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What is a Model?

1. Often Describe Relationship between 

Variables

2. Types
- Deterministic Models (no randomness)

- Probabilistic Models (with randomness)
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Deterministic Models

1. Hypothesize Exact Relationships

2. Suitable When Prediction Error is Negligible

3. Example: Body mass index (BMI) is measure of body 

fat based

– BMI =   Weight in Kilograms

(Height in Meters)2
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Probabilistic Models

1. Hypothesize 2 Components

• Deterministic

• Random Error

2. Example: Systolic blood pressure of newborns Is 6 

Times the Age in days + Random Error

• SBP = 6 x age(d) + 

• Random Error May Be Due to Factors Other Than age 

in days (e.g. Birthweight)
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Types of 

Probabilistic Models

Probabilistic

Models

Regression

Models

Correlation

Models

Other

Models



Simple Regression

• Simple regression analysis is a statistical tool that gives us the 
ability to estimate the mathematical relationship between a 
dependent variable (usually called y) and an independent 
variable (usually called x).

• The dependent variable is the variable for which we want to 
make a prediction. 

• While various non-linear forms may be used, simple linear 
regression models are the most common.



Introduction

• The primary goal of quantitative analysis 
is to use current information about a 
phenomenon to predict its future behavior.

• Current information is usually in the form 
of a set of data. 

• In a simple case, when the data form a set 
of pairs of numbers, we may interpret 
them as representing the observed values 
of an independent (or predictor or 
explanatory) variable  X and a dependent ( 
or response or outcome) variable  Y. 

lot size Man-hours

30 73

20 50

60 128

80 170

40 87

50 108

60 135

30 69

70 148

60 132



Introduction

• The goal of the analyst who studies 

the data is to find a functional 

relation

between the response variable y 

and the predictor variable x.
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Pictorial Presentation of Linear Regression Model
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Types of 

Regression Models

Regression

Models

Linear
Non-

Linear

2+ Explanatory
Variables

Simple Multiple

Linear

1 Explanatory
Variable

Non-

Linear



Wenjiang Fu

Linear Regression Model





Assumptions

• Linear regression assumes that… 
– 1. The relationship between X and Y is 

linear

– 2. Y is distributed normally at each value of 
X

– 3. The variance of Y at every value of X is 
the same (homogeneity of variances)

– 4. The observations are independent



Y

Y = mX + b

b = Y-intercept

X

Change

in Y

Change in X

m = Slope

Linear Equations

© 1984-1994 T/Maker Co.



• 1. Relationship Between Variables Is a 

Linear Function

Y Xi i i    0 1

Linear Regression Model

Dependent 

(Response) 

Variable

(e.g., CD+ c.)

Independent 

(Explanatory) Variable 

(e.g., Years s. serocon.)

Population 

Slope

Population 

Y-Intercept

Random 

Error



Meaning of Regression Coefficients

• The values of the regression parameters 0, and 1 are not 

known. We estimate them from data. 

• 1 indicates the change in the mean response per unit 

increase in X.

• General regression model

1. 0, and 1 are parameters

2. X is a known constant

3. Deviations  are independent N(o, 2) 



Y

X

Population Linear 

Regression Model

Y Xi i i    0 1

  iXYE 10  

Observed

value

Observed value

i = Random error



Estimating Parameters:

Least Squares Method
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Scatter plot

• 1. Plot of All (Xi, Yi) Pairs

• 2. Suggests How Well Model Will Fit



Thinking Challenge

How would you draw a line through the 

points?   How do you determine which line 

‘fits best’? 
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Thinking Challenge
How would you draw a line through the 

points?   How do you determine which line 
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What is the best fitting line



Prediction Error



Least Squares

• 1. ‘Best Fit’ Means Difference Between Actual Y 

Values & Predicted Y Values Are a Minimum. But

Positive Differences Off-Set Negative. So square 

errors!

• 2. LS Minimizes the Sum of the Squared 

Differences (errors) (SSE)
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Least Squares Graphically
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Coefficient Equations

• Prediction equation

• Sample slope

• Sample Y - intercept
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Derivation of Parameters (1)

• Least Squares (L-S): 

Minimize squared error

xy 10
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Derivation of Parameters (1)

• Least Squares (L-S): 

Minimize squared error
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Computation Table

Xi Yi Xi
2

Yi
2

XiYi

X1 Y1 X1
2

Y1
2

X1Y1

X2 Y2 X2
2

Y2
2

X2Y2

: : : : :

Xn Yn Xn
2

Yn
2

XnYn

Xi Yi Xi
2

Yi
2

XiYi
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Interpretation of Coefficients

• 1. Slope (1)

– Estimated Y Changes by 1 for Each 1 Unit Increase in X

• If 1 = 2, then Y Is Expected to Increase by 2 for Each 1 Unit Increase 

in X

• 2. Y-Intercept (0)

– Average Value of Y When X = 0

• If 0 = 4, then Average Y Is Expected to 

Be 4 When X Is 0
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Parameter Estimation Example

• Obstetrics: What is the relationship between

Mother’s Estriol level & Birthweight using the 

following data?

