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Today’s topics

Image Formation

Image filters in spatial domain
— Filter is a mathematical operation of a grid of numbers
— Smoothing, sharpening, measuring texture

Image filters in the frequency domain
— Filtering is a way to modify the frequencies of images
— Denoising, sampling, image compression

Templates and Image Pyramids
— Filtering is a way to match a template to the image
— Detection, coarse-to-fine registration



Images as functions

Source: S. Seitz



Images as functions

* We can think of an image as a function, f, from

R? to R;

« f(x,y) gives the intensity at position (X, y)

« Realistically, we expect the image only to be defined over a

rectangle, with a finite range:

~ f:[a,b] x [c,d] = [0, 255]

* A color image Is just three functions pasted

together. We can write this as a “vector-valued”

function:

F(xy)=

r(X,Y)
a(x,y)

| b(x,y)

Source: S. Seitz



Digital images

* In computer vision we operate on digital (discrete) images:

e Sample the 2D space on a regular grid

e Quantize each sample (round to nearest integer)

* Image thus represented as a matrix of integer values.

J

g2 79 23 119 120 105 4 0
10 10 9 g2 12 78 a4 0
10 54 147 44 46 0 0 43
176 135 5 188 191 &3 0 49
2 i 1 29 26 a7 0 77
0 59 144 147 157 102 g2 208
255 252 0 166 123 52 0 31
166 g3 127 17 1 0 99 a0

Lm i

2D

1D

Adapted from S. Seitz



Images as discrete functions

e Cartesian Coordinates

fl-1,1]  f[0,1]  f[1,1]
fln,m|=1 ... f|—1,0 £10,0] £[1, 0]

fl=1,-1]  flo,-1] f[1,-1]

Source: Fei Feli Li, Stanford University




Today’s topics

* Image filters in spatial domain
— Filter is a mathematical operation of a grid of numbers
— Smoothing, sharpening, measuring texture



Zebras vs. Dalmatians

Both zebras and dalmatians have black and white pixels in about the same
number
— if we shuffle the images point-wise processing is not affected

Need to measure properties relative to small neighborhoods of pixels
- find different image patterns



Filtering

g [m,n] f[m,n]

We want to remove unwanted sources of variation, and keep the
information relevant for whatever task we need to solve

Source: Torralba, MIT



Filters

* Filtering:
— Form a new image whose pixels are a combination of
original pixel values

- compute function of local neighborhood at each position
* Goals:
* Extract useful information from the images
Features (textures, edges, corners, distinctive points, blobs...)
 Modify or enhance image properties:
super-resolution; in-painting; de-noising, resizing
* Detect patterns

Template matching

Source: Fei Feli Li, Stanford University; James Hays, Brown



Smooth/Sharpen Images...

Source: Darrell, Berkeley



Super-resolution

De-noising

In-painting

|e12 ol‘we'uag

Source: Fei Feli Li, Stanford University



Common types of noise

— Salt and pepper noise:
random occurrences of
black and white pixels

— Impulse noise: random
occurrences of white pixels

— @Gaussian noise: variations
in intensity drawn from a
Gaussian normal
distribution

e

Impulse noise Gaussian noise

Source: Darrell, Berkeley Source: S. Seitz



Gaussian noise

: |
e
Ide_al Image Noise process Gaussian i.i.d. (“white") noise:
f('l" y) — f(;l‘, y) + n(x, y) 7](;1;, y) ~ _.'\"(,_1,, o')
>> noise = randn(size(im)) .*sigma;
>> output = im + noise;

Source: Darrell, Berkeley Fig: M. Hebert



First attempt at a solution

e Let’s replace each pixel with an average of all
the values in its neighborhood
e Assumptions:

— Expect pixels to be like their neighbors

— Expect noise processes to be independent from
pixel to pixel

Source: Darrell, Berkeley



First attempt at a solution

e Let’s replace each pixel with an average of all
the values in its neighborhood

* Moving average in 1D:

u
200

........................................



