VBM683 Machine Learning

Pinar Duygulu

Slides are adapted from
Dhruv Batra,
Aarti Singh, Barnabas Poczos,
Wenjiang Fu
Aykut Erdem

Classification

- Input: X
- Real valued, vectors over real.
- Discrete values ($0,1,2, \ldots$)
- Other structures (e.g., strings, graphs, etc.)
- Output: Y
- Discrete (0,1,2,...)

Science News
$Y=$ Topic

Regression

- Input: X
- Real valued, vectors over real.
- Discrete values ($0,1,2, \ldots$)
- Other structures (e.g., strings, graphs, etc.)
- Output: Y

- Real valued, vectors over real.

What should I watch tonight?

1-NN for Regression

1-NN for Regression

- Often bumpy (overfits)

9-NN for Regression

- Often bumpy (overfits)

Simple 1-D Regression

- Circles are data points (i.e., training examples) that are given to us
- The data points are uniform in x, but may be displaced in y

$$
t(x)=f(x)+\varepsilon
$$

with ε some noise

- In green is the "true" curve that we don't know

What is a Model?

1. Often Describe Relationship between Variables
2. Types

- Deterministic Models (no randomness)
- Probabilistic Models (with randomness)

Deterministic Models

1. Hypothesize Exact Relationships
2. Suitable When Prediction Error is Negligible
3. Example: Body mass index (BMI) is measure of body fat based
$-B M I=\frac{\text { Weight in Kilograms }}{(\text { Height in Meters })^{2}}$

Probabilistic Models

1. Hypothesize 2 Components

- Deterministic
- Random Error

2. Example: Systolic blood pressure of newborns Is 6 Times the Age in days + Random Error

- $S B P=6 \times$ age $(\mathrm{d})+\varepsilon$
- Random Error May Be Due to Factors Other Than age in days (e.g. Birthweight)

Types of Probabilistic Models

Probabilistic Models

Regression

 Models
Correlation Models

Other
 Models

Simple Regression

- Simple regression analysis is a statistical tool that gives us the ability to estimate the mathematical relationship between a dependent variable (usually called y) and an independent variable (usually called x).
- The dependent variable is the variable for which we want to make a prediction.
- While various non-linear forms may be used, simple linear regression models are the most common.

Introduction

- The primary goal of quantitative analysis is to use current information about a phenomenon to predict its future behavior.
- Current information is usually in the form of a set of data.
- In a simple case, when the data form a set of pairs of numbers, we may interpret them as representing the observed values of an independent (or predictor or explanatory) variable X and a dependent (or response or outcome) variable Y.

lot size	Man-hours
30	73
20	50
60	128
80	170
40	87
50	108
60	135
30	69
70	148
60	132

Introduction

- The goal of the analyst who studies the data is to find a functional relation
between the response variable y and the predictor variable x .

$$
y=f(x)
$$

Pictorial Presentation of Linear Regression Model

Types of Regression Models

1 Explanatory Variable

Regression Models

2+ Explanatory Variables

Multiple

Linear Regression Model

Assumptions

- Linear regression assumes that...
- 1. The relationship between X and Y is linear
- 2. Y is distributed normally at each value of X
- 3. The variance of Y at every value of X is the same (homogeneity of variances)
- 4. The observations are independent

Linear Equations

Linear Regression Model

- 1. Relationship Between Variables Is a Linear Function

$$
\begin{aligned}
& \begin{array}{c}
\text { Population } \\
\text { Y-Intercept }
\end{array} \quad \begin{array}{c}
\text { Population } \\
\text { Slope }
\end{array} \\
& \qquad Y_{i}=\beta_{0}+\beta_{1} X_{i}+\varepsilon_{i}
\end{aligned}
$$

Dependent
(Response)
Variable (e.g., CD+ c.)

Independent (Explanatory) Variable (e.g., Years s. serocon.)

Meaning of Regression Coefficients

- General regression model

1. β_{0}, and β_{1} are parameters
2. X is a known constant
3. Deviations ε are independent $\mathrm{N}\left(\mathrm{o}, \sigma^{2}\right)$

- The values of the regression parameters β_{0}, and β_{1} are not known. We estimate them from data.
- β_{1} indicates the change in the mean response per unit increase in X.