Estriol Birthweight

(mg/24h) (g/1000)

1 1

2 1

3 2

4 2

5 4
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Birthweight vs. Estriol level

Birthweight

Estriol level
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Parameter Estimation Solution 

Table

Xi Yi Xi
2

Yi
2

XiYi

1 1 1 1 1

2 1 4 1 2

3 2 9 4 6

4 2 16 4 8

5 4 25 16 20

15 10 55 26 37
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Parameter Estimation Solution
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How to estimate parameters



Estimating the intercept and slope: least 

squares estimation

** Least Squares Estimation

A little calculus….

What are we trying to estimate?  β, the slope, from 

What’s the constraint?  We are trying to minimize the squared distance (hence the “least squares”) 

between the observations themselves and the predicted values , or   (also called the “residuals”, or left-

over unexplained variability)

Differencei = yi – (βx + α)     Differencei2 = (yi – (βx + α)) 2

Find the β that gives the minimum sum of the squared differences.  How do you maximize a function? Take 

the derivative; set it equal to zero; and solve.  Typical max/min problem from calculus….

From here takes a little math trickery to solve for β…
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The standard error of Y given X is the average variability around the regression line at any given 

value of X.  It is assumed to be equal at all values of X.
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*Least squares 

estimation gave us the 

line (β) that minimized 
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SStotal

Total squared distance of 
observations from naïve mean of y

Total variation

SSreg

Distance from regression line to naïve mean of 

y 

Variability due to x (regression)

SSresidual

Variance around the regression line 

Additional variability not explained by 

x—what least squares method aims to 

minimize
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Regression Picture

R2=SSreg/SStotal



Regression Line

• If the scatter plot of our sample data suggests a linear 
relationship between two variables i.e. 

we can summarize the relationship by drawing a straight 
line on the plot.

• Least squares method give us the “best” estimated line for 
our set of sample data.

xy 10  



Regression Line

• We will write an estimated regression line based on sample 

data as

• The method of least squares chooses the values for b0, and 

b1 to minimize the sum of squared errors
xbby 10
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Regression Line

• Using calculus, we obtain estimating formulas:

or
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Types of 

Probabilistic Models

Probabilistic

Models

Regression

Models

Correlation

Models

Other

Models
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• Both variables are treated the same in correlation; in 
regression there is a predictor and a response

• In regression the x variable is assumed non-random or 
measured without error

• Correlation is used in looking for relationships, regression for 
prediction

Correlation vs. regression
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Correlation Models

• 1. Answer ‘How Strong Is the Linear Relationship 

Between 2 Variables?’

• 2. Coefficient of Correlation Used

– Population Correlation Coefficient Denoted 

 (Rho)

– Values Range from -1 to +1

– Measures Degree of Association

• 3. Used Mainly for Understanding



Covariance
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cov(X,Y) > 0       X and Y are positively correlated

cov(X,Y) < 0       X and Y are inversely correlated

cov(X,Y) = 0       X and Y are independent

Interpreting Covariance



Correlation coefficient

 Pearson’s Correlation Coefficient is 
standardized covariance (unitless):

yx

yxariance
r

varvar

),(cov




Correlation

• Measures the relative strength of the 
linear relationship between two variables

• Unit-less

• Ranges between –1 and 1

• The closer to –1, the stronger the negative linear 

relationship

• The closer to 1, the stronger the positive linear 

relationship

• The closer to 0, the weaker any positive linear 

relationship
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• 1. Pearson Product Moment Coefficient of Correlation 

between x and y:

Sample Coefficient 

of Correlation
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Coefficient of Correlation 

Values

-1.0 +1.00-.5 +.5
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Coefficient of Correlation 

Values

-1.0 +1.00-.5 +.5

No 

Correlation
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Coefficient of Correlation 

Values

-1.0 +1.00

Increasing degree of 

negative correlation

-.5 +.5

No 

Correlation
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Coefficient of Correlation 

Values

-1.0 +1.00-.5 +.5

Perfect 

Negative 

Correlation

No 

Correlation



EPI 809/Spring 2008 64

Coefficient of Correlation 

Values

-1.0 +1.00-.5 +.5

Perfect 

Negative 

Correlation

No 

Correlation

Increasing degree of 

positive correlation
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Coefficient of Correlation 