Weighted Moving Average

e Can add weights to our moving average
 Weights [1,1,1,1,1] /5

il

++-001111100

y—

i

Source: Darrell, Berkeley Source: S. Marschner



Weighted Moving Average

* Non-uniform weights [1, 4, 6,4, 1]/ 16

Source: Darrell, Berkeley Source: S. Marschner



Moving Average In 2D

Flz, y] Glz, y.

Source: Darrell, Berkeley Source: S. Seitz



Moving Average In 2D

Flz, y] Glz, y.

O“ 10

Source: Darrell, Berkeley Source: S. Seitz



Moving Average In 2D

Flz, y] Glz, y.

0 10 § 20 |

Source: Darrell, Berkeley Source: S. Seitz



Source: Darrell, Berkeley

Moving Average In 2D

Flz, y]

Glz,y.

10

20

Source: S. Seitz



Source: Darrell, Berkeley

Moving Average In 2D

Flz, y]

Glz,y.

10

20

30 “ 30

Source: S. Seitz



Moving Average In 2D

Flz, y] Glz, y.

Source: Darrell, Berkeley Source: S. Seitz



Correlation filtering

Say the averaging window size is 2k+1 X 2k+1:

|
Glini) = 1 zzm_z_ Fli+u.j + ]

)\ J
! |

Attribute uniform weight Loop over all pixels in neighborhood around
to each pixel image pixel F[i,j]

Now generalize to allow different weights depending on
neighboring pixel’s relative position

Gli, j] = Z Z H[u v]F[z—I—ug—I—v]

u=—kov=—k" Y
Non-uniform weights

Source: Darrell, Berkeley



Correlation filtering
k k
Gli,jl= >, Y. Hlu,v]F[i 4+ u,j+ v]
u=—kv=-—k
This is called cross-correlation, denoted G=HXF

Filtering an image: replace each pixel with a linear combination of
its neighbors.

The filter “kernel” or “mask” H[u,v] is the prescription for the
weights in the linear combination.

Source: Darrell, Berkeley



Averaging Filter
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_coefficient

0
Pixel offset

original

adapted from Darrell and Freeman, MIT



Averaging Filter

-
2
2
E 0.3
l":-.]I T l ! l 171
® {} -
Pixel offset
original Blurred (filter
applied in both
dimensions).

adapted from Darrell and Freeman, MIT



Averaging Filter

o 8]

impulse

adapted from Darrell and Freeman, MIT

original

coefticient

Pixel offset

filtered



Averaging Filter

impulse
0.

coefficient

__[«.J‘J

1T | 111 !
.. 0 N
original Pixel offset filtered

o o]

edge 4

coefticient

. 0 _—
original Pixel offset filtered

adapted from Darrell and Freeman, MIT



Averaging filter

 What values belong in the kernel H for the moving average

example?
F[x,y] ® H[uvv] G[az,y]
11111 0 |10]20 3o|r¥.i
1 le===5
—|1]2|1
9 [
1|11

“box filter”

G=HQXF

Source: Darrell, Berkeley



Smoothing by averaging

depicts box filter:
white = high value, black = low value

original filtered

Source: Darrell, Berkeley



Example

Source: Martial Hebert, CMU



Example

Source: Martial Hebert, CMU



Example

Source: Martial Hebert, CMU



Smoothing by averaging

Original Image
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Source: Martial Hebert, CMU
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Smoothing by averaging

Source: Martial Hebert, CMU
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Smoothing by averaging

Source: Martial Hebert, CMU
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Smoothing by averaging

Source: Martial Hebert, CMU

Lots of Blurring

50

100

150

200

250

300

Kernel:

I15x 15
matrix of
value 1/255

350




Gaussian filter

 What if we want nearest

neighboring pixels to have the
most influence on the output?

