
BBS654
Data Mining

Pinar Duygulu

Slides are adapted from 

Nazli Ikizler

1



• Retailers now have massive databases full of transactional history
• Simply transaction date and list of items

• Is it possible to gain insights from this data?

• How are items in a database associated
• Association Rules predict members of a set given other members in the set

Why?



• Example Rules:
• 98% of customers that purchase tires get automotive services done

• Customers which buy mustard and ketchup also buy burgers

• Goal: find these rules from just transactional data

• Rules help with: store layout, buying patterns, add-on sales, etc

Why?



4

Association rule mining
• Proposed by Agrawal et al in 1993. 

• It is an important data mining model studied 
extensively by the database and data mining 
community. 

• Assume all data are categorical.

• No good algorithm for numeric data.

• Initially used for Market Basket Analysis to find how 
items purchased by customers are related.

Bread  Milk [sup = 5%, conf = 100%]



The model: data

• I = {i1, i2, …, im}: a set of items.

• Transaction t : 

• t a set of items, and t  I.

• Transaction Database T: a set of transactions T = {t1, 
t2, …, tn}.

5



Transaction data: supermarket data
• Market basket transactions:

t1: {bread, cheese, milk}

t2: {apple, eggs, salt, yogurt}

… …

tn: {biscuit, eggs, milk}

• Concepts:
• An item: an item/article in a basket

• I: the set of all items sold in the store

• A transaction: items purchased in a basket; it may have TID 
(transaction ID)

• A transactional dataset: A set of transactions

Slide from Bing Liu
6



Transaction data: a set of documents
• A text document data set. Each document is treated as 

a “bag” of keywords

doc1: Student, Teach, School 

doc2: Student, School 

doc3: Teach, School, City, Game 

doc4: Baseball, Basketball

doc5: Basketball, Player, Spectator  

doc6: Baseball, Coach, Game, Team

doc7: Basketball, Team, City, Game 

Slide from Bing Liu

7



Association Rule Mining
• Given a set of transactions, find rules that will predict the 

occurrence of an item based on the occurrences of other items 
in the transaction

Market-Basket transactions

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke  

4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke  

 

Example of Association Rules

{Diaper}  {Beer},
{Milk, Bread}  {Eggs,Coke},
{Beer, Bread}  {Milk},

Implication means co-occurrence, 
not causality!

8



Applications – (1)

• Items = products; baskets = sets of products someone bought in one 
trip to the store.

• Example application: given that many people buy beer and diapers 
together:
• Run a sale on diapers; raise price of beer.

• Only useful if many buy diapers & beer.

9



Applications – (2)

• Baskets = sentences; items = documents containing those sentences.

• Items that appear together too often could represent plagiarism.

10



Applications – (3)

• Baskets = Web pages; items = words.

• Unusual words appearing together in a large number of documents, 
e.g., “Brad” and “Angelina,” may indicate an interesting relationship.

11



Frequent Itemset

• Itemset
• A collection of one or more items

• Example: {Milk, Bread, Diaper}

• k-itemset
• An itemset that contains k items

• Support count ()
• Frequency of occurrence of an itemset

• E.g.   ({Milk, Bread,Diaper}) = 2 

• Support
• Fraction of transactions that contain an 

itemset

• E.g.   s({Milk, Bread, Diaper}) = 2/5

• Frequent Itemset
• An itemset whose support is greater 

than or equal to a minsup threshold

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke  

4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke  

 



Definition: Association Rule

Example:

Beer}Diaper,Milk{ 

4.0
5

2

|T|

)BeerDiaper,,Milk(



s

67.0
3

2

)Diaper,Milk(

)BeerDiaper,Milk,(





c

Association Rule

– An implication expression of the form X 
Y, where X and Y are itemsets

– Example:
{Milk, Diaper}  {Beer}

Rule Evaluation Metrics

– Support (s)

 Fraction of transactions that contain both 
X and Y

– Confidence (c)

 Measures how often items in Y 
appear in transactions that
contain X

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke  

4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke  

 

15



Support and Confidence

• Support is important because
• A rule that has a low support may occur simply by chance

• A low support rule also is likely to be uninteresting from a business 
perspective because it may not be profitable

• Confidence measures the reliability of the rule

16



Association Rule Mining Task

• Given a set of transactions T, the goal of association rule mining is to 
find all rules having 
• support ≥ minsup threshold

• confidence ≥ minconf threshold

• Brute-force approach:
• List all possible association rules

• Compute the support and confidence for each rule

• Prune rules that fail the minsup and minconf thresholds

 Computationally prohibitive!

