Fitting (slide credit: Svetlana Lazebnik)

CMP719– Computer Vision Pinar Duygulu Hacettepe University

Fitting

Fitting

- We've learned how to detect edges, corners, blobs. Now what?
- We would like to form a higher-level, more compact representation of the features in the image by grouping multiple features according to a simple model

Fitting Choose a parametric model to represent a set of features

simple model: lines

simple model: circles

complicated model: car

Fitting: Issues Case study: Line detection

- Noise in the measured feature locations
- Extraneous data: clutter (outliers), multiple lines
- Missing data: occlusions

Fitting: Overview

- If we know which points belong to the line, how do we find the "optimal" line parameters?
 Least squares
- What if there are outliers? — Robust fitting, RANSAC
- What if there are many lines?
 Voting methods: RANSAC, Hough transform
- What if we're not even sure it's a line?
 Model selection (not covered)

Least squares line fitting

•Data:
$$(x_1, y_1), \dots, (x_n, y_n)$$

•Line equation: $y_i = mx_i + b$
•Find (m, b) to minimize
 $E = \sum_{i=1}^n (y_i - mx_i - b)^2$
 $E = \|Y - XB\|^2$ where $Y = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$ $X = \begin{bmatrix} x_1 & 1 \\ \vdots & \vdots \\ x_n & 1 \end{bmatrix}$ $B = \begin{bmatrix} m \\ b \end{bmatrix}$
 $E = \|Y - XB\|^2 = (Y - XB)^T (Y - XB) = Y^T Y - 2(XB)^T Y + (XB)^T (XB)$
 $\frac{dE}{dB} = 2X^T XB - 2X^T Y = 0$

 $\frac{X^{T}XB = X^{T}Y}{XB = Y}$ *Normal equations:* least squares solution to XB = Y

Problem with "vertical" least squares

- Not rotation-invariant
- Fails completely for vertical lines

•Distance between point (x_i, y_i) and line ax+by=d $(a^2+b^2=1)$: $|ax_i + by_i - d|$

•Distance between point (x_i, y_i) and line ax+by=d $(a^2+b^2=1)$: $|ax_i + by_i - d|$ •Find (a, b, d) to minimize the sum of

squared perpendicular distances

$$E = \sum_{i=1}^{n} (ax_i + by_i - d)^2$$

Solution to $(U^T U)N = 0$, subject to $||N||^2 = 1$: eigenvector of $U^T U$ associated with the smallest eigenvalue (least squares solution to *homogeneous linear system* UN = 0)

$$U = \begin{bmatrix} x_1 - \overline{x} & y_1 - \overline{y} \\ \vdots & \vdots \\ x_n - \overline{x} & y_n - \overline{y} \end{bmatrix} \quad U^T U = \begin{bmatrix} \sum_{i=1}^n (x_i - \overline{x})^2 & \sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y}) \\ \sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y}) & \sum_{i=1}^n (y_i - \overline{y})^2 \end{bmatrix}$$

second moment matrix

Least squares: Robustness to noise

Least squares: Robustness to noise

Problem: squared error heavily penalizes outliers

Robust estimators General approach: find model parameters θ that minimize

$$\sum_{\substack{r_i(x_i, \theta) - \text{residual of ith}^i \text{ point} \text{ w.r.t. model parameters } \theta \\ \rho - \text{robust function with scale parameter } \sigma}$$

The robust function ρ behaves like squared distance for small values of the residual *u* but saturates for larger values of u

Behaves much the same as least squares

Robust estimation: Details

- Robust fitting is a nonlinear optimization problem that must be solved iteratively
- Least squares solution can be used for initialization
- Scale of robust function should be chosen adaptively based on median residual

RANSAC Robust fitting can deal with a few outliers – what if we have very many?

- Random sample consensus (RANSAC): Very general framework for model fitting in the presence of outliers
- Outline
 - Choose a small subset of points uniformly at random
 - Fit a model to that subset
 - Find all remaining points that are "close" to the model and reject the rest as outliers

— Do this many times and choose the best model M. A. Fischler, R. C. Bolles. <u>Random Sample Consensus: A Paradigm for Model Fitting with</u> <u>Applications to Image Analysis and Automated Cartography</u>. Comm. of the ACM, Vol 24, pp 381-395, 1981.

