VBM683 Machine Learning

Pinar Duygulu

Slides are adapted from
Dhruv Batra, Aykut Erdem
Barnabas Poczos, and Aarti Singh

Tasks

Supervised Learning

Unsupervised Learning

Unsupervised Learning

- Learning only with X
- Y not present in training data
- Some example unsupervised learning problems:
- Clustering / Factor Analysis
- Dimensionality Reduction / Embeddings
- Density Estimation with Mixture Models

New Topic: Clustering

Slide Credit: Carlos Guestrin

Synonyms

- Clustering
- Vector Quantization
- Latent Variable Models
- Hidden Variable Models
- Mixture Models
- Algorithms:
- K-means
- Expectation Maximization (EM)

Distance measures

- In studying clustering techniques we will assume that we are given a matrix of distances between all pairs of data points:

What is Similarity/Dissimilarity?

Hard to define! But we know it when we see it

- The real meaning of similarity is a philosophical question. We will take a more pragmatic approach.
- Depends on representation and algorithm. For many rep.//alg., easier to think in terms of a distance (rather than similarity) between vectors.

Defining Distance Measures

- Definition: Let O_{1} and O_{2} be two objects from the universe of possible objects. The distance (dissimilarity) between O_{1} and O_{2} is a real number denoted by $\mathrm{D}\left(O_{1}, O_{2}\right)$.

gene1 gene2

Inside these black boxes: some function on two variables (might be simple or very complex)

3
A few examples:

- Euclidean distance

$$
d(x, y)=\sqrt{\sum_{i}\left(x_{i}-y_{i}\right)^{2}}
$$

- Correlation coefficient
- Similarity rather than distance
$s(x, y)=\frac{\sum_{i}\left(x_{i}-\mu_{x}\right)\left(y_{i}-\mu_{y}\right)}{\sigma_{x} \sigma_{y}}$
- Can determine similar trends

What properties should a distance measure have?

- Symmetric

- $\mathrm{D}(A, B)=\mathrm{D}(B, A)$
- Otherwise, we can say A looks like B but B does not look like A
- Positivity, and self-similarity
- $\mathrm{D}(A, B) \geq 0$, and $\mathrm{D}(A, B)=0$ iff $A=B$
- Otherwise there will different objects that we cannot tell apart
- Triangle inequality
- $\mathrm{D}(A, B)+\mathrm{D}(B, C) \geq \mathrm{D}(A, C)$
- Otherwise one can say " A is like B, B is like C, but A is not like C at all"

Distance measures

- Euclidean (L_{2})

$$
d(\mathbf{x}, \mathbf{y})=\sqrt{\sum_{i=1}^{d}\left(x_{i}-y_{i}\right)^{2}}
$$

- Manhattan $\left(\mathrm{L}_{1}\right)$

$$
d(\mathbf{x}, \mathbf{y})=|\mathbf{x}-\mathbf{y}|=\sum_{i=1}^{d}\left|x_{i}-y_{i}\right|
$$

- Infinity (Sup) Distance L_{∞}

$$
d(\mathbf{x}, \mathbf{y})=\max _{1 \leq i s d}\left|x_{i}-y_{i}\right|
$$

- Note that $\mathrm{L}_{\infty}<\mathrm{L}_{1}<\mathrm{L}_{2}$, but different distances do not induce the same ordering on points.

Distance measures

$$
\begin{aligned}
& \mathbf{x}=\left(x_{1}, x_{2}\right) \\
& \mathbf{y}=\left(x_{1}-2, x_{2}+4\right)
\end{aligned}
$$

Euclidean: $\left(4^{2}+2^{2}\right)^{1 / 2}=4.47$
Manhattan: $4+2=6$

$$
\operatorname{Max}(4,2)=4
$$

Distance measures

- Different distances do not induce the same ordering on points

$$
\begin{aligned}
& \mathbf{L}_{\infty}(\mathbf{a}, \mathrm{b})=\mathbf{5} \\
& \mathbf{L}_{2}(\mathbf{a}, \mathrm{~b})=\left(5^{2}+\varepsilon^{2}\right)^{1 / 2}=5+\varepsilon
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{L}_{\infty}(\mathbf{c}, \mathbf{d})<\mathbf{L}_{\infty}(\mathbf{a}, \mathbf{b}) \\
& \mathbf{L}_{\mathbf{2}}(\mathbf{c}, \mathbf{d})>\mathbf{L}_{2}(\mathbf{a}, \mathbf{b})
\end{aligned}
$$