17



Mining Association Rules
Example of Rules:

{Milk,Diaper}  {Beer} (s=0.4, c=0.67)
{Milk,Beer}  {Diaper} (s=0.4, c=1.0)
{Diaper,Beer}  {Milk} (s=0.4, c=0.67)
{Beer}  {Milk,Diaper} (s=0.4, c=0.67) 
{Diaper}  {Milk,Beer} (s=0.4, c=0.5) 
{Milk}  {Diaper,Beer} (s=0.4, c=0.5)

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke  

4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke  

 

Observations:

• All the above rules are binary partitions of the same itemset: 
{Milk, Diaper, Beer}

• Rules originating from the same itemset have identical support but
can have different confidence

• Thus, we may decouple the support and confidence requirements

18



Mining Association Rules

• Two-step approach: 
1. Frequent Itemset Generation

– Generate all itemsets whose support  minsup

2. Rule Generation
– Generate high confidence rules from each frequent itemset, where each rule is a binary 

partitioning of a frequent itemset

• Frequent itemset generation is still computationally expensive

19



Frequent Itemset Generation
null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

Given d items, there are 
2d possible candidate 
itemsets

20



Frequent Itemset Generation• Brute-force approach: 
• Each itemset in the lattice is a candidate frequent itemset

• Count the support of each candidate by scanning the database

• Match each transaction against every candidate

• Complexity ~ O(NMw) => Expensive since M = 2d !!!

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke 

4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke 
 

N

Transactions List of

Candidates

M

w

21



Computational Complexity• Given d unique items:
• Total number of itemsets = 2d

• Total number of possible association rules: 

123 1

1

1 1


















 




















 

dd

d

k

kd

j j

kd

k

d
R

If d=6,  R = 602 rules

22

If d=6,  R = 602 rules



Frequent Itemset Generation Strategies

• Reduce the number of candidates (M)
• Complete search: M=2d

• Use pruning techniques to reduce M

• Reduce the number of transactions (N)
• Reduce size of N as the size of itemset increases

• Used by DHP and vertical-based mining algorithms

• Reduce the number of comparisons (NM)
• Use efficient data structures to store the candidates or 

transactions

• No need to match every candidate against every transaction

23



Reducing Number of Candidates
• Apriori principle:

• If an itemset is frequent, then all of its subsets must also be 
frequent

• In other words, if an itemset is infrequent, all of its supersets 
must also be infrequent

• Apriori principle holds due to the following property of the 
support measure:

• Support of an itemset never exceeds the support of its subsets

• This is known as the anti-monotone property of support

)()()(:, YsXsYXYX 

24



Found to be 
Infrequent

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

Illustrating Apriori Principle
null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

Pruned 
supersets

25



Illustrating Apriori Principle
Item Count

Bread 4
Coke 2
Milk 4
Beer 3
Diaper 4
Eggs 1

Itemset Count

{Bread,Milk} 3
{Bread,Beer} 2
{Bread,Diaper} 3
{Milk,Beer} 2
{Milk,Diaper} 3
{Beer,Diaper} 3

Itemset Count 

{Bread,Milk,Diaper} 3 

 

Items (1-itemsets)

Pairs (2-itemsets)

(No need to generate
candidates involving Coke
or Eggs)

Triplets (3-itemsets)
Minimum Support = 3

If every subset is considered, 
6C1 + 6C2 + 6C3 = 41

With support-based pruning,
6 + 6 + 1 = 13

68% decrease in processed subsets

26



Apriori Algorithm
• Method: 

• Let k=1

• Generate frequent itemsets of length 1

• Repeat until no new frequent itemsets are identified
• Generate length (k+1) candidate itemsets from length k frequent 

itemsets

• Prune candidate itemsets containing subsets of length k that are 
infrequent 

• Count the support of each candidate by scanning the DB

• Eliminate candidates that are infrequent, leaving only those that 
are frequent

