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PASCAL Visual Object Challenge

(20 object categories)
[Everingham et al. 2006-2012]

Pascal VOC 2007
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IMAGENET

22K categories and 14M images

Animals « Plants
« Bird « Tree
« Fish + Flower
« Mammal « Food

« |nvertebrate « Materials

Fei-Fei Li & Justin Johnson & Serena Yeung

» Structures

» Artifact
+ Tools
« Appliances
» Structures

Lecture 1 -

www.image-net.org

Person
Scenes

* Indoor
+ Geological
Formations

Sport Activities
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The ImageCIa55|f|cat|on Challenge
1,000 object classes
1,431 167 images
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Scale

T-shirt
Steel drum  poyrmw:t Giant panda |
Drumstick "53' s’“f‘*-;'} Drumstick 1 b2 o
Mud turtle & Mud turtle w‘f"a"w T
- : ”"‘ Russakovsky et al. arXiv, 2014
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The Image C|a55|f|cat|on Challenge

1,000 object classes
1,431,167 images

2010

2011 2012

2013 2014 2014 2015 Human

Simonyan and
Sanchez and Krizhevsky et al Zeller and Stegedy et al He et al RS
Lnecsl Perronnin (AlexNet) Fergus Z";‘Zg)‘ . (Gooal.eNex) {ResNet) Russakovsky et al ﬂ.
R e 5T
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Convolutional Neural Networks (CNN) have

become an important tool for object recognition

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 1 - 30 4/4/2017



IMJGEN

Year 2010
NEC-UIUC

Dense descriptor grid:
HOG, LBP

v

super-vector

Coding: local coordinate,

!

Pooling, SPM

L J

Linear SV

[Lin CWPR 2011]

Year 2012

SuperVision

[Erizhevsky MIPS 2012]

Year 2014

GoogleNet

@Focling
@Convolution

[Szegedy amxiv 2014]

VGG

conv-64

comy-6d
g pool

conv-128

conv-128
F
Imiaxpool

conv-256
b

conv-256
b1
miaxpool

conv-512

conmv-512
maxpool

conv-512

cony-512
maxpool

fo-40%%6

fo-4096

—_
fo-1000

softman

[Simonyan amxiv 2014]

- | Large Scale Visual Recognition Challenge

Year 2015

[He ICCV 2015]
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Convolutional Neural Networks (CNN)

were not invented overnight

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 1 - 32 4/4/2017



Image Maps

Input

1998

LeCun et al.

Convolutions

# of transistors
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Qutput
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e Fully Connected
Subsampling

# of pixels used in training
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L limg]
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Fei-Fei Li & Justin Johnson & Serena Yeung
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Example Dataset: CIFAR10

10 classes
50,000 training images
10,000 testing images

bird
cat
deer
dog
frog
horse
ship
truck

hﬁiﬂi.viih

Alex Krizheveky, "Leaming MuRiple Layers of Features from Tiny Images®, Technical Report, 2009,

Fei-Fei Li & Justin Johnson & Serena Yeung

(C) Dhruv Batra

Test images and nearest neighbors
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Recall from last time: data-driven approach, kNN

airplane

automobile "H.:jmu = -

EEx-EE=EYuN

1-NN classifier

bid SRR EETHKE
car O T o O
e  HArweEEIREE :
dog wlREFHEERAN
ry DENaS-DESE
horse oy I 1 S O RN 5
ship o S e e
vuck i@ BRENCsBN
train test
train validation test

5-NN classifier

Fei-Fei Li & Justin Johnson & Serena Yeung

(C) Dhruv Batra

Lecture 3- 6

April 11, 2017
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Neural Network

AR

Linear
classifiers

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 2 - 47 April 6, 2017
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Parametric Approach: Linear Classifier
3072x1
f(x,W)|=|WK +|b | 10x1
10x1 10x3072
. f(x,W) ». 10 numbers giving

T class scores
Array of 32x32x3 numbers

(3072 numbers total) W

parameters
or weights

Image

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 2 - 54 April 6, 2017
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Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Stretch pixels into column

56

231

1.1

Input image

Fel-Fel LI & Justin Johnson & Serena Yeung

0.2 | -05] 0.1 | 2.0
1.5 | 1.3 | 21 | 0.0
0 [(025] 0.2 | -0.3

24

3.2

Lecture 2 - 955

-96.8

437.9

61.95

Cat score

Dog score

Ship score

April 6, 2017

(C) Dhruv Batra
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Interpreting a Linear Classifier
airplane S oo ER il = K5 9 i

automobile.a-uﬁm "' _

bird s em o pam (GW)=WX+D

- EhEOuREsh

deer R T = . .

aig KA I A Example tralneq yvelghts
frog ESa® REIE® of alinear classifier

2';'5“ %"I#EEEEE trained on CIFAR-10:

hﬁiﬂi.vi-h

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 2 - April 6, 2017
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Interpreting a Linear Classifier

- ' f(x,W) = Wx + b

>

car classifier

airplane classifier/ &%

» /| deer classifier

Array of 32x32x3 numbers
(3072 numbers total)

Catimage by NIk s licensed under CC-BY 2.0

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 2 - 58 April 6, 2017
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So far: Defined a (linear) score function f(x,W)=Wx+b

Example class
scores for 3

Images for
some W: Co
s 0.09 2.65
How can we tell - oo Ny
whether this W dog g.02 5.55
is good or bad? - o -
Catmage by Nta s Tsrosd s G2V 20 ship —0.36 -4.79
i Inage 1 1n e pusie gomaln truck -0.72 6.14

Fel-Fel LI & Justin Johnson & Serena Yeung Lecture 2 - 60 April 6, 2017
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f(x,W) = Wx + b

Coming up:
uantifying what it means to
- Loss function hqavea “go%d” W)

(start with random W and find a

B Opt|m|zat|0n W that minimizes the loss)
- COHVNetS' (tweak the functional form of f)

Fel-Fel LI & Justin Johnson & Serena Yeung Lecture 2 - 61 April 6, 2017

(C) Dhruv Batra 18



TODO:

1. Define a loss function
that quantifies our
unhappiness with the

j‘éj scores across the training
s g data.