 Randomly select minimal subset of points

- Randomly select minimal subset of points
- 2. Hypothesize a model

- Randomly select minimal subset of points
- 2. Hypothesize a model
- 3. Compute error function

- Randomly select minimal subset of points
- 2. Hypothesize a model
- 3. Compute error function
- Select points consistent with model

- Randomly select minimal subset of points
- 2. Hypothesize a model
- 3. Compute error function
- Select points consistent with model
- Repeat hypothesize-andverify loop

- Randomly select minimal subset of points
- 2. Hypothesize a model
- 3. Compute error function
- 4. Select points consistent with model
- Repeat hypothesize-andverify loop

Uncontaminated sample

- Randomly select minimal subset of points
- 2. Hypothesize a model
- 3. Compute error function
- Select points consistent with model
- Repeat hypothesize-andverify loop

- Randomly select minimal subset of points
- 2. Hypothesize a model
- 3. Compute error function
- 4. Select points consistent with model
- Repeat hypothesize-andverify loop

RANSAC for line fitting

- Repeat *N* times:
- Draw **s** points uniformly at random
- Fit line to these **s** points
- Find *inliers* to this line among the remaining points (i.e., points whose distance from the line is less than *t*)
- If there are *d* or more inliers, accept the line and refit using all inliers

Initial number of points

- Typically minimum number needed to fit the model
- Distance threshold *t*
 - Choose *t* so probability for inlier is *p* (e.g. 0.95)
 - Zero-mean Gaussian noise with std. dev. σ : t²=3.84 σ ²
- Number of samples N
 - Choose N so that, with probability p, at least one random sample is free from outliers (e.g. p=0.99) (outlier ratio: e)

Choosing the parameters Initial number of points s

- Typically minimum number needed to fit the model
- Distance threshold t
 - Choose *t* so probability for inlier is *p* (e.g. 0.95)
 - Zero-mean Gaussian noise with std. dev. σ : t²=3.84 σ ²
- Number of samples N
 - Choose N so that, with probability p, at least one random sample is free from outliers (e.g. p=0.99) (outlier ratio: e)

$$\left(1-\left(1-e\right)^{s}\right)^{N}=1-p$$

$$N = \log(1-p) / \log(1-(1-e)^{s})$$

	proportion of outliers e						
S	5%	10%	20%	25%	30%	40%	50%
2	2	3	5	6	7	11	17
3	3	4	7	9	11	19	35
4	3	5	9	13	17	34	72
5	4	6	12	17	26	57	146
6	4	7	16	24	37	97	293
7	4	8	20	33	54	163	588
8	5	9	26	44	78	272	1177

Source: M. Pollefeys

Choosing the parameters Initial number of points s

- Typically minimum number needed to fit the model
- Distance threshold **t**
 - Choose *t* so probability for inlier is *p* (e.g. 0.95)
 - Zero-mean Gaussian noise with std. dev. σ : t²=3.84 σ ²
- Number of samples N
 - Choose N so that, with probability p, at least one random sample is free from outliers (e.g. p=0.99) (outlier ratio: e)

$$\left(1-\left(1-e\right)^{s}\right)^{N}=1-p$$

$$N = \log(1-p) / \log(1-(1-e)^{s})$$

Source: M. Pollefeys

Choosing the parameters

- Initial number of points s
 - Typically minimum number needed to fit the model
- Distance threshold **t**
 - Choose *t* so probability for inlier is *p* (e.g. 0.95)
 - Zero-mean Gaussian noise with std. dev. σ : t²=3.84 σ ²
- Number of samples N
 - Choose N so that, with probability p, at least one random sample is free from outliers (e.g. p=0.99) (outlier ratio: e)
- Consensus set size *d*
 - Should match expected inlier ratio

Adaptively determining the number of samples

- Outlier ratio e is often unknown a priori, so pick worst case, e.g. 50%, and adapt if more inliers are found, e.g. 80% would yield e=0.2
- Adaptive procedure:
 - $N = \infty$, sample_count =0
 - While N >sample_count
 - Choose a sample and count the number of inliers
 - If inlier ratio is highest of any found so far, set
 e = 1 (number of inliers)/(total number of points)
 - Recompute *N* from *e*: $N = \log(1-p) / \log(1-(1-e)^s)$
 - Increment the *sample_count* by 1

RANSAC pros and cons

• Pros

- Simple and general
- Applicable to many different problems
- Often works well in practice
- Cons
 - Lots of parameters to tune
 - Doesn't work well for low inlier ratio or can fail completely)
 - Can't always get a good initialization of the model based on the minimum number of samples