27



The Apriori Algorithm (Pseudo-Code)

Ck: Candidate itemset of size k

Lk : frequent itemset of size k

L1 = {frequent items};

for (k = 1; Lk !=; k++) do begin

Ck+1 = candidates generated from Lk;

for each transaction t in database do
increment the count of all candidates in Ck+1 that are contained in t

Lk+1 = candidates in Ck+1 with min_support

end

return k Lk;

28



The Apriori Algorithm—An Example 

Database TDB

1st scan

C1

L1

L2

C2 C2

2nd scan

C3 L33rd scan

Tid Items

10 A, C, D

20 B, C, E

30 A, B, C, E

40 B, E

Itemset sup

{A} 2

{B} 3

{C} 3

{D} 1

{E} 3

Itemset sup

{A} 2

{B} 3

{C} 3

{E} 3

Itemset

{A, B}

{A, C}

{A, E}

{B, C}

{B, E}

{C, E}

Itemset sup

{A, B} 1

{A, C} 2

{A, E} 1

{B, C} 2

{B, E} 3

{C, E} 2

Itemset sup

{A, C} 2

{B, C} 2

{B, E} 3

{C, E} 2

Itemset

{B, C, E}

Itemset sup

{B, C, E} 2

Supmin = 2

29



The Apriori Algorithm (Pseudo-Code)

Ck: Candidate itemset of size k

Lk : frequent itemset of size k

L1 = {frequent items};

for (k = 1; Lk !=; k++) do begin

Ck+1 = candidates generated from Lk;

for each transaction t in database do
increment the count of all candidates in Ck+1 that are contained in t

Lk+1 = candidates in Ck+1 with min_support

end

return k Lk;

30



Implementation of Apriori
• How to generate candidates?

• Step 1: self-joining Lk

• Step 2: pruning

31



Example of Candidates Generation

• Assume the items in Lk are listed in an order 
(e.g., alphabetical)

• L3={abc, abd, acd, ace, bcd}

• Self-joining: L3*L3

– abcd  from abc and abd

– acde from acd and ace

{a,c,d} {a,c,e}

{a,c,d,e}

acd ace ade cde

Slide from Evimaria Terzi

32



Example of Candidates Generation

• L3={abc, abd, acd, ace, bcd}

• Self-joining: L3*L3

– abcd from abc and abd

– acde from acd and ace

• Pruning:

– acde is removed because ade is not in L3

• C4={abcd}

{a,c,d} {a,c,e}

{a,c,d,e}

acd ace ade cde
  X

X

33



Brute-force method for generating candidates

34



F(k-1)xF(1)

35



F(k-1)xF(k-1)

36



Further Improvement of the Apriori
Method
• Major computational challenges

• Multiple scans of transaction database

• Huge number of candidates

• Tedious workload of support counting for candidates

• Improving Apriori: general ideas

• Reduce passes of transaction database scans

• Shrink number of candidates

• Facilitate support counting of candidates

37



Reducing Number of Comparisons
• Candidate counting:

• Scan the database of transactions to determine the support 
of each candidate itemset

• To reduce the number of comparisons, store the candidates 
in a hash structure
• Instead of matching each transaction against every candidate, 

match it against candidates contained in the hashed buckets

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke 

4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke 
 

N

Transactions Hash Structure

k

Buckets
38



How to Count Supports of Candidates?

• Why counting supports of candidates a problem?

• The total number of candidates can be very huge

• One transaction may contain many candidates

• Method:

• Candidate itemsets are stored in a hash-tree

• Leaf node of hash-tree contains a list of itemsets and counts

• Interior node contains a hash table

• Subset function: finds all the candidates contained in a 

transaction

39



Subset Operation – Support Counting

1  2  3  5  6

Transaction, t

2  3  5  61 3  5  62

5  61 33  5  61 2 61 5 5  62 3 62 5

5  63

1 2 3

1 2 5

1 2 6

1 3 5

1 3 6
1 5 6

2 3 5

2 3 6
2 5 6 3 5 6

Subsets of 3 items

Level 1

Level 2

Level 3

63 5

Given a transaction t, what are 
the possible subsets of size 3?

