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Fitting




Fitting
e We've learned how to
detect edges, corners,

blobs. Now what?

e We would like to form a
higher-level, more
compact representation
of the features in the
image by grouping
multiple features
according to a simple
model




F

Ittin
e Choose a parametr}:c mc%lel to represent a
set of features

complicated model: car

Source: K. Grauman



Fitting Issues

ne detectlon

Case study:

Noise in the measured feature locations
Extraneous data: clutter (outliers), multiple lines
Missing data: occlusions



Fitting: Overview

If we know which points belong to the line, how
do we find the “optimal” line parameters?

— Least squares

What if there are outliers?
— Robust fitting, RANSAC

What if there are many lines?
— Voting methods: RANSAC, Hough transform

What if we're not even sure it’s a line?
— Model selection (not covered)



Least squares line fitting

*Data: (X1, Y1) «--» (X V) t =mx+Db
*Line equation:y; =mx; + b I .
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Problem with “vertical” least squares

e Not rotation-invariant
e Fails completely for vertical lines



Total least squares

*Distance between point (X;, y;) and line

A
ax+by=d (@®+b?=1): [ax; + by, —d| AN ax+by=d
. Unit normal:
. (x,y) N=(@b)
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Total least squares

*Distance between point (X;, y;) and line
ax+by=d (a?+b?=1): |ax; + by, —d|
*Find (a, b, d) to minimize the sum of
squared perpendicular distances

ax+by=d

Unit normal:

(Xi: y;) N=(a b)
E=Y)" (ax +by,—d)’ .




Total least squares

*Distance between point (X;, y;) and line B
ax-+by=d (a2+b?=1): |ax, + by, —d ax+by=d
*Find (a, b, d) to minimize the sum of . Unitnormal:
squared perpendicular distances (X, Vi) N=(a, b)
n 2
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- - 2

X—X Y- y a

=) @ -X)+by, -y = i M = (UN)" (UN)
Xn o X yn T y

d—E =2(U'U)N =0 ) )

dN

Solution to (UTU)N = 0, subject to ||N||*= 1: eigenvector of UTU

associated with the smallest eigenvalue (least squares solution

to homogeneous linear system UN = 0)




Total least squares

U'U =

> -9 D -9

second moment matrix
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Total least squares

X=X Y-y S-%7 Y- -7)
UTU = i=1 i=1 )
X —X y _y Z(Xi_)_()(yi_y) Z(Yi_y)z
n n _ =1 i=1 _
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X

F&P (24 ed.) sec. 22.1



Least squares: Robustness to noise
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Least squares: Robustness to noise
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Problem: squared error heavily penalizes outliers



Robust estimators

e General approach: find model parameters 6 that minimize

r i (X, 6) — residual of% dgl rgv Q")é)g)parameters 0

— robust function with scale parameter o

The robust function p
behaves like squared
distance for small
values of the residual
u but saturates for
larger values of u




Choosing the scale: Just right
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The effect of the outlier is minimized



Choosing the scale: Too small
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The error value is almost the same for every
point and the fit is very poor



Choosing the scale: Too large
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Behaves much the same as least squares



Robust estimation: Details

e Robust fitting is a nonlinear optimization
problem that must be solved iteratively

e Least squares solution can be used for
initialization

e Scale of robust function should be chosen
adaptively based on median residual



e Robust fitting cﬁw’%léla§®%1 a few outliers —
what if we have very many?

e Random sample consensus (RANSAC):
Very general framework for model fitting in
the presence of outliers

e QOutline
— Choose a small subset of points uniformly at
random
— Fit a model to that subset
— Find all remaining points that are “close” to the
model and reject the rest as outliers

~ — Do this many times and choose the best model
M. A. Fischler, R. C. Bolles. Random Sample Consensus: A Paradigm for Model Fitting with

Applications to Image Analysis and Automated Cartography. Comm. of the ACM, Vol 24, pp
381-395, 1981.