Population Linear Regression Model

Estimating Parameters: Least Squares Method

Scatter plot

- 1. Plot of All $\left(X_{i}, Y_{i}\right)$ Pairs
- 2. Suggests How Well Model Will Fit

Thinking Challenge

How would you draw a line through the points? How do you determine which line 'fits best'?

Thinking Challenge

How would you draw a line through the points? How do you determine which line 'fits best'?

Intercept unchanged

Thinking Challenge

How would you draw a line through the points? How do you determine which line 'fits best'?

Slope unchanged

Thinking Challenge

How would you draw a line through the points? How do you determine which line 'fits best'?

What is the best fitting line

\boldsymbol{i}	x_{i}	y_{i}	\hat{y}_{i}
1	63	127	120.1
2	64	121	126.3
3	66	142	138.5
4	69	157	157.0
5	69	162	157.0
6	71	156	169.2
7	71	169	169.2
8	72	165	175.4
9	73	181	181.5
10	75	208	193.8

$$
\hat{y}_{i}=b_{0}+b_{1} x_{i}
$$

- y_{i} denotes the observed response for experimental unit i
- x_{i} denotes the predictor value for experimental unit i
- \hat{y}_{i} is the predicted response (or fitted value) for experimental unit i

Prediction Error

$\boldsymbol{w}=\mathbf{- 3 3 1 . 2}+\mathbf{7 . 1} \boldsymbol{l}$ (the dashed line)					
\boldsymbol{i}	x_{i}	y_{i}	$\hat{y}_{\boldsymbol{i}}$	$\left(y_{i}-\hat{y}_{i}\right)$	$\left(y_{i}-\hat{y}_{i}\right)^{\mathbf{2}}$
1	63	127	116.1	10.9	118.81
2	64	121	123.2	-2.2	4.84
3	66	142	137.4	4.6	21.16
4	69	157	158.7	-1.7	2.89
5	69	162	158.7	3.3	10.89
6	71	156	172.9	-16.9	285.61
7	71	169	172.9	-3.9	15.21
8	72	165	180.0	-15.0	225.00
9	73	181	187.1	-6.1	37.21
10	75	208	201.3	6.7	44.89
					$\mathbf{7 6 6 . 5}$

$w=-\mathbf{2 6 6 . 5 3}+6.1376 \boldsymbol{l}$ (the solid line)					
\boldsymbol{i}	x_{i}	y_{i}	\hat{y}_{i}	$\left(y_{i}-\hat{y}_{i}\right)$	$\left(y_{i}-\hat{y}_{i}\right)^{2}$
1	63	127	120.139	6.8612	47.076
2	64	121	126.276	-5.2764	27.840
3	66	142	138.552	3.4484	11.891
4	69	157	156.964	0.0356	0.001
5	69	162	156.964	5.0356	25.357
6	71	156	169.240	-13.2396	175.287
7	71	169	169.240	-0.2396	0.057
8	72	165	175.377	-10.3772	107.686
9	73	181	181.515	-0.5148	0.265
10	75	208	193.790	14.2100	201.924
					$\mathbf{5 9 7 . 4}$

$$
\begin{aligned}
e_{i} & =y_{i}-\hat{y}_{i} \\
Q & =\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}
\end{aligned}
$$

Least Squares

- 1. 'Best Fit' Means Difference Between Actual Y Values \& Predicted Y Values Are a Minimum. But Positive Differences Off-Set Negative. So square errors!

