VBM683 Machine Learning

Pinar Duygulu

Slides are adapted from
Dhruv Batra

Plan for Today

- Review of Probability
- Discrete vs Continuous Random Variables
- PMFs vs PDF
- Joint vs Marginal vs Conditional Distributions
- Bayes Rule and Prior
- Expectation, Entropy, KL-Divergence

Probability

- The world is a very uncertain place
- 30 years of Artificial Intelligence and Database research danced around this fact
- And then a few AI researchers decided to use some ideas from the eighteenth century

Probability

- A is non-deterministic event
- Can think of A as a boolean-valued variable
- Examples
- A = your next patient has cancer
- A = Donald Trump Wins the 2016 Presidential Election

Interpreting Probabilities

- What does $\mathrm{P}(\mathrm{A})$ mean?
- Frequentist View
- limit $\mathrm{N} \rightarrow \infty$ \#(A is true)/N
- limiting frequency of a repeating non-deterministic event
- Bayesian View
$-P(A)$ is your "belief" about A
- Market Design View
- $P(A)$ tells you how much you would bet

Presidential Winner Odds (\% chance of winning)

[^0]
(C) Dhruv Batra

Slide Credit: Andrew Moore

Axioms of Probability

- $0<=P(A)<=1$
- $\mathrm{P}($ empty-set $)=0$
- $P($ everything $)=1$
- $P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$

Interpreting the Axioms

- $0<=P(A)<=1$
- $\mathrm{P}($ empty-set $)=0$
- $P($ everything $)=1$
- $P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$

Event space of all possible worlds

Its area is 1

$P(A)=$ Area of reddish oval

Interpreting the Axioms

- $0<=P(A)<=1$
- $\mathrm{P}($ empty-set $)=0$
- $P($ everything $)=1$
- $P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$

The area of A cant get any smaller than 0

And a zero area would mean no world could ever have A true

Interpreting the Axioms

- $0<=P(A)<=1$
- $\mathrm{P}($ empty-set $)=0$
- $P($ everything $)=1$
- $P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$

The area of A cantl get any bigger than 1

And an area of 1 would mean all worlds will have A true

Interpreting the Axioms

- $0<=P(A)<=1$
- $\mathrm{P}($ empty-set $)=0$
- $P($ everything $)=1$
- $P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$

Simple addition and subtraction

Concepts

- Sample Space
- Space of events
- Random Variables
- Mapping from events to numbers
- Discrete vs Continuous
- Probability
- Mass vs Density

Discrete Random Variables

$X \longrightarrow$ discrete random variable
\mathcal{X} or $\operatorname{Val}(\mathrm{X}) \longrightarrow$
$x \in \mathcal{X} \longrightarrow$ outcome of sample of discrete random variable $p(X=x) \longrightarrow$ probability distribution (probability mass function) $p(x) \longrightarrow$ shorthand used when no ambiguity

$$
0 \leq p(x) \leq 1 \text { for all } x \in \mathcal{X}
$$

$$
\sum_{x \in \mathcal{X}} p(x)=1
$$

$$
\mathcal{X}=\{1,2,3,4\}
$$

Concepts

- Expectation
- Variance

Most Important Concepts

- Marginal distributions / Marginalization
- Conditional distribution / Chain Rule
- Bayes Rule

Joint Distribution

(C) Dhruv Batra

Marginalization

- Marginalization
- Events: $P(A)=P(A$ and $B)+P(A$ and not $B)$
- Random variables $P(X=x)=\quad P(X=x, Y=y)$

Marginal Distributions

$$
p(x, y)=\sum_{z \in \mathcal{Z}} p(x, y, z) \quad p(x)=\sum_{y \in \mathcal{Y}} p(x, y)
$$

Conditional Probabilities

- $P(Y=y \mid X=x)$
- What do you believe about $Y=y$, if I tell you $X=x$?
- P(Donald Trump Wins the 2016 Election)?
- What if I tell you:
- He has the Republican nomination
- His twitter history
- The complete DVD set of The Apprentice

Conditional Probabilities

- $\mathrm{P}(\mathrm{A} \mid \mathrm{B})=$ In worlds that where B is true, fraction where A is true
- Example
- H: "Have a headache"
- F: "Coming down with Flu"

$P(H)=1 / 10$
$P(F)=1 / 40$
$P(H \mid F)=1 / 2$
Headaches are rare and flu is rarer, but if youre coming down with flu theres a 50 50 chance youll have a headache.

