VBMG683
Machine Learning

Pinar Duygulu

Slides are adapted from
Dhruv Batra (Virginia Tech),
J. Elder

New Topic: Neural Networks

A Motor Neuron

dendrites | |nput
Zone
{0 ——— cell body
axon
[—
axon endings —<—
Output Zone |

V2V Wadverorh Puindw Corgary 171

A simple neural network

input hidden output
layer layer layer

(C) Dhruv Batra

Two class discriminant function

y >0 T2
y=0
y<0 R
Rs
t
y(X)=wWX+w,
x
w /
. —~ r y(x)
y(x) 20— x assigned to C, i
y(X) <0 — x assigned to C, o

Thus y(X) = 0 defines the decision boundary _w

Two class discriminant function

y(X)=w'x+w,

y >0
y=20
i N y <0
y(x) <0 — x assigned to C, Y

y(x) 20— x assigned to C,

For convenience, let

f t
W = I:Wl...WM:I = I:WO Wl WM]

and
X = ["1 ...xM]f = [1 X ...)(M]f

So we can express y(X) =w'x

T2

R1

X1

-
Perceptron

y(x) >0 — x assigned to
y(x)=f(w*x+w0) | ;
y(x) <0 — x assigned to C,

A classifier based upon this simple generalized linear model is
called a (single layer) perceptron.

It can also be identified with an abstracted model of a neuron
called the McCulloch Pitts model.

X0

Ly uil
L 3 ST f >
! 7
i w

;

-
Synonyms

 Neural Networks

« Atrtificial Neural Network (ANN)
* Feed-forward Networks
« Multilayer Perceptrons (MLP)

* Types of ANN
— Convolutional Nets
— Autoencoders
— Recurrent Neural Nets

[Back with a new name]: Deep Nets / Deep Learning

(C) Dhruv Batra 6

-
Biological Neuron

A Motor Neuron

| 7— dendrites |nput
Zone
{0:—— cell body

axon

—— -
\\\-A_d NS \--.

axon endings v
Output Zone |

(C) Dhruv Batra 7

-
The Neuron Metaphor

« Neurons
— accept information from multiple inputs,
— transmit information to other neurons.

« Multiply inputs by weights along edges
* Apply some function to the set of inputs at each node

h

Sort of what a neuron 1 ™

- \ looks like %]_I
I | A Denames F j:E "‘“B‘Ex S LBD
~ - ~J7 .
- L - — €. * f (X)

W " Ty 3 B ’_,-.}\,____.-""

Call Body : -~

- Eynapse

Slide Credit: HKUST 8

-
. Types of Neurons
0o

2 f(Z,0)

O L

Linear Neuron

£
v

1 0
Ao D

2 f(Z,0)
Op

Perceptron

Logistic Neuron
N J
v

Potentially more. Require a convex

loss function for gradient descent training.

Slide Credit: HKUST 9

.
Generalized linear models

For classification problems, we want y to be a predictor of . In other
words, we wish to map the input vector into one of a number of discrete
classes, or to posterior probabilities that lie between 0 and 1.

For this purpose, it is useful to elaborate the linear model by introducing a
nonlinear activation function f, which typically will constrain y to lie between
-1 and 1 or between 0 and 1.

y(x) = f(w‘x+w0]

Log-sigmoid function Tan-sigmoid function Linear function

1

0.9

0.8

0.7r

0.6

0.5r

0.4

0.31

0.2r

0.1-

0

g(wo + Y wiz) =

Wy=2, w;=1

-6

-4

-2

(C) Dhruv Batra

Sigmoid

1
1 4 e~ (wot+22; wizs)

w,=0, w;=1

w,=0, w;=0.5

0.9

0.8

0.7r

0.6

0.5r

0.4

0.31

0.2r

0.1-

Slide Credit: Carlos Guestrin 11

-
Case 1: Linearly separable inputs

For starters, let’s assume that the training data is in
fact perfectly linearly separable.

In other words, there exists at least one hyperplane
(one set of weights) that yields O classification error.

