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Classification: Problem Statement

In regression, we are modeling the relationship
between a continuous input variable x and a
continuous target variable f.

In classification, the input variable x may still be
continuous, but the target variable is discrete.

In the simplest case, t can have only 2 values.

e.g., Lett=+1« x assigned to C,
t=—-1«> x assigned to C,




Example

- Animal or Vegetable?
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Discriminative Classifiers

If the conditional distributions are normal, the best
thing to do is to estimate the parameters of these
distributions and use Bayesian decision theory to
classify input vectors. Decision boundaries are
generally quadratic.

However if the conditional distributions are not
exactly normal, this generative approach will yield
sub-optimal results.

Another alternative is to build a discriminative
classifier, that focuses on modeling the decision
boundary directly, rather than the conditional
distributions themselves.



R
Linear Models for classification

Linear models for classification separate input vectors into
classes using linear (hyperplane) decision boundaries.

Example:

2D Input vector x
Two discrete classes (,"1 and CE




Basic Setup

» We want to separate the X's and the O's

» Today, we will see how to solve this (seemingly) simple task
mathematically
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Separating Points Linearly

» In building mathematical models for classifying, we are going
to focus on dividing these points with a straight line.

» This is called linear classification
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Expressing Linear Separation Mathematically

» Given a single point x = (x,y), we can express the
classification of the point as

sign(az + by + ¢)

where a, b, and ¢ are constants that define a line. We'll have
to choose these somehow.

» This function will return a +1 if ax + by + ¢ is positive and
—1 otherwise.
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How this Translates Graphically

» Effectively, we are projecting every point onto a line.

» Every point projects to some point on the line. The sign of
the location along the lines determines the classification of the
point
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How can we find the separating line?

» This separating line can be found by looking at the line

ar +by+c=0
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Optimizing the parameters of the line

» Notice that the points that are the farthest from the red
separating line have the largest response.

» |n some sense, we can be more confident in a point’s
classification as the point gets farther from the separating line.

» So, the bigger the magnitude of a response, the more
confident in the classification we can be.
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Two class discriminant function

y >0 T2
y=0
y<0 R
Rs
t
y(X)=wWX+w,
x
w /
. —~ r y(x)
y(x) 20— x assigned to C, i
y(X) <0 — x assigned to C, o

Thus y(X) = 0 defines the decision boundary _w



Two class discriminant function

y(X)=w'x+w,

y >0
y=20
i N y <0
y(x) <0 — x assigned to C, Y

y(x) 20— x assigned to C,

For convenience, let

f t
W = I:Wl...WM:I = I:WO Wl WM]

and
X = ["1 ...xM]f = [1 X ...)(M]f

So we can express y(X) =w'x

T2

R1

X1
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Generalized linear models

For classification problems, we want y to be a predictor of . In other
words, we wish to map the input vector into one of a number of discrete
classes, or to posterior probabilities that lie between 0 and 1.

For this purpose, it is useful to elaborate the linear model by introducing a
nonlinear activation function f, which typically will constrain y to lie between
-1 and 1 or between 0 and 1.

y(x) = f(w‘x+w0]

Log-sigmoid function Tan-sigmoid function Linear function




Binary Classification

Given training data (x;,y;) fori=1... N, with
x; € R% and y; € {—1,1}, learn a classifier f(x)
such that

N) =20 y=+1
f(X?,){<O yz:_l

i.e. y;f(x;) > 0 for a correct classification.
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Linear separability
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Linear classifiers

A linear classifier has the form

M (x) =
X, /
x)=w'x+b W Lk
f( ) e ® s “AA
f(x) <0 f&) > 0
X‘I

* in 2D the discriminant is a line
« W is the normal to the line, and b the bias
« W is known as the weight vector



Linear classifiers

A linear classifier has the form

f(x)=w'x+5b

I3

* in 3D the discriminant is a plane, and in nD it is a hyperplane

For a K-NN classifier it was necessary to “carry’ the training data
For a linear classifier, the training data is used to learn w and then discarded

Only w is needed for classifying new data



What is the best w?
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» maximum margin solution: most stable under perturbations of the inputs



Linear Classifiers 1

X

™

> yest

°* denotes +1 WX +b>0
° denotes -1 ‘

fix,w,b) = sign(w x + b)

How would you
classify this
data?