- 2. LS Minimizes the Sum of the Squared Differences (errors) (SSE)

Least Squares Graphically

$$
\text { LS minimizes } \sum_{i=1}^{n} \hat{\varepsilon}_{i}^{2}=\hat{\varepsilon}_{1}^{2}+\hat{\varepsilon}_{2}^{2}+\hat{\varepsilon}_{3}^{2}+\hat{\varepsilon}_{4}^{2}
$$

$$
\left\{\begin{array}{l}
\hat{y}_{2}=\hat{\boldsymbol{\beta}}_{0}+\hat{\boldsymbol{\beta}}_{1} \boldsymbol{X}_{\mathbf{2}}+\hat{\varepsilon}_{2} \\
\hat{\varepsilon}_{2}
\end{array}\right.
$$

Coefficient Equations

- Prediction equation

$$
\hat{y}_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} x_{i}
$$

- Sample slope

$$
\hat{\beta}_{1}=\frac{S S_{x y}}{S S_{x x}}=\frac{\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum\left(x_{i}-\bar{x}\right)^{2}}
$$

- Sample Y - intercept

$$
\hat{\beta}_{0}=\bar{y}-\hat{\beta}_{1} \bar{x}
$$

Derivation of Parameters (1)

- Least Squares (L-S):

Minimize squared error

$$
\begin{aligned}
& \sum_{i=1}^{n} \varepsilon_{i}^{2}=\sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right)^{2} \\
& 0=\frac{\partial \sum \varepsilon_{i}^{2}}{\partial \beta_{0}}=\frac{\partial \sum\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right)^{2}}{\partial \beta_{0}} \\
& =-2\left(n \bar{y}-n \beta_{0}-n \beta_{1} \bar{x}\right) \\
& \hat{\beta}_{0}=\bar{y}-\hat{\beta}_{1} \bar{x}
\end{aligned}
$$

Derivation of Parameters (1)

- Least Squares (L-S):

Minimize squared error

$$
\begin{aligned}
& 0=\frac{\partial \sum \varepsilon_{i}^{2}}{\partial \beta_{1}}= \frac{\partial \sum\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right)^{2}}{\partial \beta_{1}} \\
&=-2 \sum x_{i}\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right) \\
&=-2 \sum x_{i}\left(y_{i}-\bar{y}+\beta_{1} \bar{x}-\beta_{1} x_{i}\right) \\
& \beta_{1} \sum x_{i}\left(x_{i}-\bar{x}\right)=\sum x_{i}\left(y_{i}-\bar{y}\right) \\
& \beta_{1} \sum\left(x_{i}-\bar{x}\right)\left(x_{i}-\bar{x}\right)=\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right) \\
& \hat{\beta}_{1}=\frac{S S_{x y}}{S S_{x x}}
\end{aligned}
$$

Computation Table

X_{i}	Y_{i}	X_{i}^{2}	Y_{i}^{2}	$X_{i} Y_{i}$
X_{1}	Y_{1}	$X_{1}{ }^{2}$	$Y_{1}{ }^{2}$	$X_{1} Y_{1}$
X_{2}	Y_{2}	$X_{2}{ }^{2}$	$Y_{2}{ }^{2}$	$X_{2} Y_{2}$
$:$	$:$	$:$	$:$	$:$
X_{n}	Y_{n}	$X_{n}{ }^{2}$	$Y_{n}{ }^{2}$	$X_{n} Y_{n}$
ΣX_{i}	ΣY_{i}	ΣX_{i}^{2}	ΣY_{i}^{2}	$\Sigma X_{i} Y_{i}$

Interpretation of Coefficients

- 1. Slope $\left(\beta_{1}\right)$
- Estimated Y Changes by β_{1} for Each 1 Unit Increase in X
- If $\beta_{1}=2$, then Y Is Expected to Increase by 2 for Each 1 Unit Increase in X
- 2. Y -Intercept $\left(\beta_{0}\right)$
- Average Value of Y When $X=0$
- If $\beta_{0}=4$, then Average Y Is Expected to Be 4 When X Is 0

Parameter Estimation Example

- Obstetrics: What is the relationship between Mother's Estriol level \& Birthweight using the following data?
$\frac{\text { Estriol }}{(\mathrm{mg} / 24 \mathrm{~h})}$
1
2
3
4
5

Birthweight

($\mathrm{g} / 1000$) 1
1
2
2
4

Scatterplot

Birthweight vs. Estriol level

Parameter Estimation Solution Table

X_{i}	Y_{i}	X_{i}^{2}	Y_{i}^{2}	$X_{i} Y_{i}$
1	1	1	1	1
2	1	4	1	2
3	2	9	4	6
4	2	16	4	8
5	4	25	16	20
15	10	55	26	37