We seek an algorithm that can automatically find

such a hyperplane. + X,

* &
3
* &

-
The Perceptron algorithm

-1 The perceptron algorithm was
invented by Frank Rosenblatt
(1962).

=1 The algorithm is iterative.

7 The strategy is to start with a .
random guess at the weights w, Frank Rosenblatt (1928 - 1971)
and to then iteratively change
the weights to move the
hyperplane in a direction that
lowers the classification error.

-
The Perceptron algorithm

Note that as we change the weights continuously,
the classification error changes in discontinuous,
piecewise constant fashion.

Thus we cannot use the classification error per se as
our objective function to minimize.

What would be a better objective function?

-
The Perceptron criterion

Note that we seek w such that

w'x >0 when f = +1

w'x <0 when f = -1

In other words, we would like
w'x t >0Vn

Thus we seek to minimize

E.(w)=-> wxt

neM
where M is the set of misclassified inputs.

-
The Perceptron criterion

E.(w)=-> wxt

neM
where M is the set of misclassified inputs.

Observations:

Ec(w) is always non-negative.

E.(w) is continuous and
piecewise linear, and thus
easier to minimize.

-
The Perceptron algorithm

E.(w)=-> wxt

neM
where M is the set of misclassified inputs.

dE_(w
% = _nemx”tﬂ' EP (W)

where the derivative exists.

Gradient descent:

W =w —nVE,_(W)=w"+1) Xt \/
neM

-
The Perceptron algorithm

w'=w' -nVE,(w)=w'+nY Xt
neM

Why does this make sense?

If an input from C,(t = +1) is misclassified, we need to
make its projection on w more positive.

If an input from C, (t = -1) is misclassified, we need to
make its projection on w more negative.

-
The Perceptron algorithm

The algorithm can be implemented sequentially:

Repeat until convergence:
For each input (x,, t):
If it is correctly classified, do nothing
If it is misclassified, update the weight vector to be

T+1

—_— T
wl=w'+nx t

Note that this will lower the contribution of input n to the
objective function:

_(w(r))t xntn - _(w{rﬂ))t xntn = _(wm)t xntn - n(xntn)! xntn < _(wm)t x”t”'

R
Not monotonic

While updating with respect to a misclassified input
n will lower the error for that input, the error for
other misclassified inputs may increase.

Also, new inputs that had been classified correctly
may now be misclassified.

The result is that the perceptron algorithm is not
guaranteed to reduce the total error monotonically
at each stage.

e perceptron convergence

theorem

Despite this non-monotonicity, if in fact the data are
linearly separable, then the algorithm is
guaranteed to find an exact solution in a finite
number of steps (Rosenblatt, 1962).

-
Example

=
L

2

=1

-
The first learning machine

o Mark 1 Perceptron Hardware (c. 1960)

Visual Inputs Patch board allowing Rack of adaptive weights w
configuration of inputs @ (motor-driven potentiometers)

R
Practical limitations

The Perceptron Convergence Theorem is an
important result. However, there are practical
limitations:
Convergence may be slow
If the data are not separable, the algorithm will not
converge.
We will only know that the data are separable once
the algorithm converges.
The solution is in general not unique, and will depend
upon initialization, scheduling of input vectors, and the
learning rate 7).

Generalization to not linearly
separable inputs

The single-layer perceptron can be generalized to
yield good linear solutions to problems that are not
linearly separable.

Example: The Pocket Algorithm (Gal 1990)

ldea:
Run the perceptron algorithm

Keep track of the weight vector w* that has produced the
best classification error achieved so far.

It can be shown that w* will converge to an optimal solution
with probability 1.

Generalization to multiclass
problems

How can we use perceptrons, or linear classifiers in
general, to classify inputs when there are K > 2
classes?

A

A J

.
K>2 classes

ldea #1: Just use K-1 discriminant functions, each of
which separates one class (; from the rest. (One-

versus-the-rest classifier.)