LT

2.64 2. Come up with a way of
9.39 efficiently finding the
-4.34 WL
b parameters that minimize
-4.79 the loss function.

6.14 (optimization)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 3- 8 April 11, 2017

(C) Dhruv Batra 19



Suppose: 3 training examples, 3 classes.
With some W the scores f(z, W) = Wz are:

cat 3.2 1.3 2.2
car 5.9 4.9 2.5
frog -1.7 2.0 -3.1

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 3- 9 April 11, 2017

(C) Dhruv Batra 20



Suppose: 3 training examples, 3 classes.
With some W the scores f(z,W) =Wz are:

cat 3.2 1.3 2.2
car 5.1 4.9 2.5
frog -1.7 2.0 -3.1

A loss function tells how
good our current classifier is

Given a dataset of examples
N

Where I ; is image and
Y; is (integer) label

Loss over the dataset is a
sum of loss over examples:

1
L=+ Z Li(f(zi, W), yi)

Fei-Fei Li & Justin Johnson & Serena Yeung

(C) Dhruv Batra

Lecture 3- 10 April 11, 2017
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Suppose: 3 training examples, 3 classes.
With some W the scores f(z,W) = Wz are:

cat 3.2 1.3 2.2
car 9.7 4.9 2.5
frog -1.7 2.0 -3.1

Multiclass SVM loss:
Given an example (Z;, ;)
where g is the image ana
where Yi is the (integer) label,
and using the shorthand for the
scores vector: s = f(xz;, W)

the SVM loss has the form:

8j — 8y, +1 otherwise

L,:=Z{O if 5,, > 5, + 1

IFYi

= Z max(0,s; — sy, + 1)
JFYi

Fei-Fei Li & Justin Johnson & Serena Yeung

(C) Dhruv Batra

Lecture 3 - 11

April 11, 2017
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Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores f(z,W) = Wz are:

“Hinge loss”

cat 3.2 13 29 |

Li:E{O if 8y, 2 85 +1
el 5 1 4'9 2 . 5 | jEve \ 8~ 8y T 1 otherwise
frog '1 7 20 "3.1 = Z max(0, s; — sy, + 1)

JFYi

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 3 - 12 April 11, 2017

(C) Dhruv Batra 23



Suppose: 3 training examples, 3 classes.
With some W the scores f(z,W) = Wz are:

cat 3.2 1.3 2.2
car 5.1 4.9 2.5
frog -1.7 2.0 -3.1

Multiclass SVM loss:

Given an example (Z;, ;)
where z; is the image ana
where Yi is the (integer) label,

and using the shorthand for the
scores vector: s = f(x;, W)

the SVM loss has the form:

Li =3, max(0,s; — sy, +1)

Fei-Fei Li & Justin Johnson & Serena Yeung

(C) Dhruv Batra

Lecture 3- 13 April 11, 2017
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Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores f(z, W) = Wz are:

Given an example (Z;, ;)
where z; is the image ana
where Yi is the (integer) label,

and using the shorthand for the
scores vector: s = f(x;, W)

the SVM loss has the form:

cat 3.2 1 3 22 L= Zj?,y' max(0,s; — 8y, + 1)
car 5.1 4.9 2.5 = max(0, 5.1 - 3.2 + 1)

+max(0, -1.7 - 3.2 + 1)
frog '1 7 20 "31 = max(0, 2.9) + max(0, -3.9)

=29+0
Losses: | 2.9 B

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 3 - 14 April 11, 2017

(C) Dhruv Batra 25



Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores f(z,W) = Wz are:

cat 3.2
car 9.7

frog -1.7
Losses: 2.9

4.9
2.0

Given an example (Z;, ¥;)
where z; is the image ana
where Yi is the (integer) label,

and using the shorthand for the
scores vector: s = f(z;, W)

the SVM loss has the form:

2.2

Li =3, max(0,s; — sy, +1)

2.0 =max(0,1.3-4.9 +1)
+max(0, 2.0-4.9 + 1)
'31 = max(0, -2.6) + max(0, -1.9)
=0+0
=0

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 3 - 15 April 11, 2017

(C) Dhruv Batra
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Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores f(z,W) = Wz are:

Given an example (Z;, ;)
where z; is the image ana
where Yi is the (integer) label,

and using the shorthand for the
scores vector: s = f(xz;, W)

the SVM loss has the form:

cat 3.2 1.3 2.2 TR S R
car 5 4.9 2.5 = max(0, 2.2 - (-3.1) + 1)

+max(0, 2.5 - (-3.1) + 1)
frog -1.7 2.0 -3.1 = max(0, 6.3) + max(0, 6.6)

Losses: 2.9 0 12.9 T

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 3 - 16 April 11, 2017
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Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores f(z,W) = Wz are:

Given an example (Z;, ;)
where z; is the image ana
where Yi is the (integer) label,

and using the shorthand for the
scores vector: s = f(x;, W)

the SVM loss has the form:

cat 3.2 1.3 22 [FC 2 £ 1)
car 51 4-9 25 Loss over full dataset is average:
fog 1.7 2.0  -3.1 L=5Yi L

| L=(2.9+0+12.9)3
Losses: 2.9 0 12.9 e

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 3- 17 April 11, 2017

(C) Dhruv Batra 28



flz, W) =Wz
L=+ Y 4 max(0, f(zi; W); — f(zi W)y, +1)

E.g. Suppose that we found a W such that L = 0.
Is this W unique?