Conditional Distributions

(C) Dhruv Batra

X

Conditional Probabilities

- Definition
- Corollary: Chain Rule

Independent Random Variables

$P(x, y)$

for all $x \in \mathcal{X}, y \in \mathcal{Y}$

Marginal Independence

- Sets of variables X, Y
- \mathbf{X} is independent of \mathbf{Y}
- Shorthand: $P \vdash(\mathbf{X} \perp \mathbf{Y})$
- Proposition: P satisfies $(\mathbf{X} \perp \mathbf{Y})$ if and only if
$-\mathrm{P}(\mathbf{X}=\mathbf{x}, \mathbf{Y}=\mathbf{y})=\mathrm{P}(\mathbf{X}=\mathbf{x}) \mathrm{P}(\mathbf{Y}=\mathbf{y}), \quad \forall \boldsymbol{x} \in \operatorname{Val}(\boldsymbol{X}), \forall \boldsymbol{y} \in \operatorname{Val}(\boldsymbol{Y})$

Conditional independence

- Sets of variables X, Y, Z
- \mathbf{X} is independent of \mathbf{Y} given \mathbf{Z} if
- Shorthand: $P \vdash(\mathbf{X} \perp \mathbf{Y} \mid \mathbf{Z})$
- For $P \vdash(\mathbf{X} \perp \mathbf{Y} \mid \varnothing)$, write $P \vdash(\mathbf{X} \perp \mathbf{Y})$
- Proposition: P satisfies $(\mathbf{X} \perp \mathbf{Y} \mid \mathbf{Z})$ if and only if
- $\mathrm{P}(\mathbf{X}, \mathbf{Y} \mid \mathbf{Z})=\mathrm{P}(\mathbf{X} \mid \mathbf{Z}) \mathrm{P}(\mathbf{Y} \mid \mathbf{Z}), \quad \forall \forall \boldsymbol{x} \in \boldsymbol{V a l}(\boldsymbol{X}), \forall \boldsymbol{y} \in$ $\operatorname{Val}(Y), \forall z \in \operatorname{Val}(Z)$

Concept

- Bayes Rules
- Simple yet fundamental

$$
\begin{array}{cc}
P(A \wedge B) & P(A \mid B) P(B) \\
P(A) & P(A)
\end{array}
$$

This is Bayes Rule

Bayes, Thomas (1763) An essay
towards solving a problem in the doctrine of chances. Philosophical Transactions of the Royal Society of London, 53:370418

Bayes Rule

- Simple yet profound
- Using Bayes Rules doesn't make your analysis Bayesian!
- Concepts:
- Likelihood
- How much does a certain hypothesis explain the data?
- Prior
- What do you believe before seeing any data?
- Posterior
- What do we believe after seeing the data?

New Topic: Naïve Bayes (your first probabilistic classifier)

Classification

- Learn: h:X $\mapsto Y$
- X - features
- Y - target classes
- Suppose you know $\mathrm{P}(\mathrm{Y} \mid \mathbf{X})$ exactly, how should you classify?
- Bayes classifier:

Generative vs. Discriminative

- Generative Approach
- Assume some functional form for $\mathrm{P}(\mathrm{X} \mid \mathrm{Y}), \mathrm{P}(\mathrm{Y})$
- Estimate $p(X \mid Y)$ and $p(Y)$
- Use Bayes Rule to calculate $\mathrm{P}(\mathrm{Y} \mid \mathrm{X}=\mathrm{x})$
- Indirect computation of $P(Y \mid X)$ through Bayes rule
- But, can generate a sample, $P(X)=\sum_{y} P(y) P(X \mid y)$
- Discriminative Approach
- Estimate $p(y \mid x)$ directly OR
- Learn "discriminant" function $\mathrm{h}(\mathrm{x})$
- Direct but cannot obtain a sample of the data, because $P(X)$ is not available

How hard is it to learn the optimal classifier?

- Categorical Data
- How do we represent these? How many parameters?
- Class-Prior, $\mathrm{P}(\mathrm{Y})$:
- Suppose Y is composed of k classes
- Likelihood, $\mathrm{P}(\mathrm{X} \mid \mathrm{Y})$:
- Suppose \mathbf{X} is composed of d binary features
- Complex model \rightarrow High variance with limited data!!!

Independence to the rescue

- Two variables are independent iff their joint factors:

$$
p(x, y)=p(x) p(y)
$$

- Two variables are conditionally independent given a third one if for all values of the conditioning variable, the resulting slice factors:

$$
p(x, y \mid z)=p(x \mid z) p(y \mid z) \quad \forall z
$$

The Naïve Bayes assumption

- Naïve Bayes assumption:
- Features are independent given class:

$$
\begin{aligned}
P\left(X_{1}, X_{2} \mid Y\right) & =P\left(X_{1} \mid X_{2}, Y\right) P\left(X_{2} \mid Y\right) \\
& =P\left(X_{1} \mid Y\right) P\left(X_{2} \mid Y\right)
\end{aligned}
$$

- More generally:

$$
P\left(X_{1} \ldots X_{d} \mid Y\right)=\prod_{i} P\left(X_{i} \mid Y\right)
$$