http://www.ai.sri.com/pubs/files/836.pdf

RANSAC for line fitting example

ource: R. Raguram



RANSAC for line fitting example

Least-squares fit

Source: R. Raguram



RANSAC for line fitting example

1. Randomly select
minimal subset
of points

Source: R. Raguram



Source: R. Raguram

RANSAC for line fitting example

. Randomly select

minimal subset
of points
Hypothesize a
model



Source: R. Raguram

RANSAC for line fitting example

1. Randomly select
minimal subset

of points

2. Hypothesize a
model

3. Compute error
function



Source: R. Raguram

RANSAC for line fitting example

Randomly select
minimal subset
of points
Hypothesize a
model

. Compute error

function

. Select points

consistent with
model



Source: R. Raguram

RANSAC for line fitting example

Randomly select
minimal subset
of points
Hypothesize a
model

Compute error
function

Select points
consistent with
model

Repeat
hypothesize-and-
verify loop



Source: R. Raguram

RANSAC for line fitting example

Randomly select
minimal subset
of points
Hypothesize a
model

Compute error
function

Select points
consistent with
model

Repeat
hypothesize-and-
verify loop



Source: R. Raguram

RANSAC for line fitting example

Uncontaminated sample

Randomly select
minimal subset
of points
Hypothesize a
model

Compute error
function

Select points
consistent with
model

Repeat
hypothesize-and-
verify loop

32



Source: R. Raguram

RANSAC for line fitting example
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Randomly select
minimal subset
of points
Hypothesize a
model

Compute error
function

. Select points

consistent with
model

Repeat
hypothesize-and-
verify loop



RANSAC for line fitting

Repeat N times:
Draw s points uniformly at random
it line to these s points

~ind inliers to this line among the remaining
points (i.e., points whose distance from the
line is less than t)

If there are d or more inliers, accept the line
and refit using all inliers



. R QSING.Lhe parameters

— Typically minimum number needed to fit the
model

e Distance threshold t

— Choose tso probability for inlier is p (e.g. 0.95)
— Zero-mean Gaussian noise with std. dev. o: t2=3.84¢2

e Number of samples N

— Choose v so that, with probability p, at least one random sample is
free from outliers (e.g. p=0.99) (outlier ratio: e)

Source: M. Pollefeys



Choosing the parameters

e |nitial number of points s

e Typically minimum number needed to fit the model

e Distance threshold t

e Choose t so probability for inlier is p (e.g. 0.95)

e Zero-mean Gaussian noise with std. dev. o: t2=3.8402
e Number of samples N

e Choose N so that, with probability p, at least one random sample is
free from outliers (e.g. p=0.99) (outlier ratio: e)

proportion of outliers €

s 5% 10% 20% 25% 30% 40% 50%
(1—(1—6)5 )N —1-p 2 2 3 5 6 7 11 17
3 3 4 7 9 11 19 35
4 3 5 9 13 17 34 72
5 4 6 12 17 26 57 146
N =log(1— p)/ Iog(l—(l—e)s) 6 4 7 16 24 37 97 293
7 4 8 20 33 54 163 588
8 5 9 26 44 78 272 1177

Source: M. Pollefeys



Choosin

the

e |nitial number of points s

e Typically minimum number needed to fit the model

e Distance threshold t

parameters

e Choose t so probability for inlier is p (e.g. 0.95)

e Zero-mean Gaussian noise with std. dev. o: t2=3.84¢2

e Number of samples N

e Choose N so that, with probability p, at least one random sample is
free from outliers (e.g. p=0.99) (outlier ratio: e)
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Source: M. Pollefeys



Choosing the parameters

Initial number of points s
— Typically minimum number needed to fit the model
Distance threshold t

— Choose tso probability for inlier is p (e.g. 0.95)

— Zero-mean Gaussian noise with std. dev. o: t2=3.8402

Number of samples N

— Choose nso that, with probability p, at least one random sample is free
from outliers (e.g. p=0.99) (outlier ratio: e)

Consensus set size d

— Should match expected inlier ratio

Source: M. Pollefeys



Adaptively determining the number of samples

e Qutlier ratio e is often unknown a priori, so pick
worst case, e.g. 50%, and adapt if more inliers are

found, e.g. 80% would yield e=0.2

e Adaptive procedure:
— N=oo, sample count =0

— While N >sample _count
* Choose a sample and count the number of inliers

 Ifinlier ratio is highest of any found so far, set
e = 1 — (number of inliers)/(total number of points)

RmPRRRE  p)togh-1-e)

* Increment the sample _count by 1

Source: M. Pollefeys



RANSAC pros and cons

* Pros
— Simple and general
— Applicable to many different problems
— Often works well in practice
e Cons
— Lots of parameters to tune

— Doesn’t work well for low inlier ratio
or can fail completely)

— Can’t always get a good initialization
of the model based on the minimum
number of samples