Problem: Ambiguous regions

.
K>2 classes

ldea #2: Use K(K-1) /2 discriminant functions, each
of which separates two classes C;, (; from each
other. (One-versus-one classifier.)

Each point classified by majority vote.

Problem: Ambiguous regions

.
K>2 classes

Idea #3: Use K discriminant functions y, (x)

Use the magnitude of y,(x), not just the sign.

y,(X)=w,x
x assigned to C, if y, (x) > y,(X)Vj#k
Decision boundary y, (x) =y (x) — (wk - 'irvj)r x+(wm - wj0)= 0

Results in decision regions that are
simply-connected and convex.

-
1-of-K coding scheme

When there are K>2 classes, target variables can
be coded using the 1-of-K coding scheme:

Input from Class C, < t=[00 ...1...0 O]

Element i

-
Computational limitations of
perceptrons

Initially, the perceptron was
thought to be a potentially
powerful learning machine that
could model human neural

processing. o e o
However, Minsky & Papert
(1969) showed that the single- _
layer perceptron could not learn o
a simple XOR function.

® ®

This is just one example of a
non-linearly separable pattern Marvin Minsky (1927 -)
that cannot be learned by a

single-layer perceptron.

R
Limitation

* A single “neuron’ is still a linear decision boundary

« What to do?

 Idea: Stack a bunch of them together!

(C) Dhruv Batra 32

Multilayer Networks

« Cascade Neurons together
« The output from one layer is the input to the next
« [Each Layer has its own sets of weights

Slide Credit: HKUST 33

-
Multi-layer perceptrons

Minsky & Papert’s book was widely input values

misinterpreted as showing that
artificial neural networks were input layer
inherently limited.

This contributed to a decline in the weight matrix 1
reputation of neural network
research through the 70s and 80s. hidden layer

However, their findings apply only
to single-layer perceptrons. Multi-
layer perceptrons are capable of
learning highly nonlinear functions,
and are used in many practical
applications.

welght matrix 2

output layer

output values

—
Universal Function Approximators

* Theorem

— 3-layer network with linear outputs can uniformly
approximate any continuous function to arbitrary accuracy,
given enough hidden units [Funahashi '89]

(C) Dhruv Batra 35

Feed-Forward Networks

* Predictions are fed forward through the network to
classify

Slide Credit: HKUST 36

Feed-Forward Networks

* Predictions are fed forward through the network to
classify

Slide Credit: HKUST 37

s
Feed-Forward Networks

* Predictions are fed forward through the network to
classify

o 0o0 Ve

Slide Credit: HKUST 38

s
Feed-Forward Networks

* Predictions are fed forward through the network to
classify

o 0o0 L

Slide Credit: HKUST 39

s
Feed-Forward Networks

* Predictions are fed forward through the network to
classify

o 0o0 L 01,0 Ve

Slide Credit: HKUST 40

s
Feed-Forward Networks

* Predictions are fed forward through the network to
classify

o 0o0 L) 01,0 Ve

02,0
ot 951 ™ ,
D e
I) _ (92,2
9(;,3 0,

Slide Credit: HKUST 41

-
Implementing logical relations

= AND and OR operations are linearly separable problems
4 5}
AND OR
B A LA ~A
*0,1) L) ¥(0,1) (kY
£0.0) J(1.0) " £0,0) - o(1.0) -
B B) B A L)

XOR problem

XOR is not linearly separable.

XA

X4 X5 XOR | Class @A i
0 0 0 B
0 1 1 A
1 0 1 A
1 1 0 B
4B JA l
0 i @

How can we use linear classifiers to solve this
problem?

-
Combining two linear classifiers

ldea: use a logical combination of two linear
classifiers.

-
Combining two linear classifiers

Let f(x) be the unit step activation function:
f(x)=0, x<O0
f(x)=1 x=0

Observe that the classification problem is then solved by

1
F[VI_YZ_EJ gz(x}=x]+xz—g \

where
y, = F(gl(x)) and y, = F(gz(x))

Combining two linear classifiers

This calculation can be implemented sequentially:
Compute y,; and y, from x, and x,.