- How many parameters now?
- Suppose \mathbf{X} is composed of d binary features

The Naïve Bayes Classifier

- Given:
- Class-Prior P(Y)
- d conditionally independent features \mathbf{X} given the class Y
- For each X_{i}, we have likelihood $P\left(X_{i} \mid Y\right)$
- Decision rule:

$$
\begin{aligned}
y^{*}=h_{N B}(\mathrm{x}) & =\arg \max _{y} P(y) P\left(x_{1}, \ldots, x_{n} \mid y\right) \\
& =\arg \max _{y} P(y) \prod_{i} P\left(x_{i} \mid y\right)
\end{aligned}
$$

- If assumption holds, NB is optimal classifier!

Text classification

- Classify e-mails
- Y = \{Spam,NotSpam\}
- Classify news articles
- $\mathrm{Y}=$ \{what is the topic of the article? $\}$
- Classify webpages
- $\mathrm{Y}=\{$ Student, professor, project, ...\}
- What about the features \mathbf{X} ?
- The text!

Features \mathbf{X} are entire document X_{i} for $\mathrm{i}^{\text {th }}$ word in article

Article from rec.sport.hockey

Path: cantaloupe.srv.cs.cmu.edu!das-news.harvard. ϵ From: xxx@yyy.zzz.edu (John Doe)
Subject: Re: This year's biggest and worst (opinic Date: 5 Apr 93 09:53:39 GMT

I can only comment on the Kings, but the most obvious candidate for pleasant surprise is Alex Zhitnik. He came highly touted as a defensive defenseman, but he's clearly much more than that. Great skater and hard shot (though wish he were more accurate). In fact, he pretty much allowed the Kings to trade away that huge defensive liability Paul Coffey. Kelly Hrudey is only the biggest disappointment if you thought he was any good to begin with. But, at best, he's only a mediocre goaltender. A better choice would be Tomas Sandstrom, though not through any fault of (C) Dhruv Batra his own, but becauselidanereelitugarlon Guasdrito decided

NB for Text classification

- $\mathrm{P}(\mathbf{X} \mid \mathrm{Y})$ is huge!!!
- Article at least 1000 words, $\mathbf{X}=\left\{\mathrm{X}_{1}, \ldots, \mathrm{X}_{1000}\right\}$
- X_{i} represents $i^{\text {th }}$ word in document, i.e., the domain of X_{i} is entire vocabulary, e.g., Webster Dictionary (or more), 10,000 words, etc.
- NB assumption helps a lot!!!
- $P\left(X_{i}=x_{i} \mid Y=y\right)$ is just the probability of observing word x_{i} in a document on topic y

$$
h_{N B}(\mathbf{x})=\arg \max _{y} P(y) \prod_{i=1}^{\text {LengthDoc }} P\left(x_{i} \mid y\right)
$$

Bag of Words model

- Typical additional assumption: Position in document doesn't matter:

$$
\mathrm{P}\left(\mathrm{X}_{\mathrm{i}}=\mathrm{a} \mid \mathrm{Y}=\mathrm{y}\right)=\mathrm{P}\left(\mathrm{X}_{\mathrm{k}}=\mathrm{a} \mid \mathrm{Y}=\mathrm{y}\right)
$$

- "Bag of words" model - order of words on the page ignored
- Sounds really silly, but often works very well!

$$
P(y) \prod_{i=1}^{\text {LengthDoc }} P\left(x_{i} \mid y\right)
$$

When the lecture is over, remember to wake up the person sitting next to you in the lecture room.

Bag of Words model

- Typical additional assumption:

Position in document doesn't matter:
$P\left(X_{i}=a \mid Y=y\right)=P\left(X_{k}=a \mid Y=y\right)$

- "Bag of words" model - order of words on the page ignored
- Sounds really silly, but often works very well!

$$
P(y) \prod_{i=1}^{\text {LengthDoc }} P\left(x_{i} \mid y\right)
$$

in is lecture lecture next over person remember room
sitting the the the to to up wake when you

Bag of Words model

Object

Bag of 'words'

learning

recognition

category models

What if we have continuous X_{i} ?

Eg., character recognition: X_{i} is ith $_{\text {th }}$ pixel

Gaussian Naïve Bayes (GNB):

$$
P\left(X_{i}=x \mid Y=y_{k}\right)=\frac{1}{\sigma_{i k} \sqrt{2 \pi}} e^{\frac{-\left(x-\mu_{i k}\right)^{2}}{2 \sigma_{i k}^{2}}}
$$

Sometimes assume variance

- is independent of Y (i.e., σ_{i}),
- or independent of X_{i} (i.e., σ_{k})
- or both (i.e., σ)

[^0]: (C) Dhruv Batra

