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Tasks
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Classificationx y

Regressionx y

Discrete

Continuous

Clusteringx c Discrete ID

Dimensionality

Reduction
x z Continuous

Supervised Learning

Unsupervised Learning



Unsupervised Learning

• Learning only with X

– Y not present in training data

• Some example unsupervised learning problems:

– Clustering / Factor Analysis

– Dimensionality Reduction / Embeddings

– Density Estimation with Mixture Models
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New Topic: Clustering
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Synonyms

• Clustering

• Vector Quantization 

• Latent Variable Models

• Hidden Variable Models

• Mixture Models

• Algorithms:

– K-means

– Expectation Maximization (EM)

(C) Dhruv Batra 5





























Some Data
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K-means

1. Ask user how many 

clusters they’d like. 

(e.g. k=5) 
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K-means

1. Ask user how many 

clusters they’d like. 

(e.g. k=5) 

2. Randomly guess k 

cluster Center 

locations
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K-means

1. Ask user how many 

clusters they’d like. 

(e.g. k=5) 

2. Randomly guess k 

cluster Center 

locations

3. Each datapoint finds 

out which Center it’s 

closest to. (Thus 

each Center “owns” 

a set of datapoints)
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K-means

1. Ask user how many 

clusters they’d like. 

(e.g. k=5) 

2. Randomly guess k

cluster Center 

locations

3. Each datapoint finds 

out which Center it’s 

closest to.

4. Each Center finds 

the centroid of the 

points it owns
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K-means

1. Ask user how many 

clusters they’d like. 

(e.g. k=5) 

2. Randomly guess k

cluster Center 

locations

3. Each datapoint finds 

out which Center it’s 

closest to.

4. Each Center finds 

the centroid of the 

points it owns

5. …Repeat until 

terminated!
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K-means

• Randomly initialize k centers

– (0) = 1
(0),…, k

(0)

• Assign: 

– Assign each point i{1,…n} to nearest center:

–

• Recenter: 

– 𝜇𝑗 becomes centroid of its points
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K-means

• Demo

– http://mlehman.github.io/kmeans-javascript/
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What is K-means optimizing? 

• Objective F(,C): function of centers  and point 

allocations C:

–

– 1-of-k encoding

• Optimal K-means:

– minmina F(,a) 
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Coordinate descent algorithms
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• Want: mina minb F(a,b)

• Coordinate descent:

– fix a, minimize b

– fix b, minimize a

– repeat

• Converges!!!

– if F is bounded

– to a (often good) local optimum 

• as we saw in applet (play with it!)

• K-means is a coordinate descent algorithm!



• Optimize objective function:

• Fix , optimize a (or C)
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K-means as Co-ordinate Descent



• Optimize objective function:

• Fix a (or C), optimize 
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K-means as Co-ordinate Descent















One important use of K-means

• Bag-of-word models in computer vision
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Bag of Words model

aardvark 0

about 2

all 2

Africa 1

apple 0

anxious 0

...

gas 1

...

oil 1

…

Zaire 0
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Object Bag of ‘words’

Fei-Fei Li



Fei-Fei Li



Interest Point Features

Normalize 

patch

Detect patches

[Mikojaczyk and Schmid ’02]

[Matas et al. ’02] 

[Sivic et al. ’03]

Compute 

SIFT 

descriptor

[Lowe’99]
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…

Patch Features
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dictionary formation

…
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Clustering (usually k-means)

Vector quantization

…
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Clustered Image Patches

Fei-Fei et al. 2005



Image representation

…..

fr
e
q
u
e
n
c
y

codewords

Fei-Fei Li





































(One) bad case for k-means

• Clusters may overlap

• Some clusters may be 

“wider” than others

• GMM to the rescue!
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GMM
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Recall Multi-variate Gaussians
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GMM
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Special case: spherical Gaussians 

and hard assignments
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• If P(X|Z=k) is spherical, with same  for all classes:

• If each xi belongs to one class C(i) (hard 

assignment), marginal likelihood:

• M(M)LE same as K-means!!!
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The K-means GMM assumption

• There are k components

• Component i has an associated 

mean vector i

1

2

3
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The K-means GMM assumption

• There are k components

• Component i has an associated 

mean vector i

 Each component generates data 

from a Gaussian with mean mi and 

covariance matrix 2I

Each data point is generated 

according to the following recipe: 