Hlu, v]

Flx,y]

A weighted average that
weights pixels at its center

much more strongly than
Source: Darrell, Berkeley its boundaries

Source: S. Seitz



Smoothing with a Gaussian

Source: Darrell, Berkeley



Smoothing with a Gaussian

Gaussian Blurring, 6 = 5
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Source: Martial Hebert, CMU



Smoothing with a Gaussian

Result of blurring
using a set of
Gaussian weights

Result of blurring using
a uniform local model

Produces a set of
narrow vertical
horizontal and vertical
bars — ringing effect

Source: David Forsyth, UIUC



Smoothing with a Gaussian

Simple
Averaging

Gaussian
Smoothing

Source: Martial Hebert, CMU



Gaussian filters

 What parameters matter here?
* Size of kernel or mask

— Note, Gaussian function has infinite support, but discrete filters
use finite kernels

2 4 E & 10

a1

I

.00 L8
1d

o =5 with 10 o =5 with 30
X 10 kernel X 30 kernel

Source: Darrell, Berkeley



Gaussian filters

 What parameters matter here?

e Variance of Gaussian: determines extent of

¥ . E :

smoothing

o =2 with 30 o =5 with 30
X 30 kernel X 30 kernel

Source: Darrell, Berkeley



Smoothing with a Gaussian

If o is small : the smoothing will have little effect

If o is larger : neighboring pixels will have larger
weights resulting in consensus of the neighbors

If o is very large : details will disappear along
with the noise

Source: Martial Hebert, CMU
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Source: Torralba, MIT



Gaussian smoothing to remove
noise

Image
Noise

Ide_al Image Noise process Gaussian i.i.d. ("white") noise:
fxy)= f(z,y) + n(z,y) n(z,y) ~ N(u,o)

Source: Martial Hebert, CMU



Gaussian smoothing to remove
noise

Source: Martial Hebert, CMU



Smoothing with a Gaussian

o=0.05

Source: David Forsyth, UIUC

g s no
-, smoothing — The effects of smoothing

Each row shows smoothing
with gaussians of different

width; each column shows

different realizations of

an image of gaussian noise.

o=1 pixel

g=2 pixels



Smoothing with a Gaussian

* Filtered noise is sometimes useful

— looks like some natural textures, can be used to
simulate fire, etc.

Source: David Forsyth, UIUC



Gaussian kernel

) 0.0751 0.1238 00751

1 (x"+77)
g(x, y)=——exp _u‘ 0.1238 0242 01238
T 20 0.0751 0.1238 0.0751

Gaussian is an approximation to the
binomial distribution. ! ( L ]

4 =— "
" rl(n-r)

Can approximate Gaussian using binomial \7,

coefficients.

. . 1X3 filter: n=(3-1)=2.1=0.1.2
n = number of elements in the 1D filter minus 1

= position of element 1n the filter kernel (0, 1, 2...) 1|2

g=1411]2/1

0.0625 0.1250 0.0625
£ 2= 0.1250 02500 0.1250
0.0625 0.1250 0.0625

Source: from Michael Black



Matlab

>> hsize = 10;
>> sigma = b5;
>> h = fspecial (‘gaussian’ hsize, sigma);

>> mesh (h); g

>> imagesc (h); n

>> outim = imfilter (im, h);
>> imshow (outim) ;

outim

Source: Darrell, Berkeley



Smoothing with a Gaussian

Parameter o is the “scale” / “width” / “spread” of the Gaussian
kernel, and controls the amount of smoothing.

10

20

0 10 20 30

30

for sigma=1:3:10
h = fspecial ('gaussian‘', fsize, sigma) ;
out = imfilter(im, h);
imshow (out) ;
pause;

end
Source: Darrell, Berkeley



Convolution

 Convolution:

— Flip the filter in both dimensions (bottom to top, right to left)
— Then apply cross-correlation

Gli, 7] = Z Z Hlu,v]|F[i —u,j — v]

u=—kv=-=%k

G=HxF 4

T

Notation for
convolution
operator

Source: Darrell, Berkeley



Convolution vs. correlation

Convolution
Gli, 7] = Z Z Hlu,v]F[i —u,j — v]
u=—kv=—=k
G =HxF

Cross-correlation

ko k
Gli,jl= > > Hlu,v]Fli+u,j+ ]

u=—kov=—%k
G=HF

For a Gaussian or box filter, how will the outputs differ?
If the input is an impulse signal, how will the outputs differ?