Values

-1.0 +1.00

Perfect 

Positive 

Correlation

-.5 +.5

Perfect 

Negative 

Correlation

No 

Correlation



Scatter Plots of Data with 
Various Correlation 

Coefficients
Y

X

Y

X

Y

X

Y

X

Y

X

r = -1 r = -.6 r = 0

r = +.3r = +1

Y

X
r = 0

Slide from: Statistics for Managers Using Microsoft® Excel  4th Edition, 2004 Prentice-Hall



Y

X
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X

Linear relationships Curvilinear relationships

Linear Correlation

Slide from: Statistics for Managers Using Microsoft® Excel  4th Edition, 2004 Prentice-Hall
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Strong relationships Weak relationships

Linear Correlation

Slide from: Statistics for Managers Using Microsoft® Excel  4th Edition, 2004 Prentice-Hall



Linear Correlation

Y

X

Y

X

No relationship

Slide from: Statistics for Managers Using Microsoft® Excel  4th Edition, 2004 Prentice-Hall



Calculating by hand…
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Simpler calculation formula…
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Least Square estimation

Slope (beta coefficient) =

)(

),(ˆ
xVar

yxCov


),( yx

x̂-yˆ :Calculate  Intercept=

Regression line always goes through the point:



Relationship with correlation

y

x

SD

SD
r ̂ˆ 

In correlation, the two variables are treated as equals.  In regression, one variable is considered independent (=predictor) variable 

(X) and the other the dependent (=outcome) variable Y.



Residual Analysis: check 

assumptions

• The residual for observation i, ei, is the difference between its observed and 
predicted value

• Residuals are highly useful for studying whether a given regression model is appropriate 

for the data at hand.

• Check the assumptions of regression by examining the residuals

– Examine for linearity assumption

– Examine for constant variance for all levels of X (homoscedasticity)  

– Evaluate normal distribution assumption

– Evaluate independence assumption

• Graphical Analysis of Residuals

– Can plot residuals vs. X

iii YYe ˆ



Residual = 

observed - predicted
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Residual Analysis for 

Linearity

Not Linear Linear
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Slide from: Statistics for Managers Using Microsoft® Excel  4th Edition, 2004 Prentice-Hall



Residual Analysis for 
Homoscedasticity 

Non-constant variance 
Constant variance
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Slide from: Statistics for Managers Using Microsoft® Excel  4th Edition, 2004 Prentice-Hall



Residual Analysis for 
Independence

Not Independent

Independent
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Slide from: Statistics for Managers Using Microsoft® Excel  4th Edition, 2004 Prentice-Hall



Example: weekly advertising expenditure

y x y-hat Residual (e)

1250 41 1270.8 -20.8

1380 54 1411.2 -31.2

1425 63 1508.4 -83.4

1425 54 1411.2 13.8

1450 48 1346.4 103.6

1300 46 1324.8 -24.8

1400 62 1497.6 -97.6

1510 61 1486.8 23.2

1575 64 1519.2 55.8

1650 71 1594.8 55.2



Estimation of the variance of the error terms, 2

• The variance 2 of the error terms i in the regression 

model needs to be estimated for a variety of purposes.

– It gives an indication of the variability of the probability 

distributions of y.

– It is needed for making inference concerning regression function 

and the prediction of y. 



Regression Standard  Error

• To estimate  we work with the variance and take the 
square root to obtain the standard deviation.

• For simple linear regression the estimate of 2 is the 
average squared residual.

• To estimate  , use  

• s estimates the standard deviation  of the error term  in 
the statistical model for simple linear regression. 
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Regression Standard  Error

y x y-hat Residual (e) square(e)

1250 41 1270.8 -20.8 432.64

1380 54 1411.2 -31.2 973.44

1425 63 1508.4 -83.4 6955.56

1425 54 1411.2 13.8 190.44

1450 48 1346.4 103.6 10732.96

1300 46 1324.8 -24.8 615.04

1400 62 1497.6 -97.6 9525.76

1510 61 1486.8 23.2 538.24

1575 64 1519.2 55.8 3113.64

1650 71 1594.8 55.2 3047.04

y-hat = 828+10.8X total 36124.76

Sy .x 67.19818



Residual plots
• The points in this 

residual plot have a 

curve pattern, so a 

straight line fits poorly



Residual plots
• The points in this plot 

show more spread for 

larger values of the 

explanatory variable x, 

so prediction will be 

less accurate when x is 

large.



Variable transformations

• If the residual plot suggests that the variance is not constant, 
a transformation can be used to stabilize the variance.

• If the residual plot suggests a non linear relationship 
between x and y, a transformation may reduce it to one that 
is approximately linear.

• Common linearizing transformations are:

• Variance stabilizing transformations are:)log(,
1

x
x

2,),log(,
1

yyy
y



2 predictors: age and vit D…



Different 3D view…



Fit a plane rather than a line…

On the plane, the slope 

for vitamin D is the 

same at every age; 

thus, the slope for 

vitamin D represents 

the effect of vitamin D 

when age is held 

constant. 