1

2

3
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The K-means GMM assumption

• There are k components

• Component i has an associated 

mean vector i

• Each component generates 

data from a Gaussian with 

mean mi and covariance matrix 

2I

Each data point is generated 

according to the following 

recipe: 

1. Pick a component at random: 

Choose component i with 

probability P(y=i)

2
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The K-means GMM assumption

• There are k components

• Component i has an associated 

mean vector i

• Each component generates 

data from a Gaussian with 

mean mi and covariance matrix 

2I

Each data point is generated 

according to the following 

recipe: 

1. Pick a component at random: 

Choose component i with 

probability P(y=i)

2. Datapoint ~ N(i, 
2I )

2

x
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The General GMM assumption

1

2

3

• There are k components

• Component i has an associated 

mean vector mi

• Each component generates 

data from a Gaussian with 

mean mi and covariance matrix 

Si

Each data point is generated 

according to the following 

recipe: 

1. Pick a component at random: 

Choose component i with 

probability P(y=i)

2. Datapoint ~ N(mi, Si )
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K-means vs GMM

• K-Means

– http://home.deib.polimi.it/matteucc/Clustering/tutorial_html/A

ppletKM.html

• GMM

– http://www.socr.ucla.edu/applets.dir/mixtureem.html
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http://home.deib.polimi.it/matteucc/Clustering/tutorial_html/AppletKM.html
http://www.socr.ucla.edu/applets.dir/mixtureem.html


EM

• Expectation Maximization [Dempster ‘77]

• Often looks like “soft” K-means

• Extremely general

• Extremely useful algorithm

– Essentially THE goto algorithm for unsupervised learning

• Plan

– EM for learning GMM parameters

– EM for general unsupervised learning problems
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EM for Learning GMMs

• Simple Update Rules

– E-Step: estimate P(zi = j | xi)

– M-Step: maximize full likelihood weighted by posterior
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Gaussian Mixture Example: Start
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After 1st iteration
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After 2nd iteration
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After 3rd iteration
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After 4th iteration
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After 5th iteration
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After 6th iteration
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After 20th iteration
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Tasks
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Classificationx y

Regressionx y

Discrete

Continuous

Clusteringx c Discrete ID

Dimensionality

Reduction
x z Continuous



New Topic: PCA



Synonyms

• Principal Component Analysis

• Karhunen–Loève transform

• Eigen-Faces

• Eigen-<Insert-your-problem-domain>

• PCA is a Dimensionality Reduction Algorithm

• Other Dimensionality Reduction algorithms

– Linear Discriminant Analysis (LDA)

– Independent Component Analysis (ICA)

– Local Linear Embedding (LLE)

– …
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Dimensionality reduction

• Input data may have thousands or millions of 

dimensions!

– e.g., images have 5M pixels



Dimensionality reduction

• Input data may have thousands or millions of 

dimensions!

– e.g., images have 5M pixels

• Dimensionality reduction: 

represent data with fewer dimensions

– easier learning – fewer parameters

– visualization – hard to visualize more than 3D or 4D

– discover “intrinsic dimensionality” of data

• high dimensional data that is truly lower dimensional 



PCA / KL-Transform

• De-correlation view

– Make features uncorrelated

– No projection yet

• Max-variance view:

– Project data to lower dimensions

– Maximize variance in lower dimensions

• Synthesis / Min-error view:

– Project data to lower dimensions

– Minimize reconstruction error 

• All views lead to same solution
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Basic PCA algorithm

• Center data (subtract mean)

• Estimate covariance

• Find eigenvectors and values of covariance

• Principle components: choose k eigenvectors with 

highest corresponding values
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Video
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• https://youtu.be/pSRA8GpWIrA?t=162

https://youtu.be/pSRA8GpWIrA?t=162


Video
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• What if the dimension is high?

– Covariance matrix is d x d

– For high d, Eigen decomposition is very slow… O(d3)

• Use Singular Value Decomposition (SVD)

– finds k-eigenvectors

– great implementations O(N2d)

















































































What you need to know
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• Dimensionality Reduction

– why and when its important

• visualization

• compression

• faster learning

• Principle Component Analysis

– KL Transform view

• Notes have reconstruction error and max variance views too

– Relationship to covariance matrix and eigenvectors

– using SVD for PCA