No! 2W is also has L = 0!

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 3 - 26 April 11, 2017

(C) Dhruv Batra 29



LOW) = = 3" Li(f (@i, W), 3:) + AR(W)

=1
\ J \ J
Y Y
Data loss: Model predictions Regularization: Model
should match training data should be “simple”, so it

works on test data

Occam’s Razor:

“Among competing hypotheses,
the simplest is the best”

William of Ockham, 1285 - 1347

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 3 - 33 April 11, 2017

(C) Dhruv Batra 30



.= regularization strength

Regularization (hyperparameter)

L=L%" 3., max(0, f(zi;W); — f(zi; W)y, + 1) +{AR(W)

In common use:
L2 regularization  E(W) =2, 2, W,

L1 regularization R(W) =32 221 Wiy
Elastic net (L1 + L2) R(W) =3, 3, AW;, + [Wiy|
Max norm regularization (might see later)
Dropout (will see later)

/

Fancier: Batch normalization, stochastic depth

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 3 - 34 April 11, 2017

(C) Dhruv Batra 31



hinge loss (SVM)
-2.85
matrix multiply + bias offset max(0, -2.85 - 0.28 + 1) +
—» | 0.86 max(0, 0.86 - 0.28 + 1)
001 | 005 | 0.1 | 0.05 -15 0.0 T
o008 1.58
07 | 02 | 005 | 0.16 22 + 0.2
00 | 045 | -02 | 0.03 44 03 cross-entropy loss (Softmax)
-2.85 0.058 0.016
W 56 b
ex normalize
—» | 0.86 _ﬂ 236 | — 5. | 0.631 | -100(0.353)
£L; (to sum -
to one) 0.452
0.28 1.32 0.353
Yi | 2

April 11, 2017

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 3 - 49

(C) Dhruv Batra 32



Recap How do we find the best W?

- We have some dataset of (X,y) e
- We have a score function: s = f(z; W) = Wz
- We have a loss function:

5. SOftmax
L;i = —log(=—=
( Zj e’ ) SVM —_— regularization loss
g e Wi _ L
LE B Z‘};ﬁﬁyr ma"x(oﬂ SJ Syl. + 1) _ M;if(I,,W) data loss L
L=+ L+ R(W) Fullloss % T
Ji

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 3 - 53 April 11, 2017
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Optimization

while
welghts grad = evaluate gradient(loss Tun, dats, welghts)
Landscape image ¥s CCO 1.0 pubic domain weights 4= . step size * weights grad

Walking man image Is CC0 1.0 public com3in

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 -6 April 13, 2017

(C) Dhruv Batra 34



Gradient descent

df(z) _ . f@+h) - fa)

dx h —0 h

Numerical gradient: slow :(, approximate :(, easy to write :)
Analytic gradient: fast :), exact :), error-prone (

In practice: Derive analytic gradient, check your
Implementation with numerical gradient

Fei-Fel Li & Justin Johnson & Serena Yeung Lecture 4 - 7 April 13, 2017

(C) Dhruv Batra 35



Image features vs ConvNets

. —
Feature Extraction 10 numbers giving
scores for classes

Hﬂﬂﬂuﬂﬂﬂﬂtﬂ”ﬂ"}]mﬂﬂmﬂﬂﬂ'ﬂﬂvuﬂﬂuﬂ -

training

N
P 10 numbers giving
scores for classes
training

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 3 - 84 April 11, 2017
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Computational graphs

f=Wgz| [Li=)>_,;,, max(0,s; — sy, +1)

~ @ S (scores) @ ’:J

=) (
T e
&

R(W)

i,

L

Fel-Fel LI & Justin Johnson & Serena Yeung Lecture 4 -8 April 13, 2017
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Convolutional network FE=
(AlexNet) [

in pUt image o
weights i_f;-/-———— N ’
loss

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 -9 April 13, 2017

(C) Dhruv Batra .



Backpropagation: a simple example | x 2

f(:r,y,z) - (a:—l—y)z
e.g.x=-2,y=5=Z=_4

_ dqg 0q

= +Yy 5—1,5—1
of of

f=qz % %9 =4

of of Oof
Want: =~ By B2

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 -13 April 13, 2017

(C) Dhruv Batra 39



Backpropagation: a simple example

f(z,y,2) = (z +y)z
eg.Xx=-2,y=95,z=-4

q=z+Yy @:1,3{1—1

oz dy —
of of
f=9z q o9 94
af Of Of
Want: oz By’ Oz

Fei-Fei Li & Justin Johnson & Serena Yeung

(C) Dhruv Batra

Lecture 4 -15

April 13, 2017
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Backpropagation: a simple example | x

f(z,y,2) = (z + y)z
eg.x=-2,y=95,z=-4

0y
or
of of o
f=qz =% =4
. 9f of of
Want: oz Oy’ Oz

Fel-Fel LI & Justin Johnson & Serena Yeung

Lecture 4 -17 April 13, 2017

(C) Dhruv Batra
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Backpropagation: a simple example | x -2

f(@,y,2) = (& + )2 D@ 2

E.g.x=-2,y=552=_4

_ 0 . O0qg
g=x+Yy 5—1,5—1
of of
f=qz L=z,
of of of

Want: =~ By B2

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 -19 April 13, 2017

(C) Dhruv Batra 42



Backpropagation: a simple example | x 2
- + q Z-‘.i
f(@,9,2) = (@ + )2 DO :

