Fitting

(slide credit: Svetlana Lazebnik)

CMP719- Computer Vision
Pinar Duygulu
Hacettepe University

Fitting

Fitting

- We've learned how to detect edges, corners, blobs. Now what?
- We would like to form a higher-level, more compact representation of the features in the image by grouping multiple features according to a simple model

- Choose a parametric model to represent a set of features

simple model: lines

simple model: circles

complicated model: car

Fitting: Issues
 Case study: Line detection

- Noise in the measured feature locations
- Extraneous data: clutter (outliers), multiple lines
- Missing data: occlusions

Fitting: Overview

- If we know which points belong to the line, how do we find the "optimal" line parameters?
- Least squares
- What if there are outliers?
- Robust fitting, RANSAC
- What if there are many lines?
- Voting methods: RANSAC, Hough transform
- What if we're not even sure it's a line?
- Model selection (not covered)

Least squares line fitting

-Data: $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$
-Line equation: $y_{i}=m x_{i}+b$
-Find (m, b) to minimize

$$
E=\sum_{i=1}^{n}\left(y_{i}-m x_{i}-b\right)^{2}
$$

$$
\begin{aligned}
& E=\|Y-X B\|^{2} \quad \text { where } \quad Y=\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right] \quad X=\left[\begin{array}{cc}
x_{1} & 1 \\
\vdots & \vdots \\
x_{n} & 1
\end{array}\right] \quad B=\left[\begin{array}{c}
m \\
b
\end{array}\right] \\
& E=\|Y-X B\|^{2}=(Y-X B)^{T}(Y-X B)=Y^{T} Y-2(X B)^{T} Y+(X B)^{T}(X B)
\end{aligned}
$$

$$
\frac{d E}{d B}=2 X^{T} X B-2 X^{T} Y=0
$$

$$
X^{T} X B=X^{T} Y
$$

Normal equations: least squares solution to $X B=Y$

Problem with "vertical" least squares

- Not rotation-invariant
- Fails completely for vertical lines

Total least squares

-Distance between point $\left(x_{i}, y_{i}\right)$ and line $a x+b y=d\left(a^{2}+b^{2}=1\right):\left|a x_{i}+b y_{i}-d\right|$

Total least squares

-Distance between point $\left(x_{i}, y_{i}\right)$ and line $a x+b y=d\left(a^{2}+b^{2}=1\right):\left|a x_{i}+b y_{i}-d\right|$ -Find (a, b, d) to minimize the sum of squared perpendicular distances

$$
E=\sum_{i=1}^{n}\left(a x_{i}+b y_{i}-d\right)^{2}
$$

Total least squares

-Distance between point $\left(x_{i}, y_{i}\right)$ and line $a x+b y=d\left(a^{2}+b^{2}=1\right):\left|a x_{i}+b y_{i}-d\right|$

- Find (a, b, d) to minimize the sum of squared perpendicular distances

$$
E=\sum_{i=1}^{n}\left(a x_{i}+b y_{i}-d\right)^{2}
$$

$\frac{\partial E}{\partial d}=\sum_{i=1}^{n}-2\left(a x_{i}+b y_{i}-d\right)=0$

$$
d=\frac{a}{n} \sum_{i=1}^{n} x_{i}+\frac{b}{n} \sum_{i=1}^{n} y_{i}=a \bar{x}+b \bar{y}
$$

$E=\sum_{i=1}^{n}\left(a\left(x_{i}-\bar{x}\right)+b\left(y_{i}-\bar{y}\right)\right)^{2}=\left\|\left[\begin{array}{cc}x_{1}-\bar{x} & y_{1}-\bar{y} \\ \vdots & \vdots \\ x_{n}-\bar{x} & y_{n}-\bar{y}\end{array}\right]\left[\begin{array}{l}a \\ b\end{array}\right]\right\|^{2}=(U N)^{T}(U N)$
$\frac{d E}{d N}=2\left(U^{T} U\right) N=0$
Solution to $\left(U^{T} U\right) N=0$, subject to $\|N\|^{2}=1$: eigenvector of $U^{T} U$ associated with the smallest eigenvalue (least squares solution to homogeneous linear system $U N=0$)

Total least squares

$$
U=\left[\begin{array}{cc}
x_{1}-\bar{x} & y_{1}-\bar{y} \\
\vdots & \vdots \\
x_{n}-\bar{x} & y_{n}-\bar{y}
\end{array}\right] \quad U^{T} U=\left[\begin{array}{cc}
\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} & \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right) \\
\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right) & \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}
\end{array}\right]
$$

second moment matrix

Total least squares

$$
U=\left[\begin{array}{cc}
x_{1}-\bar{x} & y_{1}-\bar{y} \\
\vdots & \vdots \\
x_{n}-\bar{x} & y_{n}-\bar{y}
\end{array}\right] \quad U^{T} U=\left[\begin{array}{cc}
\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} & \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right) \\
\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right) & \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}
\end{array}\right]
$$

Least squares: Robustness to noise

Least squares: Robustness to noise

Problem: squared error heavily penalizes outliers

Robust estimators

- General approach: find model parameters θ that minimize
$r(x, \theta)$-residual $\sum_{\text {thi }} \rho\left(r_{t i}\left(x_{i,} \theta\right) ; \sigma\right)$
$r_{i}\left(x_{i}, \theta\right)$ - residual of ithi point w.i.t. model parameters θ
ρ - robust function with scale parameter σ

The robust function ρ behaves like squared distance for small values of the residual u but saturates for larger values of u

Choosing the scale: Just right

The effect of the outlier is minimized

Choosing the scale: Too small

Choosing the scale: Too large

Behaves much the same as least squares

Robust estimation: Details

- Robust fitting is a nonlinear optimization problem that must be solved iteratively
- Least squares solution can be used for initialization
- Scale of robust function should be chosen adaptively based on median residual
- Robust fitting candealwith a few outliers what if we have very many?
- Random sample consensus (RANSAC): Very general framework for model fitting in the presence of outliers
- Outline
- Choose a small subset of points uniformly at random
- Fit a model to that subset
- Find all remaining points that are "close" to the model and reject the rest as outliers
- Do this many times and choose the best model M. A. Fischler, R. C. Bolles. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. Comm. of the ACM, Vol 24, pp 381-395, 1981.

