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Background

• There are three methods to establish a classifier

a) Model a classification rule directly

Examples: k-NN, decision trees, perceptron, SVM 

b) Model the probability of class memberships given input data

Example: perceptron with the cross-entropy cost

c) Make a probabilistic model of data within each class

Examples: naive Bayes, model based classifiers

• a) and b) are examples of discriminative classification

• c) is an example of generative classification

• b) and c) are both examples of probabilistic classification
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Probability Basics

• Prior, conditional and joint probability for random variables

– Prior probability: 

– Conditional probability: 

– Joint probability: 

– Relationship:

– Independence: 

• Bayesian Rule

)|)( 121 xP(xx|xP 2 ,

  )(xP

))(),,( 22 ,xP(xPxx 11     xx

)()|()()|() 2211122 xPxxPxPxxP,xP(x1  

)()()),()|(),()|( 212121212 xPxP,xP(xxPxxPxPxxP 1     

)(

)()(
)(

x

x
x

P

cPc|P
|cP  

Evidence

PriorLikelihood
Posterior




Discriminative Generative



4

Probabilistic Classification

• Establishing a probabilistic model for classification

– Discriminative model

),,,( 21 nxxx x

Discriminative 

Probabilistic Classifier

1x 2x nx

)|( 1 xcP )|( 2 xcP )|( xLcP




• To train a discriminative classifier 

regardless its probabilistic or non-

probabilistic nature, all training 

examples of different classes 

must be jointly used to build up a 

single discriminative classifier.

• Output  L probabilities for L class 

labels in a probabilistic classifier 

while a single label is achieved 

by a non-probabilistic classifier .
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Probabilistic Classification

• Establishing a probabilistic model for classification (cont.)

– Generative model (must be probabilistic)
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• L probabilistic models have 

to be trained independently 

• Each is trained on only the 

examples of the same label

• Output  L probabilities for a 

given input with L models

• “Generative” means that 

such a model produces data 

subject to the distribution 

via sampling.
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Probabilistic Classification

• Maximum A Posterior (MAP) classification rule

– For an input x, find the largest one from L probabilities output by 

a discriminative probabilistic classifier

– Assign x to label c*  if            is the largest.

• Generative classification with the MAP rule

– Apply Bayesian rule to convert them into posterior probabilities

– Then apply the MAP rule to assign a label
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Naïve Bayes



Things We’d Like to Do

• Spam Classification

• Given an email, predict whether it is spam or not

• Medical Diagnosis

• Given a list of symptoms, predict whether a patient has disease X or not

• Weather

• Based on temperature, humidity, etc… predict if it will rain tomorrow



Bayesian Classification

• Digit Recognition

• X1,…,Xn  {0,1} (Black vs. White pixels)

• Y  {5,6} (predict whether a digit is a 5 or a 6)

Classifier 5

Problem statement:
Given features X1,X2,…,Xn

Predict a label Y



The Bayes Classifier

• we saw that a good strategy is to predict:

• (for example: what is the probability that the image represents a 5 given its 
pixels?)

• So … How do we compute that?



The Bayes Classifier

• Use Bayes Rule!

• Why did this help?  Well, we think that we might be able to specify how features 
are “generated” by the class label

Normalization Constant

Likelihood Prior



The Bayes Classifier

• Let’s expand this for our digit recognition task:

• To classify, we’ll simply compute these two probabilities and predict based on which one is 
greater



Model Parameters

• For the Bayes classifier, we need to “learn” two functions, the likelihood and the prior

• How many parameters are required to specify the prior for our digit recognition 
example?

• (Supposing that each image is 30x30 pixels)

• The problem with explicitly modeling P(X1,…,Xn|Y) is that there are usually way too many 
parameters:

• We’ll run out of space

• We’ll run out of time

• And we’ll need tons of training data (which is usually not available)



The Naïve Bayes Model

• The Naïve Bayes Assumption: Assume that all features are independent given the 
class label Y

• Equationally speaking:

• (We will discuss the validity of this assumption later)



Why is this useful?

• # of parameters for modeling P(X1,…,Xn|Y):

 2(2n-1)

• # of parameters for modeling P(X1|Y),…,P(Xn|Y)

 2n



Naïve Bayes Training

• Now that we’ve decided to use a Naïve Bayes classifier, we need to train it with some data:

MNIST Training Data



Naïve Bayes Training

• Training in Naïve Bayes is easy:

• Estimate P(Y=v) as the fraction of records with Y=v

• Estimate P(Xi=u|Y=v) as the fraction of records with Y=v for which Xi=u

• (This corresponds to Maximum Likelihood estimation of model parameters)



Naïve Bayes Training

• In practice, some of these counts can be zero

• Fix this by adding “virtual” counts:

• (This is like putting a prior on parameters and doing MAP estimation instead 
of MLE)

• This is called Smoothing



Naïve Bayes Training

• For binary digits, training amounts to averaging all of the training fives together and all of the 
training sixes together.