Compute the decision from y, and y..
Each layer in the sequence consists of one or more linear classifications.

This is therefore a two-layer perceptron.

1 -
(s

where
Y, = F(gl(X)) and y, = F(gz(XJ)

1
gl(x) =X tX, - 2

B
.mT

-
Two-layer perceptron

Layer 1 Layer 2
X3 X2 Y1 Y2
0 0 0(-) 0(-) B(0)
0 1 1(+) | 0(-) A(1)
1 0 1(+) | 0(-) A(1)
1 1 1(+) | 1(+) | B(0)
g,(x) = x, +x, - % » Layer 1

1
g,(x)=x +x, - >

0,07

1
frent

where
y, =F(g,(x) and y, = F(g,(x))

-
Two-layer perceptron

The first layer performs a nonlinear mapping that
makes the data linearly separable.

Y, = F(gl(x)) and y, = F(gz(x))

I

Layer 1

1
gl(x) =X +xz_z

L
0,0 z (0,0)

-
Two-layer perceptron

Input Layer Hidden Layer Output Layer
1
1 QI(X} ZX1+ X, = E
X > A
. N ~—
_) ~_ 1
- ""\”\R. _ l
7 A , -1
. gz(x) =X X, - 5 -.///'/_,‘-/-'/ N 1
g 1 —~_— 2
) s

-
Two-layer perceptron

Note that the hidden layer maps the plane onto the
vertices of a unit square.

y, =f (gl(x)) and y, = f (gz(X))

3
9,(x) = x +x, - 2.4 Layer 1

-
Higher dimensions

Each hidden unit realizes a hyperplane discriminant function.

The output of each hidden unit is O or 1 depending upon the
location of the input vector relative to the hyperplane.

\\’ - S N . <> A
S , .
~ S
\" T |) ¢ [
4 N
Ty -
@, o > N
R! ‘
Xe Y e T .
: x—>y=[y,.»,1.»e{0,1}i=1L2,.p

- e we wow S R

-
Higher dimensions

Together, the hidden units map the input onto the vertices of a
p-dimensional unit hypercube.

- p —
- &
- #
d s o,
&

x‘, .-—,.‘/J'" - - N, . ‘\J" -

T
xe R x—=>y=[y..»,I.»e{0.1}i=12.p

-
Two-layer perceptron

These p hyperplanes partition the I-dimensional input space
info polyhedral regions

Each region corresponds to a different vertex of the p-
dimensional hypercube represented by the outputs of the
hidden layer.

-
Two layer perceptron

In this example, the vertex (0, 0, 1) corresponds to the region
of the input space where:

g,(x) <0
g,(x) <0
93(’() >0

011 _ i

oio7 1o
001 101
g i g
B

000 *100 I

T TTmanons or a two-tayer e

perceptron

The output neuron realizes a hyperplane in the
transformed space that partitions the p
vertices into two sets.

Thus, the two layer perceptron has the
capability to classify vectors into classes that
consist of unions of polyhedral regions.

But union. It depends on the
relative position of the corresponding vertices.

How can we solve this problem?

-
Three layer perceptron

Suppose that Class A consists of the union of K polyhedra in the input space.
Use K neurons in the 2™ hidden layer.
Train each to classify one Class A vertex as positive, the rest negative.

Now use an output neuron that implements the OR function.

" Y
x' /\ — _,.—/'-'_ fo—— —
“, e — — i
N, T i & S _-:"‘:"t :‘
N " A/ \ o S e N
X DT
Ly O S = ~ S ..
. A /./ S N A —
Iy Ve ~ . —— o
" /,a IL S - \// . ~— \-—.-
SN\ < AN : A
K X . KN : -
- N . ey S~ S = <>
7 o~ \\ ", " # S - o
/ ;1 RN . / 3) -
yvd AN . - N)
. y _’/ \\\\\ . //') — - \._____/
v Ny NS T]
Xy N

input 1"hidden 2" hidden output
layer layer laver laver

-
Three layer perceptron

Thus the three-layer perceptron can separate
classes resulting from any union of polyhedral
regions in the input space.