4

eg.x=-2,y=95z=-4

21,2 =1

gq=—+Yy e ,a o
of of Chain rule: 0y
— a2 — 2,5 —
of Of Oof Oy dqg Oy

Want: oz By’ Oz

Fel-Fel LI & Justin Johnson & Serena Yeung Lecture 4 - 21 April 13, 2017

(C) Dhruv Batra 43



Backpropagation: a simple example

f(z,y,2) = (z +y)z
eg.x=-2,y=5,z=+4

_ g 1 09
g=z+Yy 5—1,%—1
B of _  of _ Chain rule: Oz
"F &= a™ of _ of &
of Of of dr ~ 8q Oz
Want: oz By’ Oz

Fei-Fel Li & Justin Johnson & Serena Yeung Lecture 4 - 23 April 13, 2017

(C) Dhruv Batra 44



“local gradient”

AR
AL
Y = 0z
oL %, |
gradients

el Li & Justin Johnson & Serena Yeung Lecture 4 - 29 April 13, 2017

(C) Dhruv Batra 45



1

flw,z) =

do(x) & (
dx (1+e2)?
(0
7\ ""ux‘
0 ||'n/\"/ e "I..
)40 | s ‘
wl 3,00 ,-"‘(T/} E
- /6w
x1 -2.00, s

Fei-Fei Li & Justin Johnson & Serena Yeung

1 + e —(wpzg+wyzy+ws)

sigmoid function

o) () - a-o@nete

/_‘\. N \ 037 /
—~ *-1 f————exp }——— +1
) ‘-\_}/ 53 2

sigmoid gate

N N

Y N\

\ 37 o o X Nn73
L= __{1x)
' 053 \ 4 |

S

(0.73) * (1-0.73) = 0.2

Lecture 4 -45

NS \__/ I

April 13, 2017

(C) Dhruv Batra
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Patterns in backward flow

add gate: gradient distributor
max gate: gradient router
mul gate: gradient switcher

~-10.00 ﬂz\ 20.0C
200 \ O/ 1.00

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 - 50 April 13, 2017

(C) Dhruv Batra 47



Impulses carried toward cell body

\ dendrite
presynaptic
2% [/ terminal

; Impulses carried a\7vay
b from cell body

I wy

*® synapse
axon from a neuron
woIg

Tris image by Felipe Perucho
Is licens2d under CC-8Y 3.0

f (2: w,T; 4 b)

class Neuron: - -
output axon

def neuron_tick(inputs): activation

""" assume inputs and weights are 1-D numpy arrays and bias 1s a number *" function
cell body sum = np.sum{inputs * weights) + .blas 'w'zilf‘_)
firing rate = 1.0 / (1.0 + math.exp(-cell body sum))

return firing rate

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 - 94 April 13, 2017

(C) Dhruv Batra 48



Neural networks: Architectures

put layer
output layer

input layer input layer
hidden layer hidden layer 1 hidden layer 2

“3-layer Neural Net”, or
“2-layer Neural Net”, or “2-hidden-layer Neural Net”

“1-hidden-layer Neural Net” “Fully-connected” layers

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 - 97 April 13, 2017

(C) Dhruv Batra 49



Computational graphs

f=Wgez| |Li =)_,,, max(0,s; — sy, +1)

-

\‘ O S (scores)
w //
&
R(W)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture6- 3 April 20, 2017

(C) Dhruv Batra 50



Neural networks: without the brain stuff
(Before) Linear score function: f =Wz
(Now) 2-layer Neural Network  f = W3 max(0, Wix)

—

—

X Wi | h| w2 |sg

3072

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 - 86 April 13, 2017

(C) Dhruv Batra 51



Next: Convolutional Neural Networks

Image Maps

l \”\ \\\

——

/1

Convolutions

Input

Fully Connected
Subsamplmg

lustration of LeCun et 3l. 1983 from CS231n 2017 Lecurs 1

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - 4 April 18, 2017

(C) Dhruv Batra 52



A bit of history...

The Mark | Perceptron machine was the first
implementation of the perceptron algorithm.

The machine was connected to a camera that used
20%x20 cadmium sulfide photocells to produce a 400-pixel

image.

1 fw-z4+56>0
| f(z) = y
recognized 0 otherwise

letters of the alphabet

z .
——® e

update rule: O o .
wi(t + 1) = wi(t) + a(d; — y;(t))z;:

Frank Rosenblatt, ~1957: Perceptron

This Imags by Rocky Acosta Is licansed under CC-5Y 3.0

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5- 5  April 18, 2017

(C) Dhruv Batra 53



A bit of history...