Naïve Bayes Classification



Naïve Bayes Assumption

• Recall the Naïve Bayes assumption:
• that all features are independent given the class label Y

• For an example where conditional independence fails:
• Y=XOR(X1,X2)

X1 X2 P(Y=0|

X1,X2)

P(Y=1|

X1,X2)

0 0 1 0

0 1 0 1

1 0 0 1

1 1 1 0
Actually, the Naïve Bayes assumption is almost never true

Still… Naïve Bayes often performs surprisingly well even when 
its assumptions do not hold
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Naïve Bayes

• Bayes classification

Difficulty: learning the joint probability                     is infeasible!              

• Naïve Bayes classification

– Assume all input features are class conditionally independent!

– Apply the MAP classification rule: assign                          to c* if
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Naïve Bayes
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Example

• Example: Play Tennis
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Example

• Learning Phase

Outlook Play=Yes Play=No

Sunny 2/9 3/5
Overcast 4/9 0/5

Rain 3/9 2/5

Temperature Play=Yes Play=No

Hot 2/9 2/5
Mild 4/9 2/5
Cool 3/9 1/5

Humidity Play=Yes Play=No

High 3/9 4/5
Normal 6/9 1/5

Wind Play=Yes Play=No

Strong 3/9 3/5
Weak 6/9 2/5

P(Play=Yes) = 9/14 P(Play=No) = 5/14
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Example

• Test Phase

– Given a new instance, predict its label

x’=(Outlook=Sunny, Temperature=Cool, Humidity=High, Wind=Strong)

– Look up tables achieved in the learning phrase

– Decision making with the MAP rule

P(Outlook=Sunny|Play=No) = 3/5

P(Temperature=Cool|Play==No) = 1/5

P(Huminity=High|Play=No) = 4/5

P(Wind=Strong|Play=No) = 3/5

P(Play=No) = 5/14

P(Outlook=Sunny|Play=Yes) = 2/9

P(Temperature=Cool|Play=Yes) = 3/9

P(Huminity=High|Play=Yes) = 3/9

P(Wind=Strong|Play=Yes) = 3/9

P(Play=Yes) = 9/14

P(Yes|x’) ≈ [P(Sunny|Yes)P(Cool|Yes)P(High|Yes)P(Strong|Yes)]P(Play=Yes) = 

0.0053

P(No|x’) ≈ [P(Sunny|No) P(Cool|No)P(High|No)P(Strong|No)]P(Play=No) = 0.0206

Given the fact P(Yes|x’) < P(No|x’), we label x’ to be “No”.
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Naïve Bayes 

• Algorithm: Continuous-valued Features

– Numberless values taken by a continuous-valued feature

– Conditional probability often modeled with the normal distribution

– Learning Phase: 

Output:         normal distributions and 

– Test Phase: Given an unknown instance 

• Instead of looking-up tables, calculate conditional probabilities with all the 
normal distributions achieved in the learning phrase

• Apply the MAP rule to assign a label (the same as done for the discrete case)
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Naïve Bayes 

• Example: Continuous-valued Features 

– Temperature is naturally of continuous value.

Yes: 25.2, 19.3, 18.5, 21.7, 20.1, 24.3, 22.8, 23.1, 19.8

No: 27.3, 30.1, 17.4, 29.5, 15.1

– Estimate mean and variance for each class

– Learning Phase: output two Gaussian models for P(temp|C)
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Zero conditional probability

• If no example contains the feature value

– In this circumstance, we face a zero conditional probability 

problem during test 

– For a remedy, class conditional probabilities re-estimated with
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Zero conditional probability

• Example: P(outlook=overcast|no)=0 in the play-tennis dataset

– Adding m “virtual” examples (m: up to 1% of #training example)

• In this dataset, # of training examples for the “no” class is 5.

• We can only add m=1 “virtual” example in our m-esitmate remedy. 

– The “outlook” feature can takes only 3 values. So p=1/3.

– Re-estimate P(outlook|no) with the m-estimate



Numerical Stability

• It is often the case that machine learning algorithms need to work with very small 
numbers

• Imagine computing the probability of 2000 independent coin flips

• MATLAB thinks that (.5)2000=0



Underflow Prevention

• Multiplying lots of probabilities

 floating-point underflow.

• Recall:  log(xy) = log(x) + log(y),

 better to sum logs of probabilities rather than 
multiplying probabilities.



Underflow Prevention

• Class with highest final un-normalized log probability 
score is still the most probable.
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Numerical Stability

• Instead of comparing P(Y=5|X1,…,Xn) with P(Y=6|X1,…,Xn),

• Compare their logarithms



Recovering the Probabilities

• What if we want the probabilities though??

• Suppose that for some constant K, we have:

• And

• How would we recover the original probabilities?



Recovering the Probabilities

• Given:

• Then for any constant C: 

• One suggestion: set C such that the greatest i is shifted to zero:



Recap

• We defined a Bayes classifier but saw that it’s intractable to compute 
P(X1,…,Xn|Y)

• We then used the Naïve Bayes assumption – that everything is independent given 
the class label Y

• A natural question:  is there some happy compromise where we only assume that 
some features are conditionally independent?