ILinear Classifiers 1
X > f > yest

fix, w,b) = sign(wx + b
° denotes +1 / gn( /

° denotes -1 ‘

Any of these
would be fine..

/ g
Py Z ..but which is
best?




Linear Classifiers 1

A 4

X

> yest

° denotes +1
° denotes -1 ‘

Misclassified
to +1 class

fix,w,b) = sign(w x + b)

How would you
classify this
data?



Classifier Margin b

X

~h

> yeSt

f(x,w,b) = sign(w x + b)

° denotes +1

° denotes -1 ‘ . . Define the margin

of a linear
- . ° classifier as the
o © width that the
boundary could
) be increased by
° o before hitting a
datapoint.




Maximum Matgin 1
X > f > ysest

1. Maximizing the margin is good
according to intuition and PAC

° denotes +1 theory
> denotes -1 : 2. Implies that only support vectors
° % . are important; other training

examples are ignorable.

Empirically it works very very well.

Support Vectors 4 with the. um

are those ° o _ ’ ro

datapoints that o maximum margin.

the margin ° This is the

Z’SZ?nist P ° simplest kind of
SVM (Called an

__ —SVM)
Linear SVM




Linear classifiers — Which line Is better?
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Margin 2,}/
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Support vector machines (SVMs)

minimizey , wW.w

oz e (W.Xj -+ b) y; = 1, ¥y
+ = =f §
+ =

= « Solve efficiently by quadratic
+ - programming (QP)

o4 — Well-studied solution algorithms
+ |
. - = _
* Hyperplane defined by support
vectors
margin 2,)/
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What if the data Is not linearly separable?
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—
What if the data Is not linearly separable?

minimizey , wW.w

Lo (W.Xj—|—b> y; > 1 , V7
& _ =
% =
+ o g = - * Minimize w.w and number of
* = training mistakes
- = — 0/1loss
4 * — Slack Ity C
- — Not QP anymore
o

— Also doesn’t distinguish near misses
and really bad mistakes
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Harder 1-dimensional dataset

That's wiped the
smirk off SVM'’s

face.

What can be
done about
this?

(C) Dhruv Batra Slide Credit: Andrew Moore
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Harder 1-dimensional dataset

Remember how
permitting non-
linear basis
functions made
linear regression
so much nicer?

o Let's permit them
here too

2
x=0 fo — (xk 2 xk)

(C) Dhruv Batra Slide Credit: Andrew Moore 32



Harder 1-dimensional dataset

Remember how
permitting non-
linear basis
functions made
linear regression
so much nicer?

6 Let's permit them
here too

y;y Z, =(xk,x§)

(C) Dhruv Batra Slide Credit: Andrew Moore 33
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Kernel Trick

« One of the most interesting and exciting
advancement in the last 2 decades of machine
learning

— The “kernel trick”
— High dimensional feature spaces at no extra cost!

« But first, a detour
— Constrained optimization!

(C) Dhruv Batra Slide Credit: Carlos Guestrin 34



Support Vector Machine

linearly separable data 4
® :

wix+bh=0

b

o o
; L
Support Vecto:;@ ',@gupport Vector e
o . = ;
L
o .
f(z) = Zﬂféyi(xi-rx) +b . ®

: v
!

support vectors



SVM — sketch derivation

e Since w'x+b =0 and ¢(w'x + b) = 0 define the same
plane, we have the freedom to choose the normalization
of w

e Choose normalization such that w'x +b=+1andw'x_+
b = —1 for the positive and negative support vectors re-
spectively

e [ hen the margin is given by

. X+—X_ ==
[[w ] ( ) [[w| ]



Support Vector Machine

linearly separable data +
® ' : 2
Margin= _—_
[|wl|
o
[ J L
o'- .
Support Vector '
@ @ Support Vector ¢
° °
O o
: L ¢
wix+b=1" a
wix+b=0 i ¢
! ®
wix+b=-1 H L4



