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Tasks

Supervised Learning
X ) Classification )y Discrete

X Regression )y Continuous

Unsupervised Learning

X Clustering ) C Discrete ID

x ) DIMensionality e Continuous

Reduction
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-
Unsupervised Learning

« Learning only with X
— Y not present in training data

« Some example unsupervised learning problems:
— Clustering / Factor Analysis
— Dimensionality Reduction / Embeddings
— Density Estimation with Mixture Models
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New Topic: Clustering
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-
Synonyms

* Clustering

« Vector Quantization
 Latent Variable Models
 Hidden Variable Models

 Mixture Models

 Algorithms:
— K-means
— Expectation Maximization (EM)
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Distance measures

- In studying clustering techniques we will
assume that we are given a matrix of distances
between all pairs of data points:
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OurX oug Agapys

What is Similarity/Dissimilarity?

Hard to define!
But we know it
when we see it

- The real meaning of similarity is a philosophical question. We will take
a more pragmatic approach.

- Depends on representation and algorithm. For many rep.//alg., easier
to think in terms of a distance (rather than similarity) between vectors.
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Defining Distance Measures

- Definition: Let 0, and 0, be two objects from the

universe of possible objects. The distance
(dissimilarity) between 0, and 0, is a real number

denoted by D(0,, 0,).
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Inside these black boxes:

some function on two variables
(might be simple or very
complex)

3
A few examples:
* Euclidean distance

d(x,y)= \/Z(xf -y,
 Correlation coefficient ’

z 2%~ 1)y — 1) /
g stxy)=-
:

* Similarity rather than distance
* Can determine similar trends

0.0,

X




What properties should a
distance measure have?

+ Symmetric
- D(A,B) = D(B,A)
- Otherwise, we can say A looks like B but B does not look
like A
- Positivity, and self-similarity
- D(A,B)=0,and D(A,B)=0iff A=B
- Otherwise there will different objects that we cannot tell
apart
- Triangle inequality
- D(A,B) + D(B,C) = D(A,()
- Otherwise one can say “A is like B, B is like C, but A is not
like C at all”
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- Euclidean (L2)

ﬁi

Distance measures

dxy) =S (-3

- Manhattan (L1)

dxy)=[x-y]= " v~y

- Infinity (Sup) Distance L.

d(x,y)=max__,|X;, -y,

Note that L. < L1 < Lo, but different distances do
not induce the same ordering on points.




Distance measures

X = (x,, X,)

y = (x,—2, x,+4)
Euclidean: (4% +2%)"* =4.47
Manhattan: 4+2 =6

[ T Sup: Max(4,2)=4
N
I



Distance measures

- Different distances do not induce the same
ordering on points

L_(a,b) =5
L,(a,b)=(5"+£?)" =5+¢

) L. (c,d) =4
4 L,(c,d) = (47 +4%)"* =442 = 5.66
M
R ......................................... L.(c,d) <L_(a,b)
i ——i L,(c,d)>L,(a,b)
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Distance measures

- Clustering is sensitive to the distance measure

- Sometimes it is beneficial to use a distance

measure that is invariant to transformations

that are natural to the problem:

- Mahalanobis distance:
v Shift and scale invariance
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Mahalanobis Distance

d(x,y) = (x-y) Z(x-y)

¥ 1s a (symmetric) Covariance Matrix:
u= izm x;, (average of the data)
m ~i=l
1 m . .
2= —E_ (x—u)(x- ;u)T,a matrix of size mxm
m “~i=l

Translates all the axes to a mean = 0 and
variance = 1 (shift and scale invariance)
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Distance measures

- Some algorithms require distances between

a point x and a set of points A d(x, A)
This might be defined e.g. as min/max/avg
distance between x and any point in A.

- Others require distances between two sets

of points A, B, d(A, B).
This might be defined e.g as min/max/avg distance
between any point in A and any point in B.