. | '
+| = TR ; y
(Ql,-l —{_X »r———I—A
Quantizer ___+_\ - : ~AAA
[ I B\ A% -
oo T I X A M=
. B "{4
: X 1
> Q's ore odjustable w' - ) J
| iy
‘*1 i
E y . Tnese fguras are re.pto:luoeu from Vidrow 1250 ‘:,.,'..at'-jI‘ELElP.CIIEQLc.T‘i Lanm_ngue;nm:al
Widrow and Hoff, ~1960: Adaline/Madaline PR P W SN I LB
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A bit of history...
(’)Ep - aE,, (901,]'

recognizable math

input output
pattern pattern p
error
E

mustration of Rumelhart et al., 1986 by Lane Mcintoeh,
copyright CS231n 2017

Rumelhart et al., 1986: First time back-propagation became popular
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A bit of history... r— =

I :

W"
W"
WJj

[Hinton and Salakhutdinov 2006]

Reinvigorated research in

Deep Learning in
Wi

Restricted Boltzmann Machines
o
i -
: w

""""""""""""" E Hr";g
W,
LW,
! -
i Encoder .
Prelraining RBM-initialized autnefnco-dar Fine-tuning with backprop

Istration of Hinton and Salakhatdinoy 2008 by Lane
Mciniosh, copyright CS231n 2017
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First strong results

Acoustic Modeling using Deep Belief Networks

Abdel-rahman Mohamed, George Dahl, Geoffrey Hinton, 2010

Context-Dependent Pre-trained Deep Neural Networks
for Large Vocabulary Speech Recognition
George Dahl, Dong Yu, Li Deng, Alex Acero, 2012

Imagenet classification with deep convolutional
neural networks

Alex Krizhevsky, llya Sutskever, Geoffrey E Hinton, 2012

&

ining

pre-tra
y 4

Network

Deep Neural

—

1 1 I
Spectrogram

Ibustration of Danl et al. 2012 by Lane Mcintosh, copyright
CS231n 2017

Figures copyright Alex Krizhevsky, llya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Fei-Fei Li & Justin Johnson & Serena Yeung
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A bit of history: | =X @

|

| | Electrical
— signal from
- [ brain
Hubel & Wiesel. \
RECEPTIVE FIELDS OF SINGLE 51__...#
NEURONES IN Stimulus
THE CAT'S STRIATE CORTEX ‘ Y
RECEPTIVE FIELDS, BINOCULAR . S\
INTERACTION - -
AND FUNCTIONAL ARCHITECTURE IN mUius esponse
THE CAT'S VISUAL CORTEX
1 968 Catimage by CNX Opsnitax is licensed
under CC BY 4.0; changes made
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A bit of history Human brain

Topographical mapping in the cortex:
nearby cells in cortex represent
nearby regions in the visual field

cortex

s Visual

REtNCiopy IMages courtesy of Jesse Gomez In the
Stanford Vislon & Perception Neuroscience Lab.
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Hierarchical organization Simple cells

Response to light
orientation

Retinal ganglion cell LGN and V1 Cﬂmplex cells:
1 receptive fields simple cells Response to light
response to movement

orientation and movement
" O . with an end point
il
udﬁ“mu\ \
\\S

Iuzstration of hlerarchical organization in earty visusl
patitaays by Lane Meintash. copynght CE231n 2017 No response REEPGHSO

(end point)

Hypercomplex cells:

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5- 12 April 18, 2017
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A bit of history:

Neocognitron
[Fukushima 1980]

“sandwich” architecture (SCSCSC...)
simple cells: modifiable parameters
complex cells: perform pooling

7
\ ¥

N
I

LA CE%\
)
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A bit of history:

Gradient-based learning applied to
document recognition

[LeCun, Bottou, Bengio, Haffner 1998]

Image Maps
Input

. Qutput
K N W == \ \

o — ““-——t::}

Convolutions
Sunsamplmg

LeNet-5

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - 14
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A bit of history:

ImageNet Classification with Deep
Convolutional Neural Networks
[Krizhevsky, Sutskever, Hinton, 2012]

Figure copyright Alex Krizhevsky, llya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

“AlexNet”

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5- 15 April 18, 2017
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Fast-forward to today: ConvNets are everywhere

Classification Retrieval

Figures copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.
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Fast-forward to today: ConvNets are everywhere

Detection

Segmentation
oo T ity " Ehaaghy.

T e

-
Figures copyright Shaoqging Ren, Kaiming He, Ross Girschick, Jian Sun, 2015. Reproduced with Figures copyright Clement Farabet, 2012.
permission. Reproduced with permission. lFar abet et al 3 2 O 1 2]

[Faster R-CNN: Ren, He, Girshick, Sun 2015]
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Fast-forward to today: ConvNets are everywhere

7

This image by GBPublic_PR is
licensed under CC-BY 2.0

NVIDIA Tesla line
(these are the GPUs on rye01.stanford.edu)

Note that for embedded systems a typical setup
Photo by Lane Mcintosh. Copyright CS231n 2017, would involve NVIDIA Tegras, with integrated
GPU and ARM-based CPU cores.

self-driving cars

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-18  April 18, 2017
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Fast- forward to today: ConvNets are everywhere

Score
: BE %
0 \
Bl |
a
= |
2 |
8 \
Original image  RGB channels conv0 convl conv3 conv4d --+ mixed3/conv -+ mixed10/conv -+« Softmax
[T a igman et a/' 201 4] Activations of inception-v2 architecture [Szegedy et al. 2015] to image of Emma Mcintosh,
used with permission. Figure and architecture not from Taigman et al. 2014.