Linear SVM Mathematically

//'\ l
W+
What know: _
at we know (X —x)-w 2
e W.X"+b=+1 M =

e W.X +b=-1 ‘W‘ :‘W‘

e w.(X*-x)=2



Linear SVM Mathematically

m  Goal: 1) Correctly classify all training data
WX, +b>1 ifyi:+1}
wx, +b <1 ify=-1 >

y.(Wx. +b) >1 for all i

M =2

2) Maximize the Margin ‘W‘

.. t
same as minimize EWW

= We can formulate a Quadratic Optimization Problem and solve for w and b

1
s| Minimize D(w) = EWtW

(wx +b)>1 Vi

subject to Yi



SVM — Optimization

e Learning the SVM can be formulated as an optimization:

2 if 2 —
max —— subject to w ' x;+b >1 iy =+1

. fore=1...N
W | |wl| < -1 ify=-1

e Or equivalently

min [[w||> subject to y; (w'x;+b) >1fori=1...N

e [ his is a quadratic optimization problem subject to linear
constraints and there is a unique minimum



Dataset with noise

* denotes +1 = Hard Margin: So far we
. require all data points be classified
denotes -1 correctly

- No training error

=  What if the training set is
noisy?

- Solution 1: use very powerful
kernels

OVERFITTING!




Linear separability again: What is the best w?

A A
A A 4

A AhA 4

‘AAA
L ] ‘ “

« the points can be linearly separated but
there is a very narrow margin

* but possibly the large margin solution is
better, even though one constraint is violated

In general there is a trade off between the margin and the number of

mistakes on the training data



Introduce “‘slack’ variables

o & 2 . 2
§ >0 [wl| = [|w]| Margin = T
Misclassified ®
point
e for O < & < 1 point is between
margin and correct side of hyper- ®
plane. This is a margin violation PY
e for £ > 1 point is misclassified .
Support Vector(gj~
@ .@ Support Vector ¢
o
o
o
wix+b=1"
wix+b=0

wix+ b =-1



Soft Margin Classification

Slack variables ¢ can be added to allow
misclassification of difficult or noisy examples.

What should our quadratic
optimization criterion
be?

Inimjze
OCQW EW.W +C

R
Ex
k=1




“Soft” margin solution

The optimization problem becomes

J.;'\|T
: 2
min w|[“4+C > &
weRd,&e]R"‘H | Zz: ‘

subject to

yi (wix;+b) >1-¢ fori=1...N

e Every constraint can be satisfied if &; is sufficiently large

e (' is a regularization parameter:
— small C allows constraints to be easily ignored — large margin
— large C' makes constraints hard to ignore — narrow margin

— C = o enforces all constraints: hard margin

e T his is still a gquadratic optimization problem and there is a
unique minimum. Note, there is only one parameter, C.
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» datais linearly separable

*  but only with a narrow margin



C = Infinity hard margin

feature y

feature x
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feature y

=10 soft margin
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Optimization

Learning an SVM has been formulated as a constralned optimization prob-
lem over w and &

JP\'T
min _[[w||>+C > & subject to y; (wx;+b) >1—¢ fori=1...N

weRd £, cR+ 7

The constraint y; (wai + b) > 1 —&;, can be written more concisely as

Y f(x;) > 1 —&
which, together with & > 0, Is equivalent to

£ = max (0,1 —y; f(x;))

Hence the learning problem Is equivalent to the unconstrained optimiza-
tion problem over w

N
min, w2 +cCy max (0,1~ ya-f(x%)
w .

i ’ Y

regularization loss function




[Loss function

I\‘T
min ||w|[* +CY max (0,1 - y;f(x;))
wcRd i AN J
Y
loss function ® [
Points are in three categories: Support Vector.—"'i..'
Loyif(z) > 1 @

Point is outside margin. ®
No contribution to loss

2. yif(z;) =1 P
Point is on margin.
No contribution to loss.
As in hard margin case.

3. yif(z;) <1
Point violates margin constraint.

Contributes to loss °

B
°
@ Support Vector
@ @




Loss functions

5 :
— 0-1

4 — hinge

3_

2_

1

T T

« SVM uses “hinge” loss max (0,1 — y; f(x;))

 an approximation to the 0-1 loss



Optimization continued

N

min €Y max (0,1 — y;f(x;)) + [|w]|?
welRd i

local global
minimum minimum

» Does this cost function have a unique solution?