Clustering algorithms

. i ; - E—
Partitioning a_ilgorlthms ‘ ..
- Construct various partitions 28 3
and then evaluate them by £ ﬁ ¥
some criterion ﬁ S) o
- « a&x 2
- K-means oy - -
- Mixture of Gaussians B .‘. = f
- Spectral Clustering = —
 Hierarchical algorithms l 1_l—l
- Create a hierarchical decomposition J. K
of the set of objects using some !
criterion &,\ . ‘cf‘ E
- Bottom-up - agglomerative .a “L

- Top-down - divisive

g
@
o
m
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Desirable Properties of a
Clustering Algorithm

- Scalability (in terms of both time and space
- Ability to deal with different data types

- Minimal requirements for domain
knowledge to determine input parameters

- Ability to deal with noisy data
- Interpretability and usability

DUy g SpiIS

- Optional
§ - Incorporation of user-specified constraints




ome Data

(C) Dhruv Batra

Auton’s Graphics

%1

R

0.b

0.4

0.2

L 1 1 1 1 L
T T T T T T
0 0,2 0,4 0,6 0,8 1 |
%0
Slide Credit: Carlos Guestrin 19



K-means

1. Ask user how many
clusters they'd like.
(e.g. k=5)
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— Auton’s Graphics

K-means |«

na T
1. Ask user how many

clusters they'd like.
(e.g. k=5)

2. Randomly guessk | *& T
cluster Center
locations
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— Auton’s Graphics

K-means |«

1. Ask user how many e

clusters they'd like.
(e.g. k=5)

2. Randomly guess k | °
cluster Center
locations

3. Each datapoint finds| o.4

out which Center it's
closest to. (Thus

each Center “owns”

a set of datapoints) | 2

W)

(C) Dhruv Batra Slide Credit: Carlos Guestrin 22



— Auton’s Graphics

K-means |«

1. Ask user how many e

clusters they'd like.
(e.g. k=5)

2. Randomly guess k | °
cluster Center
locations

3. Each datapoint finds| o.4
out which Center it’s
closest to.

4. Each Center finds
the centroid of the
points it owns

0.2

W)
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— Auton’s Graphics

K-means |«

1. Askuser how many | vs T
clusters they'd like.
(e.g. k=5)

2. Randomly guessk | ,. 1
cluster Center
locations

3. Each datapoint finds
out which Center it’s
closest to.

4. Each Center finds
the centroid of the | .2
points it owns

0.4 T L
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5. ...Rep_eat until ; 0.2 0.4 0.5 0.8 {
terminated!

W)
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K-Means Clustering: Example

| « Pick K random

points as cluster
centers (means)

| Shown here for K=2




K-Means Clustering: Example

~ | lterative Step 1

* Assign data points
to closest cluster
centers




K-Means Clustering: Example

2 !

(WO

lterative Step 2

| Change the cluster

center to the
average of the
assigned points




DEBJUOS plaeq AQ apys

K-Means Clustering: Example

—|* Repeat until
| convergence

()




K-Means Clustering: Example
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K-Means Clustering: Example
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R
K-means

 Randomly initialize k centers
- O =y O

« Assign:
— Assign each point ie{1,...n} to nearest center:

— C(i) «— argmin |[x; — ;|2
J

 Recenter:
- uj becomes centroid of its points
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R
K-means

« Demo
— http://mlehman.github.io/kmeans-javascript/
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-
What Is K-means optimizing?

* Objective F(u,C): function of centers p and point
allocations C

- F(p,C lexz ol

— 1-of-k encoding ZZ%HX@ il

1=1 5=1

« Optimal K-means:
— min min, F(u,a)
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-
Coordinate descent algorithms

Want: min, min, F(a,b)

Coordinate descent:
— fix a, minimize b
— fix b, minimize a
— repeat

Converges!!!
— if Fis bounded

— to a (often good) local optimum
« as we saw in applet (play with it!)

K-means is a coordinate descent algorithm!

(C) Dhruv Batra Slide Credit: Carlos Guestrin 34



.
K-means as Co-ordinate Descent

« Optimize objective function:

min  min F(u,a) = min  min Z Zaz’jHXz' — pl)?

H1,..., HEe Ay,..., a N Hi,-.., Hi Al,..., anN -

* Fix u, optimize a (or C)

(C) Dhruv Batra Slide Credit: Carlos Guestrin 35



.
K-means as Co-ordinate Descent

« Optimize objective function:

min  min F(u,a) = min  min Z Zaz’jHXz' — pl)?