Distance measures

- Clustering is sensitive to the distance measure
- Sometimes it is beneficial to use a distance measure that is invariant to transformations that are natural to the problem:
- Mahalanobis distance:
\checkmark Shift and scale invariance

Mahalanobis Distance

$$
d(\mathbf{x}, \mathbf{y})=\sqrt{(\mathbf{x}-\mathbf{y})^{T} \Sigma(\mathbf{x}-\mathbf{y})}
$$

Σ is a (symmetric) Covariance Matrix:

$$
\begin{aligned}
& \mu=\frac{1}{m} \sum_{i=1}^{m} x_{i}, \text { (average of the data) } \\
& \Sigma=\frac{1}{m} \sum_{i=1}^{m}(\mathbf{x}-\mu)(\mathbf{x}-\mu)^{T}, \text { a matrix of size } m \times m
\end{aligned}
$$

Translates all the axes to a mean $=0$ and variance $=1$ (shift and scale invariance)

Distance measures

- Some algorithms require distances between a point x and a set of points $A d(x, A)$
This might be defined e.g. as min/max/avg distance between x and any point in A .
- Others require distances between two sets of points $A, B, d(A, B)$.
This might be defined e.g as min/max/avg distance between any point in A and any point in B .

Clustering algorithms

- Partitioning algorithms
- Construct various partitions and then evaluate them by some criterion
- K-means
- Mixture of Gaussians
- Spectral Clustering

- Hierarchical algorithms
- Create a hierarchical decompositiond of the set of objects using some criterion
- Bottom-up - agglomerative
- Top-down - divisive

Desirable Properties of a Clustering Algorithm

- Scalability (in terms of both time and space
- Ability to deal with different data types
- Minimal requirements for domain knowledge to determine input parameters
- Ability to deal with noisy data
- Interpretability and usability
- Optional
- Incorporation of user-specified constraints

Some Data

(C) Dhruv Batra

Slide Credit: Carlos Guestrin

K-means

1. Ask user how many clusters they'd like. (e.g. k=5)

K-means

1. Ask user how many clusters they'd like. (e.g. k=5)
2. Randomly guess k cluster Center locations

K-means

1. Ask user how many clusters they'd like. (e.g. $k=5$)
2. Randomly guess k cluster Center locations
3. Each datapoint finds out which Center it's closest to. (Thus each Center "owns" a set of datapoints)

K-means

1. Ask user how many clusters they'd like. (e.g. $k=5$)
2. Randomly guess k cluster Center locations
3. Each datapoint finds out which Center it's closest to.
4. Each Center finds the centroid of the points it owns

K-means

1. Ask user how many clusters they'd like. (e.g. k=5)
2. Randomly guess k cluster Center locations
3. Each datapoint finds out which Center it's closest to.
4. Each Center finds the centroid of the points it owns
5. ...Repeat until terminated!

K-Means Clustering: Example

- Pick K random points as cluster centers (means)

Shown here for $K=2$

K-Means Clustering: Example

Iterative Step 1

- Assign data points to closest cluster centers

K-Means Clustering: Example

Iterative Step 2

- Change the cluster center to the average of the assigned points

K-Means Clustering: Example

- Repeat until convergence

K-Means Clustering: Example

K-Means Clustering: Example

K-means

- Randomly initialize k centers
$-\mu^{(0)}=\mu_{1}{ }^{(0)}, \ldots, \mu_{\mathrm{k}}{ }^{(0)}$
- Assign:
- Assign each point $i \in\{1, \ldots n\}$ to nearest center:
$-C(i) \longleftarrow \underset{j}{\operatorname{argmin}}\left\|\mathbf{x}_{i}-\boldsymbol{\mu}_{j}\right\|^{2}$
- Recenter:
- μ_{j} becomes centroid of its points

K-means

- Demo
- http://mlehman.github.io/kmeans-javascript/

What is K-means optimizing?