* Does the solution depend on the starting point of an iterative
optimization algorithm (such as gradient descent)?

If the cost function is convex, then a locally optimal point is globally optimal (provided
the optimization is over a convex set, which it is in our case)



Convex functions

D — a domain in R".

A convex function f : D — R is one that
satisfies, for any xg and x1 in D:

f((1—-a)xp+ax1) < (1 —a)f(xg) + af(x1) .

F(x)

Line joining (xq, f(x0)) ﬂ,@
and (xl,f(xl)) lies :
above the function graph. ,

- e o -~ -

%, (1-&) Ketol X x,



Convex function examples

VAVRY:

convex Not convex

A non-negative sum of convex functions is convex



SVM
JF\'T

min C> max (0,1 — y;f(x;)) + ||w||2 convex
WERd i



Gradient (or steepest) descent algorithm for SVM

To minimize a cost function C(w) use the iterative update

Wig1 <& Wt — ﬁtvw(f(wt)

where 7 is the learning rate.
First, rewrite the optimization problem as an average

o Ao, 1
minC(w) = EHWH ‘I‘ﬁzmax(orl_yi]ﬂ(xi))

1 X /A

(with A = 2/(NC) up to an overall scale of the problem) and
f(x)=w'x+b

Because the hinge loss is not differentiable, a sub-gradient is
computed



Sub-gradient for hinge loss

L(xiyyi;w) =max (0,1 —y f(x:)) f(xi)=w'x;+b

27 )



Sub-gradient descent algorithm for SVM

] B 1 N }\ 9 . .
cw) =53 (SIWIP + £ w)

The iterative update is
Wip1 — W — NV, C(Wy)
1 N
— Wi — ’TIEZ (AW + VwL(X;, ;5 Wt))
i

where 7 is the learning rate.

Then each iteration t involves cycling through the training data with the
updates:

Wil < W —n(QAwg —ypxg) I g f(x;) <1
— Wi — NAW otherwise

In the Pegasos algorithm the learning rate is set at ny = ,\_11;



SVM - review

e \We have seen that for an SVM learning a linear classifier

flz) =w'x+b

is formulated as solving an optimization problem over w :
5 N

min [[w|[< 4+ CY_ max (0,1 - y;f(x;))
WERd i

e This quadratic optimization problem is known as the primal problem.

e Instead, the SVM can be formulated to learn a linear classifier

N
fx) =3 aui(x;'x) + b
i
by solving an optimization problem over «;.

e This is know as the dual problem, and we will look at the advantages
of this formulation.



Sketch derivation of dual form

The Representer Theorem states that the solution w can always be
written as a linear combination of the training data:
N
W= ) ajyiX;
i=1

Proof: see example sheet .

Now, substitute for w in f(z) =w'x+b

Jr\}'

N
f(m) = (Z a:jijj) Tx+ b= Z QY (ijx) + b
j=1

=1

and for w in the cost function minw ||w||2 subject to y; (wai-l- b) >1,V1

2 _ —_
[|wl[< = {z ijijj} T {Z C'—’}cykxk} = z ‘ljakyjy}c(xj—rxk)
j k

ik
Hence, an equivalent optimization problem is over «;

Jr\.T
n;i_nZajakyjyk(ijxk) subject to y; (E oy (% Tx;) + E}) > 1,Vi
J a  —
ik j=1

and a few more steps are required to complete the derivation.



Primal and dual formulations

N is number of training points, and d is dimension of feature vector x.

Primal problem: for w & R4

N
min [[w|[Z+ C3Y max (0,1 — y;f(x;))
weRd i

Dual problem: for e € RN (stated without proof):

1
m}EjB{Zaz—EZ ajakyjyk(ijxk) subject to 0 < ¢o; < C for Vi, and Zaiyi =0
=T ik i

e Need to learn d parameters for primal, and N for dual
e If N << d then more efficient to solve for « than w

e Dual form only involves (ijxk). We will return to why this is an
advantage when we look at kernels.



Primal and dual formulations

Primal version of classifier:

f(x) =w'x+0b

Dual version of classifier:

N
f(x) = Z ayi(x; ' x) + b

At first sight the dual form appears to have the disad-
vantage of a K-NN classifier — it requires the training
data points x;. However, many of the «;'s are zero. The
ones that are non-zero define the support vectors x;.