H1,..., HEe Ay,..., a N Hi,-.., Hi Al,..., anN -

* Fix a (or C), optimize u

(C) Dhruv Batra Slide Credit: Carlos Guestrin 36
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Properties of K-Means Algorithm:

- Guaranteed to converge in a finite number
of iterations

- Running time per iteration:
1. Assign data points to closest cluster center
O(KN) time
2. Change the cluster center to the average of its

assigned points
O(N) time




K-means Clustering Problem

Given a set of observations (z1,z9,...,zn), Where z; € R4

K-means clustering problem:

Partition the n observations into K sets (K< n) S ={S,, S,, ..., Sy}
such that the sets minimize the within-cluster sum of squares:

argmlnz > ||xj u,a||

1=1x;€ES;
where p; is the mean of points in set §;.

K=3 O D%D a -...
B Gy I'H H3
ul/ﬁgﬁ% . . .' Ss
S1 - .. L



K-Means Convergence

Objective mmmﬂ;nz 1 ercllx 1|4
7
1. Fix p, optimize C:
Step 1 of kmeans
mmz Z Ix — p|* = mmZ|x: #x¢|

=1 x€eC;

2. Fix C, opt|m|ze|‘.1
min £ Srec bx = il

— Take partial derivative of u; and set to zero, we have

STl Z Step 2 of kmeans

K-Means takes an alternating optimization approach, each step is
guaranteed to decrease the objective — thus guaranteed to converge

LB Uey AQ apis
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Example: K-Means for Segmentation

Original
Goal of Segmentation F A
is to partition an image
into regions each of
which has reasonably
homogenous visual

appearance.
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Example: K-Means for Segmentation

K2 K3 N

Original

<
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Vector quantization

FIGURE 14.9. Sir Ronald A. Fisher (1890 — 1962) was one of the founders
of modern day statistics, to whom we owe mazximum-likelihood, sufficiency, and
many other fundamental concepts. The image on the left is a 1024 x 1024 grayscale
image at 8 bits per pizel. The center image is the result of 2 X 2 block VQ, using
200 code vectors, with a compression rate of 1.9 bits/pizel. The right image uses
only four code vectors, with a compression rate of 0.50 bits/pizel

[Figure from Hastie et al. book]




-
One important use of K-means

« Bag-of-word models in computer vision

(C) Dhruv Batra 43



-
Bag of Words model

» All About The Company
Global Activities

aardvark
Corporate Structure

TOTAL's Stery about
Upstream Strategy
Downstream Strategy

0
2
Chemicals Strategy all 2
1
0
0

Homepage

TOTAL Foundation
Africa

v

all about the apple
company

anxious

Chr energy exploration, production, and distribution
operations span the globe, with activities i more than 100
countries.

At TOTAL, we draw our greatest strength from our gaS 1
fast-growing ol and gas reserves. Our strategic emphasis
on natural gas provides a strong posttion in a rapidly
expanding market.

_— | o oil 1
Our expanding refining and marketing operations in Asia
and the Mediterranean Rim complement already solid
positions in Burope, Affica, and the TS5

Our growing specialty chemicals sector adds balance and Za| re 0
profit to the core energy business.
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Object » Bag of ‘words’

Fei-Fei Li



Fei-Fei Li




Interest Point Features

r 3
=| <+— [j}
\_J '
Compute |
SIET Normalize
descriptor patch
[Lowe’99]

Detect patches
[Mikojaczyk and Schmid ’02]
[Matas et al. '02]
[Sivic et al. ‘03]

Slide credit; Josef Sivic




Patch Features
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-
dictionary formation
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-
Clustering (usually k-means)

f

N N N N
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Vector quantization
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-
Clustered Image Patches
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Fei-Fei et al. 2005
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K-Means Clustering: Some Issues

- How to set k?

+ Sensitive to initial centers

- Sensitive to outliers

- Detects spherical clusters

- Assuming means can be computed




Seed Choice




Seed Choice
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with

n leafs = (2n -3)!/[(2(n -2)) (n -2)!]

Number Number of possible

of leafs Dendrongrams

2

3
4

5
10

Hierarchical Clustering

- Bottom-Up (agglomerative): Starting with each item in
its own cluster, find the best pair to merge into a new
cluster. Repeat until all clusters are fused together.