ﬂ;' O —{ e
~— P A —
N 7 N —
, T T . T
b el s ’ : =
N - hd ", P \
‘/,_..-\'\ /‘/-.._Hm -) N —) / | -
3’32 b > ::{ r ™ < =,
\;\\ S N £ y -
// ~ S / . .
%) o +{ —»
AN S ““x_hy_-{ N . N y
S /ﬁ\ . P SN
s N . / N - ¢
/'-f N . . " -
-4 <N . / N
// e, . e "_%H/ ™
i ‘u\\\ . //' N
y Sy S e cl
:L"r q { e
[\1/.

input 1*hidden 2" hidden output
layer layer laver laver

Three layer perceptron

The first layer of the network forms the hyperplanes in the input space.
The second layer of the network forms the polyhedral regions of the input
space
The third layer forms the appropriate unions of these regions and maps
each to the appropriate class.
\.\ -Hi“ﬂ.,ﬁﬂ}{ra,’T‘/ // T o T — :.._:_’{’-" ---._L.
N T A S Y " N T
A e —< > /}z S~ N\ _— S // 1 - —
2 , 7)(,:"“*»,\ ™ < e
‘_\ // P s - "\ e T
N J O N ¢ ~()
N - A NS
}(Y) /Y-,_‘H \
/IN : NN 7 &
// -~ \\\ \\ / N -
/S N\ S >
e /ﬂ \\Q\\\}r"""‘x e P 7 - J
X < (
input 1"hidden 2" hidden output
layer layer laver laver

eesCcammag parareters — trammg.

data

The training data consist of N input-output pairs:

(y().x(i)), i€l..N

where

yi) =[5y,)]

and

-
Choosing an activation function

The unit step activation function means that the error
rate of the network is a discontinuous function of the
weights.

This makes it difficult to learn optimal weights by
minimizing the error.

To fix this problem, we need to use a smooth
activation function.

A popular choice is the sigmoid function we used for
logistic regression:

R
Smooth activation function

f(a)= 1+ exp(-a)

- e e we ww IR ==

-
Output : Two classes

For a binary classification problem, there is a single
output node with activation function given by

1
(@)= 1+ exp(—a)

Since the output is constrained to lie between O and
1, it can be interpreted as the probability of the
input vector belonging to Class 1.

-
Output: K> 2 classes

For a K-class problem, we use K outputs, and the
softmax function given by

exp(a,)

Y= ;exp(aj)

Since the outputs are constrained to lie between O
and 1, and sum to 1, y, can be interpreted as the
probability that the input vector belongs to Class K.

R
Non-convex

Now each layer of our multi-layer perceptron is a
logistic regressor.

Recall that optimizing the weights in logistic regression
results in a convex optimization problem.

Unfortunately the cascading of logistic regressors in the
multi-layer perceptron makes the problem non-convex.

This makes it difficult to determine an exact solution.

Instead, we typically use gradient descent to find a
locally optimal solution to the weights.

The specific learning algorithm is called the
backpropagation algorithm.

-
Backpropagation algorithm

Paul J. Werbos. Beyond Regression: New Tools for Prediction and
Analysis in the Behavioral Sciences. PhD thesis, Harvard University,
1974

Rumelhart, David E.; Hinton, Geoffrey E., Williams, Ronald J. (8
October 1986). "Learning representations by back-propagating
errors'. Nature 323 (6088): 533-536.

Rumelhart Hinton

Notation

o1 Assume a network with L layers
ko, nodes in the input layer.

k. nodes in the r’th layer.

VORKEN =1 r

R
Notation

Let ¥/~ be the output of the kth neuron of layer r - 1.

Let w’ be the weight of the synapse on the jth neuron of layer r

from the kth neuron of layer r —1.