• Stay Tuned…



Conclusions

• Naïve Bayes is: 

• Really easy to implement and often works well

• Often a good first thing to try

• Commonly used as a “punching bag” for smarter algorithms



Evaluating classification algorithms

 You have designed a new classifier.

You give it to me, and I try it on my image 

dataset



Evaluating classification algorithms

I tell you that it achieved 95% accuracy on 

my data.

 Is your technique a success?



Types of errors

• But suppose that
• The 95% is the correctly classified pixels

• Only 5% of the pixels are actually edges

• It misses all the edge pixels

• How do we count the effect of different types of error?



Types of errors

Prediction

Edge            Not edge

True

Positive

False 

Negative

False

Positive

True 

Negative
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True  Positive

Two parts to each:  whether you got it correct or not, and what 

you guessed.  For example for a particular pixel, our guess 

might be labelled…

Did we get it correct? 

True, we did get it 

correct.

False  Negative

Did we get it correct?         

False, we did not get it 

correct.

or maybe it was labelled as one of the others, maybe…

What did we say?                   

We said ‘positive’, i.e. edge.

What did we say?                   

We said ‘negative, i.e. not 

edge.



Sensitivity and Specificity
Count up the total number of each label (TP, FP, TN, FN) over a large 

dataset. In ROC analysis, we use two statistics:

Sensitivity = 
TP

TP+FN

Specificity = 
TN

TN+FP

Can be thought of as the likelihood of 

spotting a positive case when 

presented with one.

Or… the proportion of edges we find.

Can be thought of as the likelihood of 

spotting a negative case when 

presented with one.

Or… the proportion of non-edges that 

we find



Sensitivity =                       = ? 
TP

TP+FN
Specificity =                       =  ? 

TN

TN+FP

Prediction

Ground 

Truth

1

1 0

0

60 30

2080
80+20 = 100 cases 

in the dataset were 

class 0 (non-edge)

60+30 = 90 cases in 

the dataset were class 

1 (edge)

90+100 = 190 examples 

(pixels) in the data overall



The ROC space

1 - Specificity

Sensitivity

This is edge detector B

This is edge detector A1.0

0.0 1.0

Note



The ROC Curve
Draw a ‘convex hull’ around many points:

1 - Specificity

Sensitivity This point is not 

on the convex 

hull.



ROC Analysis

1 - specificity

sensitivity

All the optimal detectors lie 

on the convex hull.

Which of these is best 

depends on the ratio of 

edges to non-edges, and  

the different cost of 

misclassification

Any detector on this side 

can lead to a better 

detector by flipping its 

output.

Take-home point : You should always quote sensitivity and specificity for 

your algorithm, if possible plotting an ROC graph.  Remember also though, 

any statistic you quote should be an average over a suitable range of tests for 

your algorithm.



Holdout estimation
• What to do if the amount of data is limited?

• The holdout method reserves a certain amount for 
testing and uses the remainder for training

Usually: one third for testing, the rest for training



Holdout estimation
• Problem: the samples might not be representative

• Example: class might be missing in the test data

• Advanced version uses stratification
• Ensures that each class is represented with 

approximately equal proportions in both subsets



Repeated holdout method
• Repeat process with different subsamples

 more reliable

• In each iteration, a certain proportion is randomly 
selected for training (possibly with stratificiation)

• The error rates on the different iterations are 
averaged to yield an overall error rate



Repeated holdout method
• Still not optimum: the different test sets overlap

• Can we prevent overlapping?

• Of course!



Cross-validation
• Cross-validation avoids overlapping test sets

• First step: split data into k subsets of equal size

• Second step: use each subset in turn for testing, the 
remainder for training

• Called k-fold cross-validation



Cross-validation
• Often the subsets are stratified before the cross-

validation is performed

• The error estimates are averaged to yield an 
overall error estimate



More on cross-validation
• Standard method for evaluation: stratified ten-

fold cross-validation

• Why ten?
• Empirical evidence supports this as a good choice to 

get an accurate estimate
• There is also some theoretical evidence for this

• Stratification reduces the estimate’s variance

• Even better: repeated stratified cross-validation
• E.g. ten-fold cross-validation is repeated ten times and 

results are averaged (reduces the variance)



Leave-One-Out cross-validation

• Leave-One-Out:
a particular form of cross-validation:

• Set number of folds to number of training instances

• I.e., for n training instances, build classifier n times

• Makes best use of the data

• Involves no random subsampling 

• Very computationally expensive
• (exception: NN)



Leave-One-Out-CV and stratification

• Disadvantage of Leave-One-Out-CV: stratification is not possible
• It guarantees a non-stratified sample because there is only one instance in 

the test set!



Bayesian Networks
Slides are adapted from Jason Corso



Bayes Nets



Example



Full Joint distribution