Spatial stream ConvNet
convl || conv2 || conv3 || convd || convs || fulé fulty
7x1x96 || Sxsi286 || 112 || s 12 || w2 || s0se || 20es
siride 2 || stnde 2 || sinde 1 || strce 1 || since 1 || sropout || sropout —
= 4 norm nom pooi 262
single frame L2201 22 || pool 22 class
score
. Temporal stream ConvNet
. convl
. TxT296 5.-5:250 3;3:6‘2 :\.3;512 xsvz ooan
B, wile 2 nm. 2 _— /
Input Ty input softmax
video multiframe | 001 22 4 convi
- optical flow fe1
lllustration by Lane Mcintosh, comwe
» Figures copyright Simonyan et al., 2014. phatos of Katie Cumnock
[ SI mony an et al ' 2 014] Reproduced with permission. used with permission. conv3
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[Guo et a/ 20 14] Figures copyright Xiaoxizo Guo, Satinder Singh, Honglak Lee, Richard Lewss,
and Xiaoshi Wang, 2014. Reproduced with permission.
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Fast-forward to today: ConvNets are everywhere

Berugn Bensgn Maiignant . §
L o G TH -
- 1 \ -
y ﬁ ‘ 4 :
ALL WA -
- AR @ 22 Y
- - - - . :

[Levy et al. 2016] Figure copyright Levy et al 2016.

Reproduced with permission.

Photos by Lane Mcintosh.

[Sermanet et al. 20711]  copmomeszainzor

- - oy — gy Ciresan et al.
[Dieleman et al. 2014] ESATALER. MOKNRR.E NASS. 21 UM TRE [ ]
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This Image by Chistin Knan 15 In the public domain Fhoto and figure by Lane Mcintosh; not actual
and originally came from the U.S. NOAA. example from Mnin and Hinton, 2010 paper.

Whale recognition, Kaggle Challenge Mnih and Hinton, 2010
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No errors Somewhat related Image
| Captioning
[Vinyals et al., 2015]

[Karpathy and Fei-Fel,
2015]

A white teddy bear sitting in A man in a baseball A woman is holding a
the grass uniform throwing a ball cat in her hand

All Images are CCO Public domain:

Diips://pixabay. comien/luggage-antique-cat-1643010/
Diips.//pixabay.conventeday-phish-taars-cuta-lecdy-bear-1523436/
NEps.//pxaD3Y. CONVEN 5 LIT-WaYe-SUMMEr-partorak-1563716¢
Diips;//pixabay. comven/woman-female-model-poctralt-3dul-23 3367/
Diips://pixabay. comennandstanc-iake-mediiaion:- 435003/

A man riding a wave on A cat sitting on a A woman standing on a ipe; /pixabay, conVentaseDall-player-shonstop-nfield- 1045253/
top of a surfboard suitcase on the floor beach holding a surfboard Captions generated by Justin Johnsca Lsing Neurallaiz
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Qriginal imaga is CCO public domain
Starry Night and Traa Eoots by Van Gogh are in the public comain
Eaken image is in the public domein Gatys &% 8|, “Image Style Transfer using ComvoiLticnal Neural Networks®, CWPR 2046

Figures copyright Justin Johnson, 2015. Reprocuced with permission. Generated using the Incepticnism approach 3 5
Gatys et 8|, “Controlling Perceptusl Factors in Neurai Style Transfer”, CVPR 2047

from = pioz post by Google Research. Stytized il
rep
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Convolutional Neural Networks

(First without the brain stuff)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-25  April 18, 2017
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Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1

input activation
Wx
1 10 x 3072 1 [0
3072 X 10
weights

1 number:

the result of taking a dot product
between a row of W and the input
(a 3072-dimensional dot product)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-27  April 18, 2017
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ConV0| Utlon I—ayer Filters always extend the full
— depth of the input volume

32x32x3 image /
ox5x3 filter
32 o/
I Convolve the filter with the image
i.e. “slide over the image spatially,

computing dot products”

32

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-30  April 18, 2017
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Convolution Layer

— 32x32x3 Image
5x5x3 filter w

"

™~ 1 number:

2
the result of taking a dot product between the
filter and a small 5x5x3 chunk of the image

32 (l.e. 5753 = 75-dimensional dot product + bias)

° wlz +b

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-31  April 18, 2017
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Convolution Layer

activation map

— 32%32X3 Image

5x5x3 filter /
2
@>O ”

convolve (slide) over all

spatial locations
32 28

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-32  April 18, 2017

(C) Dhruv Batra 77



For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:

activation maps

32

28

Convolution Layer

32 A

3 6

We stack these up to get a “new image” of size 28x28x6!

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-34  April 18, 2017
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Preview: ConvNet is a sequence of Convolutional Layers, interspersed with
activation functions

32

32

CONYV,
RelLU
eg.6
oxX5x3
filters

28

28

CONV,
RelLU
e.g. 10
ox5x6
filters

10

24

CONYV,
RelLU

24

(C) Dhruv Batra
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Linearly
+| separable p—>
classifier

Preview Low-level Mid-level High-level

features features features

‘I

: .\” = R P, J Lo ¢ i, y N
VGG-16 Conv1_1 VGG-16 Conv3_2 VGG-16 Conv5_3

Retinal ganglion cell LGN and V1

receptive fields Complex cells

Rosponse 10 g

onentation and movement

Hypercomplex cells
response 10 movement
with an end point
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one filter => _
one activation map example 5x5 filters

(32 total)

“ ECINEEEN TN AN CEOAETI SRR SRS
N

We call the layer convolutional
because it is related to convolution
of two signals:

fleyl*glx,y] = z Zfln,.nzI-glx—n,._\'—nzl

-.“n!u . .‘ - ": ) T
1l
.H.. elementwise multiplication and sum of

a filter and the signal (image)
Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-39  April 18, 2017