- Objective $F(\mu, C)$: function of centers μ and point allocations C:
$-F(\boldsymbol{\mu}, C)=\sum_{i=1}^{N}\left\|\mathbf{x}_{i}-\boldsymbol{\mu}_{C(i)}\right\|^{2}$
- 1-of-k encoding

$$
F(\boldsymbol{\mu}, \boldsymbol{a})=\sum_{i=1}^{N} \sum_{j=1}^{k} a_{i j}\left\|\mathbf{x}_{i}-\boldsymbol{\mu}_{j}\right\|^{2}
$$

- Optimal K-means:
- $\min _{\mu} \min _{a} F(\mu, a)$

Coordinate descent algorithms

- Want: $\min _{\mathrm{a}} \min _{\mathrm{b}} \mathrm{F}(\mathrm{a}, \mathrm{b})$
- Coordinate descent:
- fix a, minimize b
- fix b, minimize a
- repeat
- Converges!!!
- if F is bounded
- to a (often good) local optimum
- as we saw in applet (play with it!)
- K-means is a coordinate descent algorithm!

K-means as Co-ordinate Descent

- Optimize objective function:
$\min _{\boldsymbol{\mu}_{1}, \ldots, \boldsymbol{\mu}_{k}} \min _{\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{N}} F(\boldsymbol{\mu}, \boldsymbol{a})=\min _{\boldsymbol{\mu}_{1}, \ldots, \boldsymbol{\mu}_{k}} \min _{\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{N}} \sum_{i=1}^{N} \sum_{j=1}^{k} a_{i j}\left\|\mathbf{x}_{i}-\boldsymbol{\mu}_{j}\right\|^{2}$
- Fix μ, optimize a (or C)

K-means as Co-ordinate Descent

- Optimize objective function:
$\min _{\boldsymbol{\mu}_{1}, \ldots, \boldsymbol{\mu}_{k} \boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{N}} \min _{N} F(\boldsymbol{\mu}, \boldsymbol{a})=\min _{\boldsymbol{\mu}_{1}, \ldots, \boldsymbol{\mu}_{k}} \min _{\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{N}} \sum_{i=1}^{N} \sum_{j=1}^{k} a_{i j}\left\|\mathbf{x}_{i}-\boldsymbol{\mu}_{j}\right\|^{2}$
- Fix a (or C), optimize μ

Properties of K-Means Algorithm

- Guaranteed to converge in a finite number of iterations
- Running time per iteration:

1. Assign data points to closest cluster center $\mathrm{O}(\mathrm{KN})$ time
2. Change the cluster center to the average of its assigned points
O(N) time

K-means Clustering Problem

Given a set of observations $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, where $x_{i} \in \mathbb{R}^{d}$

K-means clustering problem:

Partition the n observations into K sets $(K \leq n) \mathbf{S}=\left\{S_{1}, S_{2}, \ldots, S_{K}\right\}$ such that the sets minimize the within-cluster sum of squares:

$$
\underset{\mathrm{S}}{\arg \min } \sum_{i=1}^{K} \sum_{\mathbf{x}_{j} \in S_{i}}\left\|\mathbf{x}_{j}-\boldsymbol{\mu}_{i}\right\|^{2}
$$

where μ_{i} is the mean of points in set S_{i}.
$\mathrm{K}=3$

K-Means Convergence

Objective $\operatorname{minmin}_{\mu} \sum_{i=1}^{k} \sum_{x \in C_{i}}\left|x-\mu_{i}\right|^{2}$

1. Fix μ, optimize C :
2. Fix C, optimizize μ :

$$
\min _{C} \sum_{i=1}^{k} \sum_{x \in C_{i} .}\left|x-\mu_{i}\right|^{2}=\min _{c} \sum_{i}^{n}\left|x_{i}-\mu_{x_{i}}\right|^{2}
$$

$$
\min _{\mu} \sum_{i=1}^{k} \sum_{x \in C_{i}}\left|x-\mu_{i}\right|^{2}
$$

- Take partial derivative of μ_{i} and set to zero, we have

$$
\mu_{i}=\frac{1}{\left|C_{i}\right|} \sum_{x \in C_{i}} x \quad \text { Step } 2 \text { of kmeans }
$$

K-Means takes an alternating optimization approach, each step is guaranteed to decrease the objective - thus guaranteed to converge

Example: K-Means for Segmentation

$\mathrm{K}=2$
Goal of Segmentation is to partition an image into regions each of which has reasonably homogenous visual appearance.