40



Generate Hash Tree

2 3 4

5 6 7

1 4 5
1 3 6

1 2 4

4 5 7 1 2 5

4 5 8

1 5 9

3 4 5 3 5 6

3 5 7

6 8 9

3 6 7

3 6 8

1,4,7

2,5,8

3,6,9

Hash function

Suppose you have 15 candidate itemsets of length 3: 

{1 4 5}, {1 2 4}, {4 5 7}, {1 2 5}, {4 5 8}, {1 5 9}, {1 3 6}, {2 3 4}, {5 6 7}, {3 4 5}, {3 5 6}, {3 5 
7}, {6 8 9}, {3 6 7}, {3 6 8}

You need:

• Hash function 

• Max leaf size: max number of itemsets stored in a leaf node (if number of candidate 
itemsets exceeds max leaf size, split the node)

41



Subset Operation Using Hash Tree

1 5 9

1 4 5 1 3 6

3 4 5 3 6 7

3 6 8

3 5 6

3 5 7

6 8 9

2 3 4

5 6 7

1 2 4

4 5 7

1 2 5

4 5 8

1 2 3 5 6

1 + 2 3 5 6
3 5 62 +

5 63 +

1,4,7

2,5,8

3,6,9

Hash Functiontransaction

42



Subset Operation Using Hash Tree

1 5 9

1 4 5 1 3 6

3 4 5 3 6 7

3 6 8

3 5 6

3 5 7

6 8 9

2 3 4

5 6 7

1 2 4

4 5 7

1 2 5

4 5 8

1,4,7

2,5,8

3,6,9

Hash Function
1 2 3 5 6

3 5 61 2 +

5 61 3 +

61 5 +

3 5 62 +

5 63 +

1 + 2 3 5 6

transaction

43



Subset Operation Using Hash Tree

1 5 9

1 4 5 1 3 6

3 4 5 3 6 7

3 6 8

3 5 6

3 5 7

6 8 9

2 3 4

5 6 7

1 2 4

4 5 7

1 2 5

4 5 8

1,4,7

2,5,8

3,6,9

Hash Function
1 2 3 5 6

3 5 61 2 +

5 61 3 +

61 5 +

3 5 62 +

5 63 +

1 + 2 3 5 6

transaction

Match transaction against 11 out of 15 candidates

44



Factors Affecting Complexity
• Choice of minimum support threshold

• lowering support threshold results in more frequent itemsets
• this may increase number of candidates and max length of frequent 

itemsets

• Dimensionality (number of items) of the data set
• more space is needed to store support count of each item
• if number of frequent items also increases, both computation and I/O 

costs may also increase

• Size of database
• Since Apriori makes multiple passes, run time of algorithm may increase 

with number of transactions

• Average transaction width
• transaction width increases with denser data sets
• This may increase max length of frequent itemsets and traversals of hash 

tree (number of subsets in a transaction increases with its width)

45



Compact Representation of Frequent 
Itemsets

• Some itemsets are redundant because they have identical support as their 
supersets

• Number of frequent itemsets

• It is useful to identify a small representative set of itemsets from which all other 
frequent itemsets can be derived

• Need a compact representation














10

1

10
3

k k

46



Maximal Frequent Itemset

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCD

E

Border

Infrequen
t Itemsets

Maximal 
Itemsets

An itemset is maximal frequent if none of its immediate supersets is frequent

47



Maximal Frequent Itemsets

• They form the smallest set of itemsets from which all frequent 
itemsets can be derived

• Practical if an efficient algorithm exists to explicitly find the maximal 
frequent itemsets without having to enumerate all their subsets

• They don’t include the support information

48



Closed Itemset

• Provide a minimal representation without losing their support 
information

• An itemset is closed if none of its immediate supersets has the same 
support as the itemset

49



Maximal vs Closed Itemsets

TID Items

1 ABC

2 ABCD

3 BCE

4 ACDE

5 DE

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

124 123 1234 245 345

12 124 24 4 123 2 3 24 34 45

12 2 24 4 4 2 3 4

2 4

Transaction 
Ids

Not supported 
by any 
transactions 50



Maximal vs Closed Frequent Itemsets
null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

124 123 1234 245 345

12 124 24 4 123 2 3 24 34 45

12 2 24 4 4 2 3 4

2 4

Minimum support = 2

# Closed = 9

# Maximal = 4

Closed and 
maximal

Closed but not 
maximal

51



Why are closed patterns interesting?