Source: Darrell, Berkeley



Predict the filtered outputs

Source: Darrell, Berkeley



Practice with linear filters

1.0 ?

]
Pixel offset

_coefficient

original

adapted from Darrell and Freeman, MIT



Practice with linear filters
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(no change)

adapted from Darrell and Freeman, MIT



Practice with linear filters

Original Filtered
(no change)

Source: Darrell, Berkeley Source: D. Lowe



Impulse
fimn]=1® g=> him—k,n—Iglk,I]

k,l
0 0 0 0 0
0 0 0 0 0
X |o|o|1|o0]o0 =
0 0 0 0 0
0 0 0 0 0
) —

g[m,n] flm.n]

Source: Torralba, MIT



Practice with linear filters

00
ool 7
00

Original

Source: Darrell, Berkeley Source: D. Lowe



Practice with linear filters

Original

Source: Darrell, Berkeley

Shifted left
by 1 pixel
with
correlation

Source: D. Lowe



Shifts
fimn]=1® g=> h{m—k,n—-Iglk,I]

k,l
2pixels
—>
olololo]o |
olo|lolofo
X |o|lo|ofo]|1 =
ololololfo
olololofo
h[m,n]

g[m,n] flm.n]

Source: Torralba, MIT



Practice with linear filters

2.0

1.0

original

adapted from Darrell and Freeman, MIT



Practice with linear filters

2.0

1.0

original Filtered
(no change)

adapted from Darrell and Freeman, MIT



Practice with linear filters

2.0

original

adapted from Darrell and Freeman, MIT



Sharpening

2.0

Sharpened

original .
original

adapted from Darrell and Freeman, MIT



Sharpening

o o]

original

adapted from Darrell and Freeman, MIT

S‘H

|III III
-0.25

1.7
o
o
R
Q2
=
D
o
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1T |
-0.3

Sharpened

(differences are
accentuated: constant
areas are left untouched).




Practice with linear filters

0/0|0 | 1111
0/2|0f = 5 1111
0/0|0 1111

Original

Sharpening filter
- Accentuates differences with
local average

Source: Darrell, Berkeley Source: D. Lowe



Filtering examples: sharpening

before

Source: Darrell, Berkeley



Rectangular filter

f[m,n]

g[m,n]

Source: Torralba, MIT



What does blurring take away?

smoothed (5%5)

e Let’s add it back:

+a

detail

Source: Fei Fei Li, Stanford



Rectangular filter

h[m,n]

g[m,n]

Source: Torralba, MIT



Rectangular filter

g[m,n]

Source: Torralba, MIT



Integral image

Source: Torralba, MIT



Shift invariant linear system

* Shift invariant:

— Operator behaves the same everywhere, i.e. the value of
the output depends on the pattern in the image
neighborhood, not the position of the neighborhood.

e Linear:

— Superposition: h * (f1 + f2) = (h * f1) + (h * f2)
— Scaling: h * (kf) =k (h * f)

Source: Darrell, Berkeley



Properties of convolution

* Linear & shift invariant
 Commutative:
f*xg=g*f
* Associative
(f*g)*h=Ff*(g*h)
* |dentity:
unitimpulsee=1...,0,0,1,0,0, ..]. f*e=f
* Differentiation:

dJd ., ..\ Of
—(f*g)=""-%g
ox dx

Source: Darrell, Berkeley



Separability

* In some cases, filter is separable, and we can factor into two
steps:

— Convolve all rows

— Convolve all columns

Source: Darrell, Berkeley



Separability

* In some cases, filter is separable, and we can factor into two

steps: e.g.,
h
213 11 What is the computational
g 112 T1 3 |s 18 complexity advantage for a
B separable filter of size k x k, in
alll terms of number of operations
1 11 per output pixel?
¢ _—
2 18 65
1 18
11 x | 112 |1 313 =2+6+3=11
2 = |2 5 15 =6+20+10=36
1] 2 |ls| =4+8+6=18
65

Source: Darrell, Berkeleyf * (8 * h) = (f * g) *h



Advantages of separability

First convolve the image with a one dimensional
horizontal filter

Then convolve the result of the first convolution
with a one dimensional vertical filter

For a kxk Gaussian filter, 2D convolution requires
k? operations per pixel

But using the separable filters, we reduce this to
2k operations per pixel.

adapted from Larry Davis, University of Maryland



Seperable Gaussian

g(x)= L exp(—x” /(207))
J2ro

] T, q
g(y)=———exp(-y"/(207))
A 2T

Product?

1

_exp(—(x*+v)/(261))
2o

g(x.y)=



Advantages of Gaussians

» Convolution of a Gaussian with itself 1s another
Gaussian

» so we can first smooth an 1image with a small Gaussian

» then, we convolve that smoothed image with another
small Gaussian and the result 1s equivalent to smoother
the original 1mage with a larger Gaussian.

» It we smooth an image with a Gaussian having sd ¢
twice, then we get the same result as smoothing the
image with a Gaussian having standard deviation
(EG)":

adapted from Larry Davis, University of Maryland



Effect of smoothing filters

NS

Additive Gaussian noise Salt and pepper noise

Source: Darrell, Berkeley



Median filter

101520 * No new pixel values
2319027 Introduced
- 33 (31130 l Sort .
Median value SenERNEL « Removes spikes: good

10 15 20 23 (2730 31 33 90 for impulse, salt &
pepper noise

20 I Replace
27|27
31130

od | I | =

fad | Tl | OO
i

Source: Darrell, Berkeley



Median filter

Salt and _
Median

filtered

) N J( M\
g wm | | sl | “U

(1] 100 X0 i @0

B

o " I " "
e (] 00 20 =0 P ) 0o

Plots of a row of the image

Source: Darrell, Berkeley Source: M. Hebert



 Median filter is edge preserving

Source: Darrell, Berkeley

Median filter

INPUT

& 3 8% & &8 08

MEDIAN

MEAN




Boundary issues

 What is the size of the output?

e MATLAB: filter2(g, f, shape)
— shape = ‘full’: output size is sum of sizes of f and g
— shape = ‘same’: output size is same as f
— shape = ‘valid’: output size is difference of sizes of fand g

full same valid

g | g

o PO g

Source: Darrell, Berkeley Source: S. Lazebnik




Boundary issues
 What about near the edge?

— the filter window falls off the edge of the image

— need to extrapolate —

— methods: ’ F
clip filter (black)
* wrap around

e copy edge
* reflect across edge

Source: Darrell, Berkeley Source: S. Marschner



Boundary issues

 What about near the edge?
— the filter window falls off the edge of the image

— need to extrapolate

— methods (MATLAB):
* clip filter (black): imfilter(f, g, 0)
* wrap around: imfilter(f, g, ‘circular’)
* copy edge: imfilter(f, g, ‘replicate’)
* reflect across edge: imfilter(f, g, ‘symmetric’)

Source: Darrell, Berkeley Source: S. Marschner



Borders

ZETD wrap clamp MITTor

blurred: zero normalized zero clamp Mirror

Source: Torralba, MIT From Rick’s book



Today’s topics

* Image filters in the frequency domain
— Filtering is a way to modify the frequencies of images
— Denoising, sampling, image compression



Why does the Gaussian give a nice smooth
image, but the square filter give edgy artifacts?

Gaussian Box filter




Why does a lower resolution image still make
sense to us? What do we lose?