* The number of dendrograms

1
3
15
105

34,459,425




We begin with a distance
matrix which contains the
distances between every
pair of objects in our dataset

'S
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Bottom-Up (agglomerative):

Start with each item in its own cluster,
find the best pair to merge into a new
cluster. Repeat until all clusters are
fused together.

37

Conséc}er all r—; I I b |
possible &8s &
v‘
merges... :“ Q g & ;
Consider all I 1 I 1

possible

merges. .. " g 5 3. i

«Consider all I l ﬁ I 1 I 1
ibl g

i e 8Y -~ 1§

Choose
the best

Choose
the best

Choose
the best
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Bottom-Up (agglomerative):
Start with each item in its own cluster, rl—l
find the best pair to merge into a new ¢

3
cluster. Repeat until all clusters are - X
fused together. £ a E
Consider all I I ‘——; I I 3 h I i T
possbl eQ S £%
merges... P &
But how do we compute 4 & &

distances between clusters

Consider all 4 | |

osigerall | ther than objects? i3
p &
merges... ‘ i ‘ A 5 2 E
¢Consider all I 1 I 1 I 1 Chicose 1_1
“possible \ e €D the best & @
gmerges... E ‘ i E %) Cf E
5 = o = T o
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Computing distance between clusters:
Single Link

+ Cluster distance = distance of two closest
members in each class
- Potentially long

and skinny
< clusters




Computing distance between clusters:
Complete Link

- Cluster distance = distance of two farthest
members in each class

- Tight clusters




Computing distance between clusters:
Average Link

- Cluster distance = average distance of all
pairs

+ The most widely

used measure
- Robust against
/ne noise
“ “ 20
\#

c ~
c"

-

C

| 2100 MaIpUY AQ 8|S




wajoH yauad Ag apis

Agglomerative Clustering

Good

- Simple to implement, widespread application
- Clusters have adaptive shapes

- Provides a hierarchy of clusters

Bad
- May have imbalanced clusters
- Still have to choose number of clusters or threshold

- Need to use an “ultrametric” to get a meaningful
hierarchy
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What is a good clustering?

Internal criterion: A good clustering will produce high
quality clusters in which:

- the intra-class (that is, intra-cluster) similarity is high

- the inter-class similarity is low

- The measured quality of a clustering depends on both the
obj. representation and the similarity measure used

External criteria for clustering quality

- Quality measured by its ability to discover some or all of the
hidden patterns or latent classes in gold standard data
- Assesses a clustering with respect to ground truth
- Example:
- Purity
- Entropy of classes in clusters (or Mutual Information between
classes and clusters)
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External Evaluation of Cluster Quality

- Simple measure: purity, the ratio between the dominant
class in the cluster and the size of cluster

- Assume documents with C gold standard classes, while
our clustering algorithms produce K clusters, w,, w,, ..., Wk

with n, members.

- Example:

1
Purity(w;) = — max(n;;) je€C
L

N /0N N

{
I . | | o @ ) | L
\ / | J !
] 7 \ ’ ./ \ ’ /
Cluster 1 Cluster I1 Cluster 1T

Cluster I: Purity = 1/6 (max(5, 1, 0)) = 5/6
Cluster lI: Purity = 1/6 (max(1, 4, 1)) = 4/6
Cluster lll: Purity = 1/5 (max(2, 0, 3)) = 3/5
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External Evaluation of Cluster Quality

Let:
IC=TC,uTC,u..u TC,

CC = CC, u CC,u...u CC,,
be the target and computed clusterings, respectively.
TC = CC = original set of data

Define the following:
- a: number of pairs of items that belong to the same cluster in both CCand TC

- b: number of pairs of items that belong to different clusters in both CCand TC

- ¢: number of pairs of items that belong to the same cluster in CC but different
clusters in TC

- d: number of pairs of items that belong to the same cluster in TC but different
clusters in CC
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External Evaluation of Cluster Quality

a

P = a+b

a+c
P a a+b+c+d

a+d Rand Index

2% Px R Measure of clustering
F = agreement: how similar
P+ R are these two ways of

partitioning the data?
F-measure
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Japmen-pnens aydo:

External Evaluation of Cluster Quality

a+b 2(ab - cd)
a+b+c+d (a+c)c+b)+(a+ d)(d+Db)
Rand Index Adjusted Rand Index

Extension of the Rand index that
attempts to account for items
that may have been clustered by
chance




JBILED-PNEND BUd0ISILD Ag 8p|Is

External Evaluation of Cluster Quality

Entropy(CC,) = Z—p(TCj |CC)Hlog p(TC; 1CC))

TC, ETC

AvgEntropy(CC) = E ||(é—cc‘ Entropy(CC),)
i=1

Average Entropy

Measure of purity with respect to
the target clustering




-
(One) bad case for k-means

» Clusters may overlap

e Some clusters may be
“‘wider” than others

. « GMM to the rescue!

(C) Dhruv Batra Slide Credit: Carlos Guestrin 70



P(x | p,0) = e 202
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GMM

35

Figure Credit: Kevin Murphy
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.
Recall Multi-variate Gaussians

Dt 5

o :
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GMM

I I I
0.7 0.8 0.9

(C) Dhruv Batra Figure Credit: Kevin Murphy 74
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Special case: spherical Gaussians

and hard assignments

« If P(X|Z=K) is spherical, with same o for all classes:

: e 1 2
P(Xi|Z:J)Heng—252 Xi_ij H

 [|f each x; belongs to one class C(i) (hard
assignment), marginal likelihood:

A

5 X601
OaPrix,.y=) quxpg—

2
i=1 j=1 i=1 25

2U

i

X, — mC(i)

« M(M)LE same as K-means!!!

(C) Dhruv Batra Slide Credit: Carlos Guestrin 75



-
The K-means GMM assumption

« There are k components
« Componenti has an associated
mean vector
H, Mo

o« Hi

(C) Dhruv Batra Slide Credit: Carlos Guestrin 76



The K-means GMM assumption

» There are k components

« Component i has an associated
mean vector g,

"I Each component generates data \
from a Gaussian with mean m; and
covariance matrix o’/

Each data point is generated
according to the following recipe:

(C) Dhruv Batra Slide Credit: Carlos Guestrin 77



The K-means GMM assumption

« There are k components

« Componenti has an associated
mean vector g,

Each component generates
data from a Gaussian with
mean m, and covariance matrix
ol

Each data point is generated
according to the following
recipe:

1. Pick a component at random:
Choose component i with
probability P(y=i)

(C) Dhruv Batra Slide Credit: Carlos Guestrin 78



The K-means GMM assumption

. There are k components

« Componenti has an associated
mean vector g,

«  Each component generates
data from a Gaussian with
mean m, and covariance matrix

o'l

Each data point is generated
according to the following
recipe:

1. Pick a component at random:
Choose component i with
probability P(y=i)

2. Datapoint ~ N(u,, o°I)

(C) Dhruv Batra Slide Credit: Carlos Guestrin 79



The General GMM assumption

 There are k components

« Componenti has an associated
mean vector m,

Each component generates
data from a Gaussian with

mean m, and covariance matri

2

Each data point is generated
according to the following
recipe:

1. Pick a component at random:
Choose component i with
probability P(y=i)
2. Datapoint ~ N(m;, X )
(C) Dhruv Batra Slide Credit: Carlos Guestrin 80
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K-means vs GMM

« K-Means

— http://home.deib.polimi.it/matteucc/Clustering/tutorial html/A
ppletKM.html

 GMM
— http://www.socr.ucla.edu/applets.dir/mixtureem.html

(C) Dhruv Batra 81


http://home.deib.polimi.it/matteucc/Clustering/tutorial_html/AppletKM.html
http://www.socr.ucla.edu/applets.dir/mixtureem.html

EM

« Expectation Maximization [Dempster 77]
« Often looks like “soft” K-means

« Extremely general

« Extremely useful algorithm
— Essentially THE goto algorithm for unsupervised learning

* Plan
— EM for learning GMM parameters
— EM for general unsupervised learning problems

(C) Dhruv Batra 82



EM for Learning GMMs

« Simple Update Rules
— E-Step: estimate P(z; = | x)
— M-Step: maximize full likelihood weighted by posterior

