
VBM683

Machine Learning

Pinar Duygulu

Slides are adapted from 

Dhruv Batra



(C) Dhruv Batra 2

Bias is the algorithm's tendency to consistently learn the wrong thing by not taking into account all 

the information in the data (underfitting).

Variance is the algorithm's tendency to learn random things irrespective of the real signal by fitting 

highly flexible models that follow the error/noise in the data too closely (overfitting).
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We see that the linear (degree = 1) fit is an under-fit:

1) It does not take into account all the information in the data (high bias), but

2) It will not change much in the face of a new set of points from the same source (low variance).

The high degree polynomial (degree = 20) fit, on the other hand, is an over-fit:

1) The curve fits the given data points very well (low bias), but

2) It will collapse in the face of subsets or new sets of points from the same source because it intimately takes all the data 

into account, thus losing generality (high variance).



Bias-Variance Tradeoff

• Choice of hypothesis class introduces learning bias

– More complex class → less bias

– More complex class → more variance
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Fighting the bias-variance tradeoff

• Simple (a.k.a. weak) learners

– e.g., naïve Bayes, logistic regression, decision stumps (or 

shallow decision trees)

– Good: Low variance, don’t usually overfit

– Bad: High bias, can’t solve hard learning problems

• Sophisticated learners

– Kernel SVMs, Deep Neural Nets, Deep Decision Trees

– Good: Low bias, have the potential to learn with Big Data

– Bad: High variance, difficult to generalize

• Can we make combine these properties

– In general, No!!

– But often yes…
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Ensemble Methods
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Bagging
Boosting

Core Intuition: A combination of multiple classifiers 

will perform better than a single classifier.
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Ensemble Methods
• Instead of learning a single predictor, learn many

predictors

• Output class: (Weighted) combination of each predictor

• With sophisticated learners
– Uncorrelated errors  expected error goes down

– On average, do better than single classifier!

– Bagging

• With weak learners 
– each one good at different parts of the input space

– On average, do better than single classifier!

– Boosting
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Synonyms

• Ensemble Methods

• Learning Mixture of Experts/Committees

• Boosting types

– AdaBoost

– L2Boost

– LogitBoost

– <Your-Favorite-keyword>Boost
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Bagging
(Bootstrap Aggregating / Bootstrap Averaging)

Core Idea: Average multiple strong learners trained from 

resamples of your data to reduce variance and overfitting!
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Bagging
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Dataset of N Training Examples
(xi, yi)

Given:

Sample N training points with replacement and train a predictor, repeat M times:

Sample 1:

hj(x)

Sample M:

hM(x)

.

.

At test time, output the (weighted) average output of these predictors.
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Why Use Bagging
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Let em be the error for the mth predictor trained through bagging 

and eavg be the error of the ensemble. If

E[em] = 0 (unbiased) and 

E[emek] = E[em]E[ek] (uncorrelated) then..

𝐸 𝑒𝑎𝑣𝑔 =
1

𝑀

1

𝑀
∑𝐸 𝑒𝑚

The expected error of the average is a faction of the 

average expected error of the predictors!

(C) Stefan Lee



When To Use Bagging

12

In practice, completely uncorrelated predictors don’t really happen, but 

there also wont likely be perfect correlation either, so bagging may still help!

Use bagging when…

… you have overfit sophisticated learners (averaging lowers variance)

… you have a somewhat reasonably sized dataset

… you want an extra bit of performance from your models
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…

Example: Decision Forests

We’ve seen that single decision trees can easily overfit!

• Train a M trees on different samples of the data and call it a forest.

Uncorrelated errors result in better ensemble performance. Can we force this?

• Could assign trees random max depths

• Could only give each tree a random subset of the splits

• Some work to optimize for no correlation as part of the object!

(C) Stefan Lee























A Note From Statistics

Bagging is a general method to reduce/estimate the variance of an estimator.

• Looking at the distribution of a estimator from multiple resamples of 

the data can give confidence intervals and bounds on that estimator.

• Typically just called Bootstrapping in this context.
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Boosting

Core Idea: Combine multiple weak learners to reduce 

error/bias by reweighting hard examples!