• Closed patterns and their frequencies alone are sufficient 
representation for all the frequencies of all frequent patterns

• Proof: Assume a frequent itemset X:
• X is closed  s(X) is known 

• X is not closed 

s(X) = max {s(Y) | Y is closed and X subset of Y}

Slide from EviMaria Terzi
53



Maximal vs Closed Itemsets

Frequent

Itemsets

Closed

Frequent

Itemsets

Maximal

Frequent

Itemsets

54



Alternative Algorithm – FP 
growth



FP-Growth: Frequent Pattern-Growth

 FP-tree is a compressed representation of the input data

 Adopts a divide and conquer strategy

 Compress the database representing frequent items into a frequent –pattern 
tree or FP-tree

 Retains the itemset association information 

 If FP-tree is small enough to fit the memory, this will allow to extract frequent 
itemsets directly in memory

56



Example: FP-Growth

 The first scan of data is the same as 
Apriori

 Derive the set of frequent 1-
itemsets

 Let min-sup=2

 Generate a set of ordered items 

TID List of item IDS

T100 I1,I2,I5

T200 I2,I4

T300 I2,I3

T400 I1,I2,I4

T500 I1,I3

T600 I2,I3

T700 I1,I3

T800 I1,I2,I3,I5

T900 I1,I2,I3

Transactional Database

Item ID Support 

count

I2 7

I1 6

I3 6

I4 2

I5 2

57



Construct the FP-Tree
Transactional Database

Item ID Support 

count

I2 7

I1 6

I3 6

I4 2

I5 2

null

- Create a branch for each 

transaction

- Items in each transaction are 

processed in order 

1- Order the items T100: {I2,I1,I5}

2- Construct the first branch: 

<I2:1>, <I1:1>,<I5:1>

TID Items TID Items TID Items

T100 I1,I2,I5 T400 I1,I2,I4 T700 I1,I3

T200 I2,I4 T500 I1,I3 T800 I1,I2,I3,I5

T300 I2,I3 T600 I2,I3 T900 I1,I2,I3

I2:1

I1:1

I5:1

58



Item ID Support 

count

I2 7

I1 6

I3 6

I4 2

I5 2

null

- Create a branch for each 

transaction

- Items in each transaction are 

processed in order 

1- Order the items T200: {I2,I4}

2- Construct the second branch: 

<I2:1>, <I4:1>

TID Items TID Items TID Items

T100 I1,I2,I5 T400 I1,I2,I4 T700 I1,I3

T200 I2,I4 T500 I1,I3 T800 I1,I2,I3,I5

T300 I2,I3 T600 I2,I3 T900 I1,I2,I3

I2:1

I1:1

I5:1

I4:1

I2:2

Transactional Database

Construct the FP-Tree

59



Transactional Database

Item ID Support 

count

I2 7

I1 6

I3 6

I4 2

I5 2

null

- Create a branch for each 

transaction

- Items in each transaction are 

processed in order 

1- Order the items T300: {I2,I3}

2- Construct the third branch: 

<I2:2>, <I3:1>

TID Items TID Items TID Items

T100 I1,I2,I5 T400 I1,I2,I4 T700 I1,I3

T200 I2,I4 T500 I1,I3 T800 I1,I2,I3,I5

T300 I2,I3 T600 I2,I3 T900 I1,I2,I3

I2:2

I1:1

I5:1

I4:1

I3:1

I2:3

Construct the FP-Tree

60



Transactional Database

Item ID Support 

count

I2 7

I1 6

I3 6

I4 2

I5 2

null

- Create a branch for each 

transaction

- Items in each transaction are 

processed in order 

1- Order the items T400: {I2,I1,I4}

2- Construct the fourth branch: 