Example: K-Means for Segmentation

Original

Example: Vector quantization

FIGURE 14.9. Sir Ronald A. Fisher ($1890-1962$) was one of the founders of modern day statistics, to whom we owe maximum-likelihood, sufficiency, and many other fundamental concepts. The image on the left is a 1024×1024 grayscale image at 8 bits per pixel. The center image is the result of 2×2 block $V Q$, using 200 code vectors, with a compression rate of 1.9 bits/pixel. The right image uses only four code vectors, with a compression rate of 0.50 bits/pixel
[Figure from Hastie et al. book]

One important use of K-means

- Bag-of-word models in computer vision

Bag of Words model

Object

Bag of 'words'

Fei-Fei Li

Interest Point Features

Patch Features

dictionary formation

Clustering (usually k-means)

$$
(\equiv \equiv)(\equiv \equiv)(\equiv \equiv \equiv
$$

Vector quantization

Slide credit: Josef Sivic

Clustered Image Patches

Fei-Fei et al. 2005

Image representation

frequency

Fei-Fei Li

K-Means Clustering: Some Issues

- How to set k?
- Sensitive to initial centers
- Sensitive to outliers
- Detects spherical clusters
- Assuming means can be computed

(B): Ideal clusters

(B): k-means clusters

Seed Choice

Seed Choice

Hierarchical Clustering

- Bottom-Up (agglomerative): Starting with each item in its own cluster, find the best pair to merge into a new cluster. Repeat until all clusters are fused together.
- The number of dendrograms with
n leafs $=(2 n-3)!/[(2(n-2))(n-2)!]$

Number of leafs	Number of possible Dendrongrams
2	1
3	3
4	15
5	105
\ldots	\ldots
10	$34,459,425$

We begin with a distance matrix which contains the distances between every pair of objects in our dataset

$$
\begin{aligned}
& \mathrm{D}\left(, \frac{1}{2}\right)=8 \\
& \left.\mathrm{D}()^{2}\right)=1
\end{aligned}
$$

Bottom-Up (agglomerative):

Start with each item in its own cluster, find the best pair to merge into a new cluster. Repeat until all clusters are fused together.

Bottom-Up (agglomerative):

Start with each item in its own cluster, find the best pair to merge into a new cluster. Repeat until all clusters are fused together.

Consider all possible merges... $\left.\begin{aligned} & \text { Conside all } \\ & \text { 祭side } \\ & \text { merges... }\end{aligned} \right\rvert\, \begin{aligned} & \text { distances between clusters }\end{aligned}$

But how do we compute

Computing distance between clusters: Single Link

- Cluster distance = distance of two closest members in each class
- Potentially long and skinny clusters

Computing distance between clusters: Complete Link

- Cluster distance = distance of two farthest members in each class
- Tight clusters

Computing distance between clusters: Average Link

- Cluster distance = average distance of all pairs

- The most widely used measure
- Robust against noise

Agglomerative Clustering

Good

- Simple to implement, widespread application
- Clusters have adaptive shapes
- Provides a hierarchy of clusters

Bad

- May have imbalanced clusters
- Still have to choose number of clusters or threshold
- Need to use an "ultrametric" to get a meaningful hierarchy

What is a good clustering?

- Internal criterion: A good clustering will produce high quality clusters in which:
- the intra-class (that is, intra-cluster) similarity is high
- the inter-class similarity is low
- The measured quality of a clustering depends on both the obj. representation and the similarity measure used
- External criteria for clustering quality
- Quality measured by its ability to discover some or all of the hidden patterns or latent classes in gold standard data
- Assesses a clustering with respect to ground truth
- Example:

- Purity

- Entropy of classes in clusters (or Mutual Information between classes and clusters)

External Evaluation of Cluster Quality

- Simple measure: purity, the ratio between the dominant class in the cluster and the size of cluster
- Assume documents with C gold standard classes, while our clustering algorithms produce K clusters, $\omega_{1}, \omega_{2}, \ldots, \omega_{\mathrm{K}}$ with n_{i} members.

$$
\operatorname{Purity}\left(w_{i}\right)=\frac{1}{n_{i}} \max _{j}\left(n_{i j}\right) \quad j \in C
$$

- Example:

Cluster I: Purity $=1 / 6(\max (5,1,0))=5 / 6$
Cluster II: Purity $=1 / 6(\max (1,4,1))=4 / 6$
Cluster III: Purity $=1 / 5(\max (2,0,3))=3 / 5$

External Evaluation of Cluster Quality

- Let:

$$
\begin{aligned}
& T C=T C_{1} \cup T C_{2} \cup \ldots \cup T C_{n} \\
& C C=C C_{1} \cup C C_{2} \cup \ldots \cup C C_{m}
\end{aligned}
$$

be the target and computed clusterings, respectively.