Source: James Hays, Brown Image: http://www.flickr.com/photos/igorms/136916757/ Slide: Hoiem



http://www.flickr.com/photos/igorms/136916757/

Jean Baptiste Joseph Fourier (1768-

142 02N\

. . ...the manner in which the author arrives at these
had cra Zy idea ( 1807) ) equations is not exempt of difficulties and...his

Any univariate function can | analysis to integrate them still leaves something to be

rewritten as a weighted su desired on the score of generality and even rigour.
sines and cosines of differen

frequencies.
 Don’t believe it?

— Neither did Lagrange,
Laplace, Poisson and
other big wigs

— Not translated into
English until 1878!

e Butit’s (mostly) true!
— called Fourier Series

— there are some subtle
restrictions

~

Source: James Hays, Brown



A sum of sine

R e rmaairrairhairEaas

Our building block:

AsIn(awX + @)

Add enough of them to get
any signal f(x) you want!

f(target)=

f1 + f2+ fg...+ fn+...

Source: James Hays, Brown




Filtering in spatial dom

intensity image

Source: James Hays, Brown



Filtering in frequency domai[.

FFT

intensity image

log fit magnitude

FFT

Inverse FFT

Slide: Hoiem




Filtering

Why does the Gaussian give a nice smooth
image, but the square filter give edgy artifacts?

Gaussian Box filter




intensity image

Gaussian

filter: gaussian

|H.'"|!l

filtered image

T

Source: James Hays, Brown

filter: gaussian

log fit magnitude of filtered image




Box Filter

intensity image Open File filter- box filtered image

Figure 4 = Figure 6
iew Insert Tools Desktop Window Help il E_dit e hoat Tk LEEiigp Ukie SR | | File Edit View Insert Tools Desktop Window Help
o \ n G . \ =
NNEEEE P AREEILE: Qdd6e |k A0 LEL- (2|08 DO  FEEEEIN R PR EIE
filter: box log ft magnitude of filtered image

log fft magnitude of image

Source: James Hays, Brown



Subsampling by a factor of 2

!

Throw away every other row and column
to create a 1/2 size image

Source: James Hays, Brown



Aliasing problem

e 1D example (sinewave):

AWAWAWAWAWA
\/\/\/V\/V

Source: James Hays, Brown

urce: S. Marschner



Aliasing problem

e 1D example (sinewave):

A NAN

N7

Source: James Hays, Brown

N

urce: S. Marschner



1/2 1/4 (2x zoom) 1/8 (4x zoom)

Slide by Steve Seitz
Source: James Hays, Brown



Subsampling with Gaussian pre-

Pt -

Gaussian 1/2

G1/8

Slide by Steve Seitz
Source: James Hays, Brown



Today’s topics

 Templates and Image Pyramids
— Filtering is a way to match a template to the image
— Detection, coarse-to-fine registration



Template matching

N 4
A

Scene

3

Template (mask)

A toy example

Source: Darrell, Berkeley



Template matching

N
A

3

Source: Darrell, Berkeley

Detected template

Template



Template matching

N

h

34

Detected template Correlation map

Source: Darrell, Berkeley



Where’s Waldo?

Template

Source: Darrell, Berkeley



Where’s Waldo?

Template

Scene

Source: Darrell, Berkeley



Where’s Waldo?

Detected template Correlation map

Source: Darrell, Berkeley



Template matching

Template

Scene

What if the template is not identical to some
subimage in the scene?

Source: Darrell, Berkeley



Template matching

Template

Detected template

Match can be meaningful, if scale, orientation, and
general appearance is right.

Source: Darrell, Berkeley



Application

Figure from “Computer Vision for Interactive Computer Graphics,” W.Freeman et al, IEEE Computer Graphics and Applications, 1998
copyright 1998, IEEE



Template matching
* Goal: find @ inimage

* Main challenge: What is a
good similarity or distance
measure between two
patches?