(C) Dhruv Batra 83



Gaussian Mixture Example: Stl'

(C) Dhruv Batra Slide Credit: Carlos Guestrin 84



After 1st iteration

(C) Dhruv Batra Slide Credit: Carlos Guestrin 85



After 2nd iteration

(C) Dhruv Batra Slide Credit: Carlos Guestrin 86



After 3rd iteration

(C) Dhruv Batra Slide Credit: Carlos Guestrin 87



After 4th iteration

(C) Dhruv Batra Slide Credit: Carlos Guestrin 88
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After 5th iteration

(C) Dhruv Batra Slide Credit: Carlos Guestrin 89



s
After 6th Iteration

(C) Dhruv Batra Slide Credit: Carlos Guestrin 90



After 20th iteration

(C) Dhruv Batra Slide Credit: Carlos Guestrin 91
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Tasks

Classification )

Regression I

Clustering I

Dimensionality —)

Reduction

Discrete

Continuous

Discrete ID

Continuous
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New Topic: PCA




-
Synonyms

* Principal Component Analysis
« Karhunen-Loeve transform

« Eigen-Faces
* Eigen-<Insert-your-problem-domain>

« PCA is a Dimensionality Reduction Algorithm

« Other Dimensionality Reduction algorithms
— Linear Discriminant Analysis (LDA)
— Independent Component Analysis (ICA)
— Local Linear Embedding (LLE)

(C) Dhruv Batra 94
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-
Dimensionality reduction

« Input data may have thousands or millions of
dimensions!
— e.g., images have 5M pixels

 Dimensionality reduction:
represent data with fewer dimensions
— easier learning — fewer parameters
— visualization — hard to visualize more than 3D or 4D

— discover “intrinsic dimensionality” of data
* high dimensional data that is truly lower dimensional



PCA / KL-Transform

De-correlation view
— Make features uncorrelated
— No projection yet

« Max-variance view:
— Project data to lower dimensions
— Maximize variance in lower dimensions

Synthesis / Min-error view.
— Project data to lower dimensions
— Minimize reconstruction error

All views lead to same solution
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Basic PCA algorithm

« Center data (subtract mean)
« Estimate covariance
* Find eigenvectors and values of covariance

* Principle components: choose k eigenvectors with
highest corresponding values
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Video

o https://youtu.be/pSRAB8GpWIrA?t=162
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https://youtu.be/pSRA8GpWIrA?t=162

Video

« What if the dimension is high?
— Covariance matrix is d x d
— For high d, Eigen decomposition is very slow... O(d3)

« Use Singular Value Decomposition (SVD)
— finds k-eigenvectors
— great implementations O(N2d)
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PCA Applications

- Data Visualization
+ Data Compression
- Noise Reduction

+ Learning

- Anomaly detection




Data Visualization

Example:

- Given 53 blood and urine samples
(features) from 65 people.

- How can we visualize the measurements?
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Data Visualization

- Matrix format (65x53)

H-WBC H-RBC H-Hgb H-Hct H-MCV HMCH | H-MCHC
e A1 8.0000 48200 | 14.1000 | 41.0000| 85.0000 | 29.0000 | 34.0000
A2 7.3000 5.0200 | 14.7000 | 43.0000| 86.0000| 29.0000 | 34.0000
% A3 4.3000 44800 | 14.1000 | 41.0000| 91.0000 | 32.0000 | 35.0000
E Ad 7.5000 44700 | 14.9000 | 45.0000 | 101.0000 | 33.0000 | 33.0000
S < A5 7.3000 55200 | 15.4000 | 46.0000| 84.0000| 28.0000 | 33.0000
E A6 6.9000 4.8600 | 16.0000 | 47.0000| 97.0000 | 33.0000 | 34.0000
— A7 7.8000 4.6800 | 14.7000 | 43.0000| 92.0000 | 31.0000 | 34.0000
A8 8.6000 4.8200 | 15.8000 | 42.0000| 88.0000 | 33.0000 | 37.0000
\ A9 5.1000 47100 | 14.0000 | 43.0000 | 92.0000 | 30.0000 | 32.0000
N
Y
Features