Support Vector Machine

H
@ i
wix+b=0
®
b
® _— o
wll o
Support Vecto:@ '@‘gupport Vector °
® °
¢ o
T @
f(X) = E aiyz(xz X) + ®
o

®
support vectors



Non-linear SVMs

= Datasets that are linearly separable with some noise
work out great: :

= But what are we going to do if the dataset is just too

hard? *—0——0—0 i) *o—o—o—o—o>

= How about... mapping data to a hlgher -dimensional
space: 4*




Non-linear SVMs: Feature spaces

= General idea: the original input space can always be
mapped to some higher-dimensional feature space
where the training set is separable:

A
S
o
°
1. °
e .. ® LN e ., ®
o T o O: X— o(x) .- . J
o l®e - Y/ .
'''''' °
o |. i T °
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Handling data that is not linearly separable

® o A A
e %o |A A,

* oh AhA 4

..‘AA

* introduce slack variables
N
. 2
min C i
weRd’&EWHWH + Zﬁ:&

subject to

vi(wixi+b)>1-¢ fori=1...N

« linear classifier not appropriate
??



Solution 1: use polar coordinates

« Data is linearly separable in polar coordinates
« Acts non-linearly in original space

CD:(:El)—:»(T) R2 5 R2
:BQ 9




Solution 2: map data to higher dimension

372
T % 2 3
b ( xl ) — x5 R —= R
2 \/Eﬂ‘:lm?
A
xz A A N
A
A . A
0 A - o'e A
A ..".. A —
A . N .
A
A 4 A A
[ > 1
0 X

» Data is linearly separable in 3D
« This means that the problem can still be solved by a linear classifier



SVM classifiers in a transformed feature space
f(x) =0

Y

d:x = d(x) RYRPY

L earn classifier linear in w for RD:

f(x) =w'ld(x)+b

d(x) is a feature map



Primal Classifier in transformed feature space

Classifier, with w € RL:

f(x) =wlo(x)+b

Learning, for w € RD

N
min_[[w||? 4+ C 3" max (0,1 — y;f(x;))
weRD i

e Simply map x to ®(x) where data is separable
e Solve for w in high dimensional space R

e If D >> d then there are many more parameters to learn
for w. Can this be avoided?



Dual Classifier in transformed feature space

Classifier:
N
f(x) = Y ogyix'x+b
i
N
= f(xX) = Y oy P(x;)  P(x) +b
i
Learning:
- T
maxz oy — —Z QY YpX; X
a; >0 i 2 ik
1
= max > o — = ajoryiye®(x;) T P(xg)
Ctt'zo i 2 j‘k
subject to

0<a; <C for Vi, and ) a;y; =0

7



Dual Classifier in transformed feature space

e Note, that @(x) only occurs in pairs ®(x;) P (x;)

e Once the scalar products are computed, only the N dimensional
vector a needs to be learnt; it is not necessary to learn in the
D dimensional space, as it is for the primal

e Write k(x;,x;) = ®(x;) @ (x;). This is known as a Kernel

Classifier:

N

f(x) =) oy k(x,x) + b

i
Learning:

1

max3_a; —E_Zajakyjyk k(xj, xg)
i jk

subject to

0 <q; <C for Vi, andZaiyi =0

1



Special transformations

2
“1
¢:($1)—> 3 R? — R3
2 V2z1xo
3
O(x)d(z) = (27,23, V2w122) | 25
V22125
= x%z% + a:%z% + 2x1T02122
= (z121 + 2222)?
— (xTz)2
Kernel Trick

e Classifier can be learnt and applied without explicitly computing ®(x)

e All that is required is the kernel k(x,z) = (x'z)?

e Complexity of learning depends on N (typically it is O(N3)) not on D



Example kernels

e Linear kernels k(x,x') =x'x’/

d
e Polynomial kernels k(x,x’) = (1 + xTx’) for any d > 0
— Contains all polynomials terms up to degree d
e Gaussian kernels k(x,x’) = exp (—||x - x"||2/20'2) for o >0