Parameter Estimation Solution

$$
\begin{aligned}
& \hat{\beta}_{1}=\frac{\sum_{i=1}^{n} X_{i} Y_{i}-\frac{\left(\sum_{i=1}^{n} X_{i}\right)\left(\sum_{i=1}^{n} Y_{i}\right)}{n}}{\sum_{i=1}^{n} X_{i}^{2}-\frac{\left(\sum_{i=1}^{n} X_{i}\right)^{2}}{n}}=\frac{37-\frac{(15)(10)}{5}}{55-\frac{(15)^{2}}{5}}=0.70 \\
& \hat{\beta}_{0}=\bar{Y}-\hat{\beta}_{1} \bar{X}=2-(0.70)(3)=-0.10
\end{aligned}
$$

How to estimate parameters

We minimize the equation for the sum of the squared prediction errors:

$$
Q=\sum_{i=1}^{n}\left(y_{i}-\left(b_{0}+b_{1} x_{i}\right)\right)^{2}
$$

(that is, take the derivative with respect to b_{0} and b_{1}, set to 0 , and solve for b_{0} and b_{1}) and get the "least squares estimates" for b_{0} and b_{1} :

$$
b_{1}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \quad b_{0}=\bar{y}-b_{1} \bar{x}
$$

the least squares line passes through the point (\bar{x}, \bar{y}), since when $x=\bar{x}$, then $y=b_{0}+b_{1} \bar{x}=\bar{y}-b_{1} \bar{x}+b_{1} \bar{x}=\bar{y}$.

Estimating the intercept and slope: least squares estimation

** Least Squares Estimation
A little calculus....
What are we trying to estimate? β, the slope, from

What's the constraint? We are trying to minimize the squared distance (hence the "least squares") between the observations themselves and the predicted values, or (also called the "residuals", or leftover unexplained variability)

$$
\text { Differencei }=y i-(\beta x+\alpha) \quad \text { Differencei }^{2}=(y i-(\beta x+\alpha))^{2}
$$

Find the β that gives the minimum sum of the squared differences. How do you maximize a function? Take the derivative; set it equal to zero; and solve. Typical max/min problem from calculus....

$$
\begin{aligned}
& \frac{d}{d \beta} \sum_{i=1}^{n}\left(y_{i}-\left(\beta x_{i}+\alpha\right)\right)^{2}=2\left(\sum_{i=1}^{n}\left(y_{i}-\beta x_{i}-\alpha\right)\left(-x_{i}\right)\right) \\
& \mathrm{F} \quad 2\left(\sum_{i=1}^{n}\left(-y_{i} x_{i}+\beta x_{i}^{2}+\alpha x_{i}\right)\right)=0 \ldots
\end{aligned}
$$

The standard error of Y given X is the average variability around the regression line at any given value of X. It is assumed to be equal at all values of X.

Regression Picture

Regression Line

- If the scatter plot of our sample data suggests a linear relationship between two variables i.e.
we can summarize the relationship by drawing a straight line on the plot.
- Least squares method give us the "best" estimated line for our set of sample data.

Regression Line

- We will write an estimated regression line based on sample data as
- The method of least squares chooses the values for b_{0}, and b_{1} to minimize the sum $\hat{y} b_{\text {of }}^{+} b_{\text {s }} x$ squared errors

$$
S S E=\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}=\sum_{i=1}^{n}\left(y-b_{0}-b_{1} x\right)^{2}
$$

Regression Line

- Using calculus, we obtain estimating formulas:

Or

$$
\begin{gathered}
b_{1}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}=\frac{n \sum_{i=1}^{n} x_{i} y_{i}-\sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} y_{i}}{n \sum_{i=1}^{n} x_{i}^{2}-\left(\sum_{i=1}^{n} x_{i}\right)^{2}} \\
b_{1}=r \frac{S_{y}}{S_{x}} \\
b_{0}=\bar{y}-b_{1} \bar{x}
\end{gathered}
$$