Difficult to see the correlations between the features...
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Data Visualization

- Spectral format (65 curves, one for each person)
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Measurement

Difficult to compare the different patients...
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Data Visualization

- Spectral format (53 pictures, one for each feature)

H-Bands
0 O000 _ ===

NAO®O® NAO®

«mw |

10 20 30 40 50 60 70
Person

Difficult to see the correlations between the features...
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Data Visualization

Bi-variate Tri-variate

550
500
450
— 400
= 350
= 300
“ 250
200r 4, e
1500 epo s s
100
50 ——————————
0 50 150 250 350 450
C-Triglycerides

M-EPI

How can we visualize the other variables???

... difficult to see in 4 or higher dimensional spaces...
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Data Visualization

- Is there a representation better than the coordinate

axes?

- Is it really necessary to show all the 53 dimensions?

- ... what if there are strong correlations between the
features?

- How could we find the smallest subspace of the
53-D space that keeps the most information about
the original data?

- A solution: Principal Component Analysis
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Principal Component Analysis

uy

S
.\//
/

PCA: b

Orthogonal projection of the data onto a lower-
dimension linear space that...
- maximizes variance of projected data (purple line)

* minimizes mean squared distance between
- data point and
- projections (sum of blue lines)




Principal Component Analysis

Idea:

- Given data points in a d-dimensional space,
project them into a space
while as
possible.

- Find best planar approximation to 3D data
- Find best 12-D approximation to 10%-D data

- In particular, choose projection that

in reconstructing the original data.
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Principal Component Analysis

- PCA Vectors originate from the center of

Mass.

- Principal component #1: points in the

direction of the largest variance.

- Each subsequent principal component

- Is orthogonal to the previous ones, and
- points in the directions of the largest
variance of the residual subspace
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2D Gaussian dataset




1st PCA axis

slide by Bamabas Poczos and Aarti Singh



2nd PCA axis

slide by Bamabas Poczos and Aarti Singh



Face Recognition

O Want to identify specific person, based on facial image
O Robust to glasses, lighting,...
— Can't just use the given 256 x 256 pixels

i

:
4

:
:




Applying PCA: Eigenfaces

Method A: Build a PCA subspace for each person and check
which subspace can reconstruct the test image the best

Method B: Build one PCA database for the whole dataset and
then classify based on the weights.




Applying PCA: Eigenfaces

O Example data set: Images of faces

» Eigenface approach
[Turk & Pentland], [Sirovich & Kirby]

d Each face xis ...

e 256 X 256 values (luminance at location)
e X in R26%256  (view as 64K dim vector)

QForm X =[ x,, ..., X, | centered data
mtx

Q Compute T = XXT
O Problem: X is 64K X 64K ... HUGE!!!

m faces

e

san|eA [eal
95¢ X 99¢




Principle Components (Method B)




Happiness subspace (method A)




Disgust subspace (method A)




Facial Expression Recognition
Movies

Surprise

28T 2762

175 5832




Original Image
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O Divide the original 372x492 image into patches:
e Each patch is an instance that contains 12x12 pixels on a grid
Q Consider each as a 144-D vector



L, error and PCA dim
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PCA compression: 144D = 60D
S o=




60 most important eigenvectors
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Looks like the discrete cosine bases of JPG!...




PCA compression: 144D = 16D




16 most important eigenvectors
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PCA compressmn 144D = 6D




6 most important eigenvectors
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PCA compression: 144D = 3D
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3 most important eigenvectors
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PCA compression: 144D = 1D




Noise Filtering
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Denoised image
using 15 PCA components
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Problematic Data Set for PCA
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PCA doesn’t know labels!




PCA vs Fisher Linear Discriminant
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Problematic Data Set for PCA

PCA cannot capture NON-LINEAR structure!




Input points before kernel PCA
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http://en.wikipedia.org/wiki/Kernel_principal_component_analysis !



Output after kernel PCA

The three groups are distinguishable using the
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-
What you need to know

« Dimensionality Reduction

— why and when its important
 visualization
* compression
 faster learning

* Principle Component Analysis

— KL Transform view
* Notes have reconstruction error and max variance views too

— Relationship to covariance matrix and eigenvectors
— using SVD for PCA
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