- TC=CC = original set of data
- Define the following:
- a : number of pairs of items that belong to the same cluster in both $C C$ and $T C$
- b: number of pairs of items that belong to different clusters in both $C C$ and $T C$
- c : number of pairs of items that belong to the same cluster in CC but different clusters in TC
- d: number of pairs of items that belong to the same cluster in TC but different clusters in CC

External Evaluation of Cluster Quality

$$
\begin{aligned}
& P=\frac{a}{a+c} \\
& R=\frac{a}{a+d}
\end{aligned}
$$

$$
F=\frac{2 \times P \times R}{P+R}
$$

$$
\frac{a+b}{a+b+c+d}
$$

Rand Index

Measure of clustering agreement: how similar are these two ways of partitioning the data?

F-measure

External Evaluation of Cluster Quality

$$
\frac{a+b}{a+b+c+d}
$$

Rand Index

Adjusted Rand Index

Extension of the Rand index that attempts to account for items that may have been clustered by chance

External Evaluation of Cluster Quality

$$
\begin{gathered}
\text { Entropy }\left(C C_{i}\right)=\sum_{T C_{j} \in T C}-p\left(T C_{j} \mid C C_{i}\right) \log p\left(T C_{j} \mid C C_{i}\right) \\
\text { AvgEntropy }(C C)=\sum_{i=1}^{m} \frac{\left|C C_{i}\right|}{|C C|} \text { Entropy }\left(C C_{i}\right)
\end{gathered}
$$

Average Entropy

Measure of purity with respect to the target clustering

(One) bad case for k-means

- Clusters may overlap
- Some clusters may be "wider" than others

- GMM to the rescue!

$P(x \mid \mu, \sigma)=\frac{1}{\sigma \sqrt{2 \pi}} e^{\frac{-(x-\mu)^{2}}{2 \sigma^{2}}}$
(C) Dhruv Batra

GMM

[^0]Figure Credit: Kevin Murphy

Recall Multi-variate Gaussians

(C) Dhruv Batra

GMM

Special case: spherical Gaussians and hard assignments

- If $\mathrm{P}(\mathrm{X} \mid \mathrm{Z}=\mathrm{k})$ is spherical, with same σ for all classes:

$$
P\left(\mathbf{x}_{i} \mid z=j\right) \mu \exp \quad \frac{1}{2^{2}}\left\|\mathbf{x}_{i} \quad j\right\|^{2}
$$

- If each x_{i} belongs to one class C(i) (hard assignment), marginal likelihood:

$$
\left.{ }_{i=1}^{N} P\left(\mathbf{x}_{i}, y=j\right) \mu{ }_{i=1}^{N} \exp \frac{1}{2^{2}} \| \mathbf{x}_{i} \quad C_{i}\right) \|^{2}
$$

- M(M)LE same as K-means!!!

The K-means GMM assumption

- There are k components
- Component i has an associated mean vector μ_{t}
- μ_{2}
- μ_{l}
- μ_{3}

The K-means GMM assumption

- There are k components
- Component i has an associated mean vector μ_{t}
Each component generates data from a Gaussian with mean m_{i} and covariance matrix $\sigma^{2} I$

Each data point is generated according to the following recipe:

The K-means GMM assumption

- There are k components
- Component i has an associated mean vector μ_{t}
- Each component generates data from a Gaussian with mean m_{i} and covariance matrix

$$
\sigma^{2} I
$$

Each data point is generated according to the following recipe:

The K-means GMM assumption

- There are k components
- Component i has an associated mean vector μ_{t}
- Each component generates data from a Gaussian with mean m_{i} and covariance matrix

$$
\sigma^{2} I
$$

Each data point is generated according to the following recipe:

1. Pick a component at random: Choose component i with probability $P(y=i)$
2. Datapoint $\sim \mathrm{N}\left(\mu_{v}, \sigma^{2} I\right)$

The General GMM assumption

- There are k components
- Component i has an associated mean vector m_{i}
- Each component generates data from a Gaussian with mean m_{i} and covariance matrix

$$
\Sigma_{i}
$$

Each data point is generated according to the following recipe:

1. Pick a component at random: Choose component i with probability $P(y=i)$
2. Datapoint $\sim \mathrm{N}\left(m_{i}, \Sigma_{i}\right)$

K-means vs GMM

- K-Means
- http://home.deib.polimi.it/matteucc/Clustering/tutorial html/A ppletKM.html
- GMM
- http://www.socr.ucla.edu/applets.dir/mixtureem.htm|

EM

- Expectation Maximization [Dempster ‘77]
- Often looks like "soft" K-means
- Extremely general
- Extremely useful algorithm
- Essentially THE goto algorithm for unsupervised learning
- Plan
- EM for learning GMM parameters
- EM for general unsupervised learning problems

EM for Learning GMMs

- Simple Update Rules
- E-Step: estimate $P\left(z_{i}=j \mid x_{i}\right)$
- M-Step: maximize full likelihood weighted by posterior

Gaussian Mixture Example: Start

After 1st iteration

After 2nd iteration

After 3rd iteration

After 4th iteration

After 5th iteration

After 6th iteration

After 20th iteration

Tasks

New Topic: PCA

Synonyms

- Principal Component Analysis
- Karhunen-Loève transform
- Eigen-Faces
- Eigen-<Insert-your-problem-domain>
- PCA is a Dimensionality Reduction Algorithm
- Other Dimensionality Reduction algorithms
- Linear Discriminant Analysis (LDA)
- Independent Component Analysis (ICA)
- Local Linear Embedding (LLE)

Dimensionality reduction

- Input data may have thousands or millions of dimensions!
- e.g., images have 5M pixels

Dimensionality reduction

- Input data may have thousands or millions of dimensions!
- e.g., images have 5M pixels
- Dimensionality reduction: represent data with fewer dimensions
- easier learning - fewer parameters
- visualization - hard to visualize more than 3D or 4D
- discover "intrinsic dimensionality" of data
- high dimensional data that is truly lower dimensional

PCA / KL-Transform

- De-correlation view
- Make features uncorrelated
- No projection yet
- Max-variance view:
- Project data to lower dimensions
- Maximize variance in lower dimensions
- Synthesis / Min-error view:
- Project data to lower dimensions
- Minimize reconstruction error
- All views lead to same solution

Basic PCA algorithm

- Center data (subtract mean)
- Estimate covariance
- Find eigenvectors and values of covariance
- Principle components: choose k eigenvectors with highest corresponding values

Video

- https://youtu.be/pSRA8GpWIrA?t=162

Video

- What if the dimension is high?
- Covariance matrix is dxd
- For high d, Eigen decomposition is very slow... $O\left(d^{3}\right)$
- Use Singular Value Decomposition (SVD)
- finds k-eigenvectors
- great implementations $\mathrm{O}\left(\mathrm{N}^{2} \mathrm{~d}\right)$

PCA Applications

- Data Visualization
- Data Compression
- Noise Reduction
- Learning
- Anomaly detection

Data Visualization

Example:

- Given 53 blood and urine samples (features) from 65 people.
- How can we visualize the measurements?

Data Visualization

- Matrix format (65×53)

		H-WBC	H-RBC	H-Hgb	H-Hct	H-MCV	H-MCH	H-MCHC
	A1	8.0000	4.8200	14.1000	41.0000	85.0000	29.0000	34.0000
	A2	7.3000	5.0200	14.7000	43.0000	86.0000	29.0000	34.0000
	A3	4.3000	4.4800	14.1000	41.0000	91.0000	32.0000	35.0000
	A4	7.5000	4.4700	14.9000	45.0000	101.0000	33.0000	33.0000
	A5	7.3000	5.5200	15.4000	46.0000	84.0000	28.0000	33.0000
	A6	6.9000	4.8600	16.0000	47.0000	97.0000	33.0000	34.0000
	A7	7.8000	4.6800	14.7000	43.0000	92.0000	31.0000	34.0000
	A8	8.6000	4.8200	15.8000	42.0000	88.0000	33.0000	37.0000
	A9	5.1000	4.7100	14.0000	43.0000	92.0000	30.0000	32.0000

Features

Difficult to see the correlations between the features...