(C) Stefan Lee



26

Some Intuition About Boosting
Consider a weak learner h(x), for example a decision stump:

xj xj >= txj < t

h(x) = a h(x) = b
xj

h(x) = bh(x) = a

t

Example for binary classification:

xj

h(x) = 1h(x) = -1

t

Example for regression:

xj

h(x) =𝑤𝑅
𝑇𝑥h(x) = 𝑤𝐿

𝑇𝑥

t

(C) Stefan Lee



27

Some Intuition About Boosting
Consider a weak learner h(x), for example a decision stump:

xj xj >= txj < t

h(x) = a h(x) = b
xj

h(x) = bh(x) = a

t

This learner will make mistakes often but what if we combine multiple to combat 

these errors such that our final predictor is:

𝑓 𝑥 = 𝛼1ℎ1 𝑥 + 𝛼2ℎ2 𝑥 +⋯+ 𝛼𝑀−1ℎ𝑚−1 𝑥 + 𝛼𝑀ℎ𝑀(𝑥)

This is a big optimization problem now!!

min
𝛼1,…,𝛼𝑀
ℎ𝑖∈𝑯

1

𝑁
 

𝒊

𝑳(𝑦𝑖 , 𝛼1ℎ1 𝑥 + 𝛼2ℎ2 𝑥 +⋯+ 𝛼𝑀−1ℎ𝑚−1 𝑥 + 𝛼𝑀ℎ𝑀 𝑥 )

Boosting will do this greedily, training one classifier at a time 

to correct the errors of the existing ensemble
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• Pick a class of weak learners

• You have a black box that picks best weak learning

– unweighted sum 

– weighted sum

• On each iteration t

– Compute error based on current ensemble 

– Update weight of each training example based on it’s error.

– Learn a predictor ht and strength for this predictor 𝛼𝑡

• Update ensemble:
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Boosting Algorithm [Schapire, 1989]



Boosting Demo

• Demo

– Matlab demo by Antonio Torralba
– http://people.csail.mit.edu/torralba/shortCourseRLOC/boosting/boosting.html

(C) Dhruv Batra 29















































Boosting: Weak to Strong
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As we add more boosted learners to our ensemble, error approaches zero (in the limit)

• need to decided when to stop based on a validation set

• don’t use this on already overfit strong learners, will just become worse



• Pick a class of weak learners

• You have a black box that picks best weak learning

– unweighted sum 

– weighted sum

• On each iteration t

– Compute error based on current ensemble 

– Update weight of each training example based on it’s error.

– Learn a predictor ht and strength for this predictor 𝛼𝑡

• Update ensemble:
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Boosting Algorithm [Schapire, 1989]



We’ve assumed we have some tools to find optimal learners, either
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Boosting Algorithm [Schapire, 1989]

ℎ∗ = 𝑎𝑟𝑔𝑚𝑖𝑛
1

𝑁
 

𝑖

𝐿(𝑦𝑖 , ℎ 𝑥𝑖

𝑥𝑖 , 𝑦𝑖 𝑖=1
𝑁

ℎ∗

ℎ∗ = 𝑎𝑟𝑔𝑚𝑖𝑛
1

𝑁
 

𝑖

𝑤𝑖 ∗ 𝐿(𝑦𝑖 , ℎ 𝑥𝑖

𝑥𝑖 , 𝑦𝑖 , 𝑤𝑖 𝑖=1
𝑁

ℎ∗

or

To train the tth predictor, our job is to express the optimization 

for the new predictor in one of these forms

min
𝛼1,…,𝛼𝑀
ℎ𝑖∈𝑯

1

𝑁
 

𝒊

𝑳(𝑦𝑖 , 𝑓𝑡−1 𝑥 + 𝛼𝑡ℎ𝑡 𝑥 )

Typically done by either changing yi or wi depending on L.
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Types of Boosting
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Loss Name Loss Formula Boosting Name

Regression:

Squared Loss
L2Boosting

Regression:

Absolute Loss
Gradient Boosting

Classification:

Exponential Loss
AdaBoost

Classification:

Log/Logistic Loss
LogitBoost



L2 Boosting

• Algorithm

– On Board

(C) Dhruv Batra 56

Loss Name Loss Formula Boosting Name

Regression:

Squared Loss
L2Boosting



Adaboost

• Algorithm

– You will derive in HW4!
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Loss Name Loss Formula Boosting Name

Classification:

Exponential Loss
AdaBoost



What you should know

• Voting/Ensemble methods

• Bagging

– How to sample 

– Under what conditions is error reduced

• Boosting

– General algorithm

– L2Boosting derivation

– Adaboost derivation (from HW4)
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