Figure copyright Andrej Karpathy.
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preview:

RELU RELU RELU RELU RELU RELU
CONV lCONVl CONV lCONVl CONV lCONVl

. R 'y

|

-

ﬁblane
Ship

horse

|
B
I
B |
e

BEAI LGNS

)
]

) AN L A I I

RiEa
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A closer look at spatial dimensions:

activation map

_— 32x32x3 image
5x5x3 filter

V
i=—

convolve (slide) over all

spatial locations
32 28

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-41  April 18, 2017
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A closer look at spatial dimensions:

v

7x7 input (spatially)
assume 3x3 filter

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-42  April 18, 2017
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A closer look at spatial dimensions:

v

7X7 input (spatially)
assume 3x3 filter

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-43  April 18, 2017
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A closer look at spatial dimensions:

v

7X7 input (spatially)
assume 3x3 filter

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-44  April 18, 2017
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A closer look at spatial dimensions:

v

7X7 input (spatially)
assume 3x3 filter

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-45  April 18, 2017
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A closer look at spatial dimensions:

v

7x7 input (spatially)
assume 3x3 filter

=> 5x95 output

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-46  April 18, 2017
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A closer look at spatial dimensions:

7
7X7 input (spatially)

assume 3x3 filter
applied with stride 2

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-47  April 18, 2017
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A closer look at spatial dimensions:

7
X7 input (spatially)

assume 3x3 filter
applied with stride 2

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-48  April 18, 2017
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A closer look at spatial dimensions:

7
7X7 input (spatially)

assume 3x3 filter
applied with stride 2
=> 3x3 output!

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-49  April 18, 2017

(C) Dhruv Batra 91



N
Output size:
= (N - F) / stride + 1
N edg.N=7,F=3:
F stride 1 =>(7-3))1+1=5
stride2=>(7-3)/2+1=3
stride 3 =>(7-3)/3+1=2.33:\

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-52  April 18, 2017
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In practice: Common to zero pad the border

o|o|0|j0(0 |0

o | o | o | o

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7X7 output!
In general, common to see CONV layers with
stride 1, filters of size FxF, and zero-padding with
(F-1)/2. (will preserve size spatially)
e.g. F = 3 => zero pad with 1

F =5 =>zero pad with 2

F =7 =>zero pad with 3

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-55  April 18, 2017
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Remember back to...

E.g. 32x32 input convolved repeatedly with 5x5 filters shrinks volumes spatially!
(32 -> 28 -> 24 ...). Shrinking too fast is not good, doesn’t work well.

32 28 24
CONV, CONV, CONV,
RelLU RelLU RelLU
e.g.6 e.g. 10
BX5x3 5X5X6
32 filters 28 filters 24

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-56  April 18, 2017
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Examples time: / /

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2 i

<
A

Output volume size:
(32+2*2-5)/1+1 = 32 spatially, so
32x32x10

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-58  April 18, 2017
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Examples time: / /

Input volume: 32x32x
10 5x5 filters with stride 1, pad 2 d

<
<

Number of parameters in this layer?
each filter has 5*5*2 + 1 = 76 params  (+1 for bias)
=> 7610 =760

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-60  April 18, 2017
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Common settings:

Summary. To summarize, the Conv Layer

K = (powers of 2, e.g. 32, 64, 128, 512)
* Accepts a volume of size W) x Hy x D, - F=3S=1P=1
« Requires four hyperparameters: 4 )

. - F=5,S=1,P=2

o Number of filters K, ;

o their spatial extent F, - F=5%,8=2,P =7 (whatever fits)
o the stride S, - F=1,8S=1,P=0

o the amount of zero padding P

 Produces a volume of size Wy x Hy x D, where
o Wo=(W, —F+2P)/S+1
o Hy =(H; — F +2P)/S + 1 (i.e. width and height are computed equally by symmetry)
° D2 — K
« With parameter sharing, it introduces F - F' - D, weights per filter, for a total of (F' - F - D, ) - K weights
and K biases
« In the output volume, the d-th depth slice (of size W, x H>) is the result of performing a valid convolution
of the d-th filter over the input volume with a stride of S, and then offset by d-th bias.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-62  April 18, 2017
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(btw, 1x1 convolution layers make perfect sense)

1x1 CONV

o6 with 32 filters 56

(each filter has size
1X1x64, and performs a
64-dimensional dot

56 product)

64 32

56

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-63  April 18, 2017
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The brain/neuron view of CONV Layer

_— 32x32x3 image L N -
ox9x3 filter

=

V

\\\ It's Just a neuron with local

activation
function

connectivity...
1 number:

32 the result of taking a dot product between
the filter and this part of the image
(i.e. 5*5"3 = 75-dimensional dot product)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-67  April 18, 2017
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The brain/neuron view of CONV Layer o

I

32 /

32

: i
. - i
7 call body \ ’r[?"T-"-"'- 'I'.

'
) =
44'. l:“h: i _ﬁ.:. outpul axon

activation
Wy T function

An activation map is a 28x28 sheet of neuron
outputs:

1. Each is connected to a small region in the input
2. All of them share parameters

“6x5 filter” -> “6x5 receptive field for each neuron”

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-68  April 18, 2017
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The brain/neuron view of CONV Layer o .