Data Visualization

- Spectral format (65 curves, one for each person)

Difficult to compare the different patients...

Data Visualization

- Spectral format (53 pictures, one for each feature)

Difficult to see the correlations between the features...

Data Visualization

Bi-variate

Tri-variate

How can we visualize the other variables???
... difficult to see in 4 or higher dimensional spaces...

Data Visualization

- Is there a representation better than the coordinate axes?
- Is it really necessary to show all the 53 dimensions?
- ... what if there are strong correlations between the features?
- How could we find the smallest subspace of the 53-D space that keeps the most information about the original data?
- A solution: Principal Component Analysis

Principal Component Analysis

PCA:

Orthogonal projection of the data onto a lowerdimension linear space that...

- maximizes variance of projected data (purple line)
- minimizes mean squared distance between
- data point and
- projections (sum of blue lines)

Principal Component Analysis

Idea:

- Given data points in a d-dimensional space, project them into a lower dimensional spac ϵ while preserving as much information as possible.
- Find best planar approximation to 3D data
- Find best 12-D approximation to $10^{4}-\mathrm{D}$ data
- In particular, choose projection that minimizes squared error in reconstructing the original data.

Principal Component Analysis

- PCA Vectors originate from the center of mass.
- Principal component \#1: points in the direction of the largest variance.
- Each subsequent principal component - is orthogonal to the previous ones, and
- points in the directions of the largest variance of the residual subspace

2D Gaussian dataset

$1^{\text {st }}$ PCA axis

$2^{\text {nd }}$ PCA axis

Face Recognition

\square Want to identify specific person, based on facial image
\square Robust to glasses, lighting,...
\Rightarrow Can't just use the given 256×256 pixels

Applying PCA: Eigenfaces

Method A: Build a PCA subspace for each person and check which subspace can reconstruct the test image the best

Method B: Build one PCA database for the whole dataset and then classify based on the weights.

Applying PCA: Eigenfaces

Example data set: Images of faces

- Eigenface approach [Turk \& Pentland], [Sirovich \& Kirby]
- Each face \mathbf{x} is ...
- 256×256 values (luminance at location)
- \mathbf{X} in $\mathfrak{R}^{256 \times 256}$ (view as 64 K dim vector)
\square Form $\mathbf{X}=\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathrm{m}}\right]$ centered data mtx
- Compute $\Sigma=\mathbf{X X}^{\top}$
\square Problem: Σ is $64 \mathrm{~K} \times 64 \mathrm{~K}$... HUGE!!!

Principle Components (Method B)

Happiness subspace (method A)

Disgust subspace (method A)

Facial Expression Recognition Movies

Original Image

- Divide the original 372×492 image into patches:
- Each patch is an instance that contains 12×12 pixels on a grid
- Consider each as a 144-D vector

L_{2} error and PCA dim

PCA compression: 144D \Rightarrow 60D

60 most important eigenvectors

Looks like the discrete cosine bases of JPG!...

PCA compression: 144D \Rightarrow 16D

16 most important eigenvectors

PCA compression: 144D \Rightarrow 6D

6 most important eigenvectors

PCA compression: 144D \Rightarrow 3D

3 most important eigenvectors

PCA compression: 144D \Rightarrow 1D

Noise Filtering

Noisy image

Denoised image using 15 PCA components

Problematic Data Set for PCA

PCA vs Fisher Linear Discriminant

- PCA maximizes variance, independent of class
\Rightarrow magenta

- FLD attempts to separate classes
\Rightarrow green line

Problematic Data Set for PCA

PCA cannot capture NON-LINEAR structure!

Input points before kernel PCA

http://en.wikipedia.org/wiki/Kernel_principal_component_analysis

Output after kernel PCA

The three groups are distinguishable using the

What you need to know

- Dimensionality Reduction
- why and when its important
- visualization
- compression
- faster learning
- Principle Component Analysis
- KL Transform view
- Notes have reconstruction error and max variance views too
- Relationship to covariance matrix and eigenvectors
- using SVD for PCA

[^0]: (C) Dhruv Batra