— Infinite dimensional feature space



SVM classifier with Gaussian kernel

N = size of training data

N
f(x) = Z a;y;k(x;,x) + b

AN

weight (may be
Zero)

support vector

Gaussian kernel k(x,x’) = exp (—||x - x"||2/202)
Radial Basis Function (RBF) SVM

N
FG) =Y agyiexp (—Ilx — xil|?/207) + b



RBF Kernel SVM Example

* ®
06k - ® ®om «
® x % = E
x x ® x o "
xx:‘ x ES
041
x * :&:ﬁ. x »®
x o "
i . x o ©
- 0.2 § o o o © -
S X ©°% so
§ oo © o o
= of o o co w,
o
9]
% o
xR o N = u
02k . * %
®
x . . x x
* ® i % “ S ® ES
0.4 "o xn * x
L *
= ®
0.6 I I 1 ! L 1 1 1 1
-0.8 0.6 0.4 0.2 0 0.2 04 0.6 0.8 1
feature x

- data is not linearly separable in original feature space



0.
-%.B 0.6 0.4 0.2 ] 0.2 0.4 0.6
feature x

Comment Window

SWM (L1 by Sequential Minimal Optimizer
Kernel: rof (13, C: Inf

kernel evalustions: 321750

Mumber of Suppaort Yectars: 5

Margin: 0.0440

Training error; 0.00%

f(x)=1

SMO (L1 w
Hernel
REF W

Kernel argument

H

C-congtant

Inf

epsilon folerance

1e-318-3

Background

Load data

Create data

Reset

Train SWh
Infa

v Cloze

N
F(x) =3 i exp (=Ix — xi|[*/20%) + b




c=10 C =100

feature y

0.
-%.E 06 0.4 0.2 1] 0.2
feature x

SWM LT by Sequential Minimal Optimizer
Kernel: rbf (13, C: 100.0000
Kernel evaluations: 3966385

Mumber of Support Yectors: §
Margin: 0.0519
Training error: 0.00%

2

Decrease C, gives wider (soft) margin

SMO L) W
Hernel
REF W

Kernel argument

I

C-constant

epsilon folerance

1e-31e-3

Background

Load data

Create data

Reset
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Nonlinear SVM - Overview

= SVM locates a separating hyperplane in
the feature space and classify points in that
space

= It does not need to represent the space
explicitly, simply by defining a kernel
function

= The kernel function plays the role of the dot
product in the feature space.



Multi-Class Classification — what we would like

Assign input vector X to one of K classes (),

Goal: a decision rule that divides input space into K decision regions
separated by decision boundaries

X,




Reminder: K Nearest Neighbour (K-NN) Classifier

Algorithm

+ For each test point, x, to be classified, find the K nearest
samples in the training data

+ Classify the point, x, according to the majority vote of their

class labels
.’Bg‘
e.qg.K=3
A ‘A .
& W
‘ ..-"j‘k'
+ naturally applicable to A g #
multi-class case A ®
T
® % & °
L] ° . >




Build from binary classifiers

* Learn: K two-class 1-vs-the-rest classifiers fj. (x)

1vs2 &3

3vs1&2

2vs1&3



Build from binary classifiers continued

* Learn: K two-class 1 vs the rest classifiers fi (x)

« Classification: choose class with most positive score

/

rd
,/ 1vs2&3

max fi,(x)

3vs1&2




Build from binary classifiers continued

* Learn: K two-class 1 vs the rest classifiers fi (x)

+ Classification: choose class with most positive score

® /
. o o ° R
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A
.C'I. ,/ A,
zf A A
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Why not learn a multi-class SVM directly?

For example for three classes

e Learn w = (w1,wo,w3) | using the cost function

m“irn ||w| |2 subject to

wix; >wo x; & wilx; > w3l x; for : € class 1
wo x; >walx; & wol!x; > wilx; for ¢ € class 2
walx; >wy x; & wi3lx; > wolx; for ¢« € class 3

e [ his is a quadratic optimization problem subject to linear
constraints and there is a unique minimum

e Note, a margin can also be included in the constraints

In practice there is a little or no improvement over the binary case



SVM Applications

« SVM has been used successfully in many real-

world problems

- text (and hypertext) categorization

- iImage classification

- bioinformatics (Protein classification,
Cancer classification)