Probabilistic Models

Probabilistic Models

Regression Models

Correlation Models

Other Models

Correlation vs. regression

- Both variables are treated the same in correlation; in regression there is a predictor and a response
- In regression the x variable is assumed non-random or measured without error
- Correlation is used in looking for relationships, regression for prediction

Correlation Models

- 1. Answer 'How Strong Is the Linear Relationship Between 2 Variables?'
- 2. Coefficient of Correlation Used
- Population Correlation Coefficient Denoted ρ (Rho)
- Values Range from -1 to +1
- Measures Degree of Association
- 3. Used Mainly for Understanding

Covariance

$$
\operatorname{cov}(x, y)=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{X}\right)\left(y_{i}-\bar{Y}\right)}{n-1}
$$

Interpreting Covariance

$\operatorname{cov}(X, Y)>0 \rightarrow X$ and Y are positively correlated $\operatorname{cov}(X, Y)<0 \rightarrow X$ and Y are inversely correlated $\operatorname{cov}(X, Y)=0 \rightarrow X$ and Y are independent

Correlation coefficient

- Pearson's Correlation Coefficient is standardized covariance (unitless):

$$
r=\frac{\operatorname{covariance}(x, y)}{\sqrt{\operatorname{var} x} \sqrt{\operatorname{var} y}}
$$

Correlation

- Measures the relative strength of the linear relationship between two variables
- Unit-less
- Ranges between -1 and 1
- The closer to -1 , the stronger the negative linear relationship
- The closer to 1 , the stronger the positive linear relationship
- The closer to 0 , the weaker any positive linear relationship

Sample Coefficient of Correlation

- 1. Pearson Product Moment Coefficient of Correlation between x and y :

$$
r=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sqrt{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}} \cdot \sqrt{\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}}}=\frac{S S_{x y}}{\sqrt{S S_{x x} S S_{y y}}}
$$

Coefficient of Correlation Values

Coefficient of Correlation Values

Coefficient of Correlation Values

Increasing degree of negative correlation

Coefficient of Correlation Values

Perfect
 Negative
 Correlation
 Correlation

 $\stackrel{7}{7}$
 $-1.0 \quad-.5$
 0
 $+.5 \quad+1.0$

Coefficient of Correlation Values

Increasing degree of positive correlation

Coefficient of Correlation Values

Scatter Plots of Data with

 Various Correlation Coefficients
-Slide from: Statistics for Managers Using Microsoft® Excel 4th Edition, 2004 Prentice-Hall

Linear Correlation

-Slide from: Statistics for Managers Using Microsoft® Excel 4th Edition, 2004 Prentice-Hall

Linear Correlation

-Slide from: Statistics for Managers Using Microsoft® Excel 4th Edition, 2004 Prentice-Hall

Linear Correlation

-Slide from: Statistics for Managers Using Microsoft®® Excel 4th Edition, 2004 Prentice-Hall

Calculating by hand...

$$
\hat{r}=\frac{\operatorname{covariance}(x, y)}{\sqrt{\operatorname{var} x} \sqrt{\operatorname{var} y}}=\frac{\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{n-1}}{\sqrt{\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1} \sqrt{\frac{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}{n-1}}}}
$$

Simpler calculation formula...

Numerator of covariance

$$
\hat{r}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \sqrt{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}}=\square \xrightarrow[r-1]{\sqrt{n-1}=\frac{S S_{x y}}{\sqrt{S S_{x} S S_{y}}}} \begin{gathered}
\\
\sum^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)
\end{gathered} \quad \xrightarrow[\text { Numerators of variance }]{ }
$$

Least Square estimation

Slope (beta coefficient $\hat{\beta}=\frac{\operatorname{Cov}(x, y)}{\operatorname{Var}(x)}$

Intercept Calculate : $\hat{\alpha}=\overline{\mathrm{y}}-\hat{\beta} \overline{\mathrm{x}}$

Regression line always goes throu($\overline{10}$ th $\overline{\bar{y}}$ doint:

Relationship with correlation

$\hat{r}=\hat{\beta} \frac{S D_{x}}{S D_{y}}$

In correlation, the two variables are treated as equals. In regression, one variable is considered independent (=predictor) variable (X) and the other the dependent (=outcome) variable Y.