,-"/ callbady T f |:\'-'-'.- ) '.-1
LTOE | | — TONT !
| P wa b

32

7 8 E.g. with 5 filters,

II O O O O () CONYV layer consists of
neurons arranged in a 3D grid
(28x28x5)

There will be 5 different
32 28 neurons all looking at the same
3 5 region in the input volume

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-69  April 18, 2017
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Reminder: Fully Connected Layer
Each neuron

32x32x3 image -> stretch to 3072 x 1 looks at the full
input volume
input tivati
PuUu W:I; dctivation
1 3072 10 x 3072 1[0 10
weights /
1 number:

the result of taking a dot product
between a row of W and the input
(a 3072-dimensional dot product)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-70  April 18, 2017
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two more layers to go: POOL/FC

RELU RELU RELU RELU
CONV lCONVl CONV 1CONV

Lo ba bl

Fei-Fei Li & Justin Johnson & Serena Yeung

|

'Yy

RELU RELU
CONV | CONV

FC

|

Lecture 5 - 71

| L
! filick
[ (™ | Bifplane
: Ship
53 {hiorse
(| =
o
April 18, 2017

(C) Dhruv Batra



Pooling layer
- makes the representations smaller and more manageable
- operates over each activation map independently:

224x224x64
112x112x64

- @

A

l

~ o 112
224 downsampling
112

224

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 -72

April 18, 2017
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MAX POOLING
Single depth slice
dl111]2]4
max pool with 2x2 filters
5|16 7|8 and stride 2 6 | 8
312110 3 | 4
11213 | 4

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-73  April 18, 2017
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Common settings:

e Requires three hyperparameters
o their spatial extent F',
o the stride S,
 Produces a volume of size W, x Hy x D, where
o Wo=(W; —F)/S+1
o Hy=(Hy —F)/S +1
o Dy = D,
¢ Introduces zero parameters since it computes a fixed function of the input
» Note that it is not common to use zero-padding for Pooling layers

» Accepts a volume of size W; x Hy x D, F
F

[
w N
ONO)

[

2
2
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Where we are now...

Mini-batch SGD

Loop:

1. Sample a batch of data

2. Forward prop it through the graph
(network), get loss

3. Backprop to calculate the gradients

4. Update the parameters using the gradient

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture6- 9 April 20, 2017
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Activation Functions

Lo (1)

*® synapse
axon from a neuron
woT(

cell body |\ (Z — b)
i Z w;z; +b f i >
,. output axon
activation
function

W22

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - 14 April 20, 2017
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Activation Fun_ctions

Sigmoid Leaky ReLU

o(z) = 1o max(0.1z, x)

tanh | Maxout

tanh(x) : : max(wi x + by, w3 T + by)
RelLU ELU

max(0, z) {i(em _1) i i 3

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - 15 April 20, 2017
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Activation Functions o(z) =1/(14+¢e77)

- Squashes numbers to range [0,1]
4 - Historically popular since they
have nice interpretation as a
saturating “firing rate” of a neuron

3 problems:

N ° 1. Saturated neurons “kill” the
Sigmoid gradients
2. Sigmoid outputs are not
zero-centered

3. exp()is a bit compute expensive

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - 22 April 20, 2017
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Activation Functions Computes H(x) = max(0,x)

- Does not saturate (in +region)

- Very computationally efficient

- Converges much faster than
sigmoid/tanh in practice (e.g. 6x)

- Actually more biologically plausible
than sigmoid

10

=10 10

Rel U
(Rectified Linear Unit)

[Krizhevsky et al., 2012]
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Step 1: Preprocess the data

original data zero-centered data normalized data
4
- - I
v
X -= np.mean(X, axis = 0) X /= np.std(X, axis = 0)

(Assume X [NxD] is data matrix,
each example in a row)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - 37 April 20, 2017
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Step 1. Preprocess the data

In practice, you may also see PCA and Whitening of the data

original data decorrelated data whitened data

(data has diagonal (covariance matrix is the
covariance matrix) identity matrix)
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Last time: Weight Initialization
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Fei-Fei Li & Justin Johnson & Serena Yeung

Initialization too small:
Activations go to zero, gradients also zero,
No learning

Initialization too big:
Activations saturate (for tanh),
Gradients zero, no learning

Initialization just right:
Nice distribution of activations at all layers,
Learning proceeds nicely
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Optimization: Problems with SGD

What if loss changes quickly in one direction and slowly in another?
What does gradient descent do?
Very slow progress along shallow dimension, jitter along steep direction

Loss function has high condition number: ratio of largest to smallest
singular value of the Hessian matrix is large
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SGD + Momentum

Gradient Noise

Local Minima  Saddle points

e N\

Poor Conditioning
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Regularization: Add term to loss

L=+ 3., max(0, f(zi; W); — f(zi; W)y, + 1) +AR(W)

In common use:

L2 regularization = E(W) =22, Wy, (Weight decay)
L1 regularization R(W) = 325 221 Wil

Elastic net (L1 + L2) R(W) = >3, 8W;, + [Wi|
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Regularization: Dropout

In each forward pass, randomly set some neurons to zero
Probability of dropping is a hyperparameter; 0.5 is common

Srivastava et al, "“Dropout; A simple way to prevent neural networks from overfitling”, JMLR 2014
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Regularization: Dropout

How can this possibly be a good idea?

Forces the network to have a redundant representation;
Prevents co-adaptation of features

r’fﬂ_.
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Regularization: Data Augmentation

“C.at”
Load image
and label
N LT
bf:’i:‘-_i"" '

Compute
loss

—

> CNN
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Data Augmentation
Horizontal Flips
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