg

flnkmfglkg

nmh

Matlab: normxcorr2(template, im)

mean image patchmean template

Slide: HoiemSource: Hays, Brown



Slide: Hoiem

Matching with filters
• Goal: find       in image

• Method 3: Normalized cross-correlation

Input Normalized X-Correlation Thresholded Image

True detections

Source: Hays, Brown



Matching with filters
• Goal: find       in image

• Method 3: Normalized cross-correlation

Input Normalized X-Correlation Thresholded Image

True detections

Slide: HoiemSource: Hays, Brown



Q: What is the best method to use?

A: Depends

• SSD: faster, sensitive to overall intensity

• Normalized cross-correlation: slower, invariant 
to local average intensity and contrast

Source: Hays, Brown



Q: What if we want to find larger 
or smaller eyes?



adapted from Michael Black, Brown University

A: Image Pyramid



Review of Sampling

Low-Pass 
Filtered Image

Image

Gaussian
Filter Sample

Low-Res 
Image

Slide: HoiemSource: Hays, Brown



Gaussian Pyramid

adapted from Michael Black, Brown University



Gaussian pyramid

Source: ForsythSource: Hays, Brown



Template Matching with Image 
Pyramids

Input: Image, Template
1. Match template at current scale

2. Downsample image

3. Repeat 1-2 until image is very small

4. Take responses above some threshold, perhaps 
with non-maxima suppression

Slide: HoiemSource: Hays, Brown



Coarse-to-fine Image Registration
1. Compute Gaussian pyramid

2. Align with coarse pyramid

3. Successively align with finer 
pyramids

– Search smaller range

Why is this faster?

Are we guaranteed to get the same 
result?

Slide: HoiemSource: Hays, Brown



Laplacian filter

Gaussian
unit impulse

Laplacian of Gaussian

Source: LazebnikSource: Hays, Brown



Laplacian pyramid

Source: ForsythSource: Hays, Brown



Computing Gaussian/Laplacian 
Pyramid

http://sepwww.stanford.edu/~morgan/texturematch/paper_html/node3.html

Can we reconstruct the original 
from the laplacian pyramid?

Source: Hays, Brown



Texture segmentation

Malik & Perona, 1990. Preattentive texture discrimination with early vision mechanisms.



• Early processing in humans filters for various orientations and scales of 
frequency

• Perceptual cues in the mid-high frequencies dominate perception

• When we see an image from far away, we are effectively subsampling it

Early Visual Processing: Multi-scale edge and blob filters

Clues from Human Perception

Source: Hays, Brown