— Correlation
— Zero-mean correlation
— Sum Square Difference

— Normalized Cross
Correlation

Source: Hays, Brown Slide: Hoiem



Matching with filters

* Goal: find @ inimage
 Method O: filter the image with eye patch

f = image
g = filter

What went wrong?

response is stronger
for higher intensity

Inout Filtered Image _ _
Source: Hays, Brown P 8 Slide: Hoiem



Matching with filters
* Goal: find @ inimage

* Method 1: filter the image with zero-mean eye

h[m n] = Z(f[k 11-f) (glm+k,n+1])

mean of f

|npu Filtered Image (scaled) Thresholded Image

Source: Hays, Brown



Matching with filters

 Goal: find  inimage
* Method 2: SSD
h[m,n] = > (g[k, 11— f[m+k,n+1])?
k|

Inpu 1- sqrt(SSD) Thresholded Image

Source: Hays, Brown



Matching with filters

* Goal: find @ inimage

 Method 2:SSD

h[m,n]:Z(g[k,I]— f[m+k,n+11)?
- k|

What's the potential downside
of SSD?

SSD is sensitive to
average intensity

Input 1- sqrt(SSD)

Source: Hays, Brown Slide: Hoiem



Source

Matching with filters

* Goal: find @ inimage
e Method 3: Normalized cross-correlation

mean template mean image patch

l |
> (9l IT-9)(FIm—k,n 1]~ f, )

h[m,n] = o
[Z(g[k,I]—QT)ZZ(f [m—k,n—1]- f_m,n)z]

Matlab: normxcorr2 (template, im)

: Hays, Brown



Matching with filters

* Goal: find @ inimage
e Method 3: Normalized cross-correlation

Normalized X-Correlation Thresholded Image

Source: Hays, Brown



Matching with filters

* Goal: find @ inimage
e Method 3: Normalized cross-correlation

Input Normalized X-Correlation Thresholded Image
Source: Hays, Brown



Source

Q: What is the best method to use?

A: Depends
e SSD: faster, sensitive to overall intensity

* Normalized cross-correlation: slower, invariant
to local average intensity and contrast

: Hays, Brown



Q: What if we want to find larger
or smaller eyes?

Motivation for
studying scale. ,

ELDER AHD ZUCHER: LOGAL SCALE GONTROL FOR EDGE DETECTICN AND BLUR ESTIMATICH

IEEE TRAHSACTIONS OH PATTERHN ANALYSIS AND MACHIMNE INTELLIGENGE, WOL. 20, MO, T, JULY 19088



A: Image Pyramid

search 1
search it
‘m_ [- | -]
% ﬁ' *
¥ > AN
[rani & Basri

adapted from Michael Black, Brown University
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Gaussian Pyramid
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Source: Hays, Brown Source: Forsyth



Source

Template Matching with Image
Pyramids

Input: Image, Template
1. Match template at current scale

2. Downsample image
3. Repeat 1-2 until image is very small

4. Take responses above some threshold, perhaps
with non-maxima suppression

: Hays, Brown



Coarse to-fine Image Registration

Compute Gaussian pyramid
Align with coarse pyramid

Successively align with finer
pyramids

—  Search smaller range

Why is this faster?

Are we guaranteed to get the same
result?

Source: Hays, Brown
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Laplacian filter
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Source: Hays, Brown Source: Lazebnik



Laplacian byram id
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Computing Gaussian/Laplacian
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Can we reconstruct the original
from the laplacian pyramid?

Source: Hays, Brown http://sepwww.stanford.edu/~morgan/texturematch/paper_html/node3.html



Texture segmentation

Texture gradient (x,y)
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Malik & Perona, 1990. Preattentive texture discrimination with early vision mechanisms.



Clues from Human Perception

e Early processing in humans filters for various orientations and scales of

frequency
* Perceptual cues in the mid-high frequencies dominate perception

 When we see an image from far away, we are effectively subsampling it

Early Visual Processing: Multi-scale edge and blob filters

Source: Hays, Brown