VORKEN r-1 '

Notation

Let v© be the total input to the jth neuron of layer r:
t Koy
Vi) = (W) ¥ = 2wy D

where we define y;(f) = +1 to incorporate the bias term.

Then y'(i) = F(v;(f’)) = F[EW;Y;_IU)]

R
Cost function

A common cost function is the squared error:

k

oA Ll A \2 1 & . ~ ;. \2
where e(j) £ Ez(em"’) = Eé(ymm -5 ()
and
y (i) = yi (i) is the output of the network.

R
Cost function

To summarize, the error for input i is given by
ki_ kL

oli) = 5 2 (e,0) = 29,0 -, 0]

m=1 m=1

where y (i) = y.(i) is the output of the output layer
and each layer is related to the previous layer through
yo(i) = £(v(7)

and

vi(i) = (w;)r y (i)

R
Gradient descent

k K,

() =23 (e,) = X (5,0 -y,

m=1 m=1
Gradient descent starts with an initial guess at the weights over all
layers of the network.

We then use these weights to compute the network output y(i) for
each input vector x(i) in the training data.

This allows us to calculate the error € (i) for each of these inputs.

Then, in order to minimize this error, we incrementally update the
weights in the negative gradient direction:

9T N ooe() o
w' (new) = w'(old) - ©t — = w'(old) - DT oM
new) = wi(0d) - S = wileld) - w3 TS

Gradient descent

f
Since /(i) = (w}) v,
the influence of the jth weight of the rth layer on the error can
be expressed as:

de(i) _ de(i) ov; (1)

ow V(i) ow’ <
= &"(i)y™"(i) ;g
where /
57(i) & oe(i) ¥
’ av;(i)

Gradient descent

oe(i)
aw;

= &7()y(i),

where

N0
%= ov' (i)

For an intermediate layer r,
we cannot compute Sj(f) directly.

However, 3;(:') can be computed inductively,

starting from the output layer.

-
Backpropagation: Output layer

af(l’) _ F e F=ly- rfeay A BE(")

aw; =0 ()y™ (i), where 3J.(f) = av:(f)
Ll KU B)2

and (i) = E;(emm] = g;(mn -y, ()

Recall that y_(i) = Yi(") = F(VJL'U))

Thus at the output layer we have

de(i) _ de(i) (i) _
av (i) e (i) ov (i)

84(i) = ej(f)f'(vj_(f})

— f'(a) = f(a)(1-f(a))

f(a)

- 1+exp(-a)

84(0) = e)f (vi(i) (1 - £ (vi(0))

-
Backpropagation: Hidden layers

Observe that the dependence of the error on the total input to a neuron in
a previous layer can be expressed in terms of the dependence on the total
input of neurons in the following layer:

570 =)3 2D D3 50 avr-f') RN TS
V(i) gov (D oviT() S av"(i) ,, T~ _E/
_ =3 _f___,.a- b= ! ~——a
k.r—l l"“.»-—1 ; Uy I,—F-’"a;f--f-/ ?
where v/ (i) = 2 w, vy i(i) = ZWLHF(V;_IU)) @—E\/”: e E‘ <.
m=0 m=0 ¢ e
(i O 5T
Thus we have A = w’_F’(v’f"(i}) kf:_[e e
av;-I(;) WA " :
r=lg:y aE(f} e, -1 < PN, : : < o\,
and so &77'(i) =) =f (VJ_ ‘(f])g:‘ﬁk(r)wﬂ = F(Vj_(l])(l - F(vﬁ(f)))éﬁk(;}wﬁ

Thus once the 6;(1‘} are determined they can be propagated backward

to calculate 6;‘1(:‘) using this inductive formula.