Residual Analysis. cneck assumptions

$$
e_{i}=Y_{i}-\hat{Y}_{i}
$$

- The residual for observation $\mathrm{i}, \mathrm{e}_{\mathrm{i}}$, is the difference between its observed and predicted value
- Residuals are highly useful for studying whether a given regression model is appropriate for the data at hand.
- Check the assumptions of regression by examining the residuals
- Examine for linearity assumption
- Examine for constant variance for all levels of X (homoscedasticity)
- Evaluate normal distribution assumption
- Evaluate independence assumption
- Graphical Analysis of Residuals
- Can plot residuals vs. X

observed - predicted

Residual Analysis for Linearity

-Slide from: Statistics for Managers Using Microsoft ${ }^{(8)}$ Excel 4th Edition, 2004 Prentice-Hall

Residual Analysis for Homoscedasticity

-Slide from: Statistics for Managers Using Microsoft® Excel 4th Edition, 2004 Prentice-Hall

Residual Analysis for Independence

-Slide from: Statistics for Managers Using Microsoft ${ }^{(8)}$ Excel 4th Edition, 2004 Prentice-Hall

Example: weekly advertising expenditure

y	x	y-hat	Residual (e)
1250	41	1270.8	-20.8
1380	54	1411.2	-31.2
1425	63	1508.4	-83.4
1425	54	1411.2	13.8
1450	48	1346.4	103.6
1300	46	1324.8	-24.8
1400	62	1497.6	-97.6
1510	61	1486.8	23.2
1575	64	1519.2	55.8
1650	71	1594.8	55.2

Estimation of the variance of the error terms, σ^{2}

- The variance σ^{2} of the error terms ε_{i} in the regression model needs to be estimated for a variety of purposes.
- It gives an indication of the variability of the probability distributions of y.
- It is needed for making inference concerning regression function and the prediction of y.

Regression Standard Error

- To estimate σ we work with the variance and take the square root to obtain the standard deviation.
- For simple linear regression the estimate of σ^{2} is the average squared residual.
- To estimate σ, usiè ${ }^{2}=\frac{1}{n-2} \sum e_{i}^{2}=\frac{1}{n-2} \sum\left(y_{i}-\hat{y}_{i}\right)^{2}$
- s estimates the standard deviation σ of the error term ε in the statistical model for simple linear regression.

Regression Standard Error

y	\times	y-hat	Residual (e)	square(e)
1250	41	1270.8	-20.8	432.64
1380	54	1411.2	-31.2	973.44
1425	63	1508.4	-83.4	6955.56
1425	54	1411.2	13.8	190.44
1450	48	1346.4	103.6	10732.96
1300	46	1324.8	-24.8	615.04
1400	62	1497.6	-97.6	9525.76
1510	61	1486.8	23.2	538.24
1575	64	1519.2	55.8	3113.64
1650	71	1594.8	55.2	3047.04
y-hat $=828+10.8 x$			total	36124.76
			$S_{y . x}$	67.19818

Residual plots

- The points in this residual plot have a curve pattern, so a straight line fits poorly

Residual plots

- The points in this plot show more spread for larger values of the explanatory variable x, so prediction will be less accurate when x is large.

Variable transformations

- If the residual plot suggests that the variance is not constant, a transformation can be used to stabilize the variance.
- If the residual plot suggests a non linear relationship between x and y, a transformation may reduce it to one that is approximately linear.
- Common linearizing transformations are:
- Variance stabilizing ${ }_{1}^{1}$ rathsformations are:

$$
\frac{1}{y}, \log (y), \quad \sqrt{y}, \quad y^{2}
$$

2 predictors: age and vit D...

Different 3D view...

Fit a plane rather than a line...

On the plane, the slope for vitamin D is the same at every age; thus, the slope for vitamin D represents the effect of vitamin D when age is held constant.