- hand-written character recognition



Application 1: Cancer Classification

« High Dimensional

_ Genes
- p>1000; n<100 Patients | g-1 | g-2 | .. g-p
P-1
* Imbalanced p-2
- less positive samples
p-n
n+
KX, x]=k(X,X)+ 4 —
N
° . FEATURE SELECTION
Many irrelevant

featureS In the linear case,

\ w;2 gives the ranking of dim i
vioy

NAicoyvy
NUTS
|_‘ SVM is sensitive to noisy (mis-labeled) data ®
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Categorization

« Task: The classification of natural text (or hypertext)
documents into a fixed number of predefined
categories based on their content.

- email filtering, web searching, sorting documents by topic, etc..

« A document can be assigned to more than one
category, so this can be viewed as a series of binary
classification problems, one for each category



Representation of Text

IR’s vector space model (aka bag-of-words representation)

A doc is represented by a vector indexed by a pre-fixed
set or dictionary of terms

Values of an entry can be binary or weights

Bl tl‘,-log.(ldl,»)‘

Normalization, stop words, word stems
Doc x => ¢@(X)




-
Text Categorization using SVM

 The distance between two documents is @(x)-¢(z)

« K(x,z) = @(x)@(z)is avalid kernel, SVM can be used with K(x,z)
for discrimination.

«  Why SVM?
-High dimensional input space
-Few irrelevant features (dense concept)
-Sparse document vectors (sparse instances)
-Text categorization problems are linearly separable



Some Issues

e Choice of kernel
- Gaussian or polynomial kernel is default
- if ineffective, more elaborate kernels are needed

- domain experts can give assistance in formulating
appropriate similarity measures

« Choice of kernel parameters
- e.g. o in Gaussian kernel

- 0 is the distance between closest points with different
classifications

- In the absence of reliable criteria, applications rely on the use
of a validation set or cross-validation to set such parameters.

* Optimization criterion — Hard margin v.s. Soft margin

- alengthy series of experiments in which various parameters
are tested



Application: hand written digit recognition

* Feature vectors: each image is 28 x 28 pixels.
Rearrange as a 784-vector x

« Training: learn k=10 two-class 1-vs-the-rest SVM
classifiers fi. (x)

« Classification: choose class with most positive
score

£) = max f,(x)
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Application: Pedestrian detection in Computer Vision

Objective: detect (localize) standing humans in an image
» cf face detection with a sliding window classifier

« reduces object detection to
binary classification

 does an image window
contain a person or not?

Method: the HOG detector




Training data and features

» Positive data — 1208 positive window examples




Feature: histogram of oriented gradients (HOGQG)

. dominant
image direction HOG

|
\l / /

« tile window into 8 x 8 pixel cells

« each cell represented by HOG

frequency

orientation

Feature vector dimension = 16 x 8 (for tiling) x 8 (orientations) = 1024



Algorithm

Training (Learning)

* Represent each example window by a HOG feature vector

x; € R%, with d = 1024

* Train a SVM classifier

Testing (Detection)

« Sliding window classifier
flx)=wix+b



Learned model

f(x) = wix+b

NN
sl
W g e it Y i §

S e e = S N e
7

positive negative
weights weights

Slide from Deva Ramanan



What do negative weights mean!?

wx > 0
(W+-w)x>0

R
’ \X%}
e {2

g ol e Y i
f ™~ ey F F {

edestrian
~Zjbackground
; ; model

pedestrianj’
model}-

!
$o
/
!
v X
I~
+
+

. ] ]
,‘."0-

Complete system should compete pedestrian/pillar/doorway models

Discriminative models come equipped with own bg

(avoid firing on doorways by penalizing vertical edges)

Slide from Deva Ramanan
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Additional Resources

 An excellent tutorial on VC-dimension and Support
Vector Machines:

C.J.C. Burges. A tutorial on support vector machines for
pattern recognition. Data Mining and Knowledge
Discovery, 2(2):955-974, 1998.

« The VC/SRM/SVM Bible:

Statistical Learning Theory by Vladimir Vapnik, Wiley-
Interscience; 1998

http://www.kernel-machines.org/



http://www.kernel-machines.org/