RANSAC for line fitting example

RANSAC for line fitting example

RANSAC for line fitting example

1. Randomly select minimal subset of points

RANSAC for line fitting example

1. Randomly select minimal subset of points
2. Hypothesize a model

RANSAC for line fitting example

1. Randomly select minimal subset of points
2. Hypothesize a model
3. Compute error function

RANSAC for line fitting example

1. Randomly select minimal subset of points
2. Hypothesize a model
3. Compute error function
4. Select points consistent with model

RANSAC for line fitting example

1. Randomly select minimal subset of points
2. Hypothesize a model
3. Compute error function
4. Select points consistent with model
5. Repeat
hypothesize-andverify loop

RANSAC for line fitting example

1. Randomly select minimal subset of points
2. Hypothesize a model
3. Compute error function
4. Select points consistent with model
5. Repeat
hypothesize-andverify loop

RANSAC for line fitting example

Uncontaminated sample

1. Randomly select minimal subset of points
2. Hypothesize a model
3. Compute error function
4. Select points consistent with model
5. Repeat
hypothesize-andverify loop

RANSAC for line fitting example

1. Randomly select minimal subset of points
2. Hypothesize a model
3. Compute error function
4. Select points consistent with model
5. Repeat
hypothesize-andverify loop

RANSAC for line fitting

- Repeat N times:
- Draw s points uniformly at random
- Fit line to these s points
- Find inliers to this line among the remaining points (i.e., points whose distance from the line is less than t)
- If there are d or more inliers, accept the line and refit using all inliers
- InitiaChumossing pontss the parameters
- Typically minimum number needed to fit the model
- Distance threshold t
- Choose t so probability for inlier is p (e.g. 0.95)
- Zero-mean Gaussian noise with std. dev. σ : $\mathrm{t}^{2}=3.84 \sigma^{2}$
- Number of samples N
- Choose N so that, with probability p, at least one random sample is free from outliers (e.g. $p=0.99$) (outlier ratio: e)

Choosing the parameters
 - Initial number of points s

- Typically minimum number needed to fit the model
- Distance threshold t
- Choose t so probability for inlier is p (e.g. 0.95)
- Zero-mean Gaussian noise with std. dev. σ : $\mathrm{t}^{2}=3.84 \sigma^{2}$
- Number of samples N
- Choose N so that, with probability p, at least one random sample is free from outliers (e.g. $p=0.99$) (outlier ratio: e)

$$
\begin{aligned}
& \left(1-(1-e)^{s}\right)^{N}=1-p \\
& N=\log (1-p) / \log \left(1-(1-e)^{s}\right)
\end{aligned}
$$

proportion of outliers e								
s	5%	10%	20%	25%	30%	40%	50%	
2	2	3	5	6	7	11	17	
3	3	4	7	9	11	19	35	
4	3	5	9	13	17	34	72	
5	4	6	12	17	26	57	146	
6	4	7	16	24	37	97	293	
7	4	8	20	33	54	163	588	
8	5	9	26	44	78	272	1177	
				Source: M. Pollefeys				

Choosing the parameters
 - Initial number of p8ints s

- Typically minimum number needed to fit the model
- Distance threshold t
- Choose t so probability for inlier is p (e.g. 0.95)
- Zero-mean Gaussian noise with std. dev. σ : $\mathrm{t}^{2}=3.84 \sigma^{2}$
- Number of samples N
- Choose N so that, with probability p, at least one random sample is free from outliers (e.g. $p=0.99$) (outlier ratio: e)

$$
\left(1-(1-e)^{s}\right)^{N}=1-p
$$

$$
N=\log (1-p) / \log \left(1-(1-e)^{s}\right)
$$

Choosing the parameters

- Initial number of points s
- Typically minimum number needed to fit the model
- Distance threshold t
- Choose t so probability for inlier is p (e.g. 0.95)
- Zero-mean Gaussian noise with std. dev. $\sigma: \mathrm{t}^{2}=3.84 \sigma^{2}$
- Number of samples N
- Choose N so that, with probability p, at least one random sample is free from outliers (e.g. $p=0.99$) (outlier ratio: e)
- Consensus set size d
- Should match expected inlier ratio

Adaptively determining the number of samples

- Outlier ratio e is often unknown a priori, so pick worst case, e.g. 50\%, and adapt if more inliers are found, e.g. 80% would yield $e=0.2$
- Adaptive procedure:
- $N=\infty$, sample_count $=0$
- While N >sample_count
- Choose a sample and count the number of inliers
- If inlier ratio is highest of any found so far, set
e = 1 - (number of inliers)/(total number of points)
- Recompute $N \stackrel{N}{N}$ from $\left(\log (1-p) / \log \left(1-(1-e)^{s}\right)\right.$
- Increment the sample_count by 1

RANSAC pros and cons

- Pros
- Simple and general
- Applicable to many different problems
- Often works well in practice
- Cons
- Lots of parameters to tune
- Doesn't work well for low inlier ratio or can fail completely)
- Can't always get a good initialization of the model based on the minimum number of samples