Repeat until convergence

the algorithm

Initialization
Initialize all weights with small random values
Forward Pass
For each input vector, run the network in the forward direction, calculating:
i =(w) yi: i) =F(vi0))
% P
and finally &(7) = %mz;(em(f))z = 2(§.()-y, ()

Backward Pass

1
2

Starting with the output layer, use our inductive formula to compute the 5;"1(:') :

Output Layer (Base Case): §(7) = e*(i)F" (Vj(;)]
K

Hidden Layers (Inductive Case): 87(7) = F’(v;'l{;‘))zfs;" (iw,,
k=1

Update Weights

N) .
w’ (new) = w’ (old) - pg‘ 2;5? where aBETU’) = Sg(i)y"l(f)

j

Batch versus online learning

As described, on each iteration backprop updates
the weights based upon all of the training data.
This is called batch learning.

w:_(new) =W/ (old) - ,ui 9e(i)

i=1

where de(i) = 8" (i)y"'(i)
ow" !

J

r

An alternative is to update the weights after each
training input has been processed by the network,

based only upon the error for that input. This is
called online learning.

de(i)

w’ (new) = w'(old) - u where —— = §"(i)y"'(y)
4 J awr J
Jd

de(i)

J

-
Batch versus online learning

One advantage of batch learning is that averaging
over all inputs when updating the weights should
lead to smoother convergence.

On the other hand, the randomness associated with

online learning might help to prevent convergence
toward a local minimum.

Changing the order of presentation of the inputs
from epoch to epoch may also improve results.

R
Neural Nets

« Best performers on OCR
— http://lyann.lecun.com/exdb/lenet/index.html

« NetTalk

— Text to Speech system from 1987
— http://youtu.be/tXMaFhO6dlY?t=45m15s

* Rick Rashid speaks Mandarin
— http://lyoutu.be/Nu-nlQgFCKg?t=7m30s

(C) Dhruv Batra 80

http://yann.lecun.com/exdb/lenet/index.html
http://youtu.be/tXMaFhO6dIY?t=45m15s
http://youtu.be/Nu-nlQqFCKg?t=7m30s

-
Convergence of backprop

« Perceptron leads to convex optimization
— Gradient descent reaches global minima

« Multilayer neural nets not convex
— Gradient descent gets stuck in local minima
— Hard to set learning rate

— Selecting number of hidden units and layers = fuzzy
process

— NNs had fallen out of fashion in 90s, early 2000s

— Back with a new name and significantly improved
performance!!!!
* Deep networks
— Dropout and trained on much larger corpus

(C) Dhruv Batra Slide Credit: Carlos Guestrin 81

R
Convolutional Nets

« Example:
— http://lyann.lecun.com/exdb/lenet/index.html

C3: f. maps 16@10x10

C1: feature maps S4: f. maps 16@5x5

INPUT
39%32 6@28x28

S2: f. maps

C5: layer .
6@14x14 Yer Ee:layer OUTPUT

‘ Full conrjlection Gaussian connections
Convolutions Subsampling Convolutions Subsampling Full connection

(C) Dhruv Batra Image Credit: Yann LeCun, Kevin Murphy 82

http://yann.lecun.com/exdb/lenet/index.html

Building an Object Recognition System

“CA Rll

T

IDEA: Use data to optimize features for the given task.

2

L]
Slide Credit: Marc'Aurelio Ranzato Ranzato » ’

Building an Object Recognition System

“CA Rll

CLASSIFIER

What we want: Use parameterized function such that
a) features are computed efficiently
b) features can be trained efficiently

3

L]
Slide Credit: Marc'Aurelio Ranzato Ranzato » ’

Building an Object Recognition System

END-TO-END
RECOGNITION

SYSTEM

- Everything becomes adapfive.
- No distiction between feature extractor and classifier.
- Big non-linear system trained from raw pixels fo labels.

4

L]
Slide Credit: Marc'Aurelio Ranzato Ranzato » ’

Visualizing Learned Filters

E

1NN

s NS

Tl | s

AN
1111

(C) Dhruv Batra

Figure Credit: [Zeiler & Fergus ECCV14]

86

-
Visualizing Learned Filters

(C) Dhruv Batra Figure Credit: [Zeiler & Fergus ECCV14] 87

(C) Dhruv Batra Figure Credit: [Zeiler & Fergus ECCV14]