<I2:3>, <I1:1>,<I4:1>

TID Items TID Items TID Items

T100 I1,I2,I5 T400 I1,I2,I4 T700 I1,I3

T200 I2,I4 T500 I1,I3 T800 I1,I2,I3,I5

T300 I2,I3 T600 I2,I3 T900 I1,I2,I3

I1:1

I5:1

I4:1

I3:1

I2:3

I4:1

I1:2

I2:4

Construct the FP-Tree

61



Transactional Database

Item ID Support 

count

I2 7

I1 6

I3 6

I4 2

I5 2

null

- Create a branch for each 

transaction

- Items in each transaction are 

processed in order 

1- Order the items T400: {I1,I3}

2- Construct the fifth branch: 

<I1:1>, <I3:1>

TID Items TID Items TID Items

T100 I1,I2,I5 T400 I1,I2,I4 T700 I1,I3

T200 I2,I4 T500 I1,I3 T800 I1,I2,I3,I5

T300 I2,I3 T600 I2,I3 T900 I1,I2,I3

I1:2

I5:1

I4:1

I3:1

I2:4

I4:1

I1:1

I3:1

Construct the FP-Tree

62



Transactional Database

Item ID Support 

count

I2 7

I1 6

I3 6

I4 2

I5 2

null

TID Items TID Items TID Items

T100 I1,I2,I5 T400 I1,I2,I4 T700 I1,I3

T200 I2,I4 T500 I1,I3 T800 I1,I2,I3,I5

T300 I2,I3 T600 I2,I3 T900 I1,I2,I3

I1:4

I5:1

I4:1

I3:2

I2:7

I4:1

I1:2

I3:2

I3:2

I5:1

When a branch of a 

transaction is added, the 

count for each node 

along a common prefix is 
incremented by 1

Construct the FP-Tree

63



Item ID Support 

count

I2 7

I1 6

I3 6

I4 2

I5 2

null

I1:4

I5:1

I4:1

I3:2

I2:7

I4:1

I1:2

I3:2

I3:2

I5:1

The problem of mining frequent patterns in databases is 

transformed to that of mining the FP-tree

Construct the FP-Tree

64



-Occurrences of I5: <I2,I1,I5> and <I2,I1,I3,I5>

-Two prefix Paths <I2, I1: 1> and <I2,I1,I3: 1>

-Conditional FP tree contains only <I2: 2, I1: 2>, I3 is not 

considered because its support count of 1 is less than the 

minimum support count.

-Frequent patterns {I2,I5:2}, {I1,I5:2},{I2,I1,I5:2}

Item ID Support 

count

I2 7

I1 6

I3 6

I4 2

I5 2

null

I1:4

I5:1

I4:1

I3:2

I2:7

I4:1

I1:2

I3:2

I3:2

I5:1

Construct the FP-Tree

65



Item ID Support 
count

I2 7

I1 6

I3 6

I4 2

I5 2

null

I1:4

I5:1

I4:1
I3:2

I2:7

I4:1

I1:2

I3:2

I3:2

I5:1

TID Conditional Pattern Base Conditional FP-tree

I5 {{I2,I1:1},{I2,I1,I3:1}} <I2:2,I1:2>

I4 {{I2,I1:1},{I2,1}} <I2:2>

I3 {{I2,I1:2},{I2:2}, {I1:2}} <I2:4,I1:2>,<I1:2>

I1 {I2,4} <I2:4>

Construct the FP-Tree

66



Item ID Support 
count

I2 7

I1 6

I3 6

I4 2

I5 2

null

I1:4

I5:1

I4:1
I3:2

I2:7

I4:1

I1:2

I3:2

I3:2

I5:1

TID Conditional FP-tree Frequent Patterns Generated

I5 <I2:2,I1:2> {I2,I5:2}, {I1,I5:2},{I2,I1,I5:2}

I4 <I2:2> {I2,I4:2}

I3 <I2:4,I1:2>,<I1:2> {I2,I3:4},{I1,I3:4},{I2,I1,I3:2}

I1 <I2:4> {I2,I1:4}

Construct the FP-Tree

67



FP-growth properties

 FP-growth transforms the problem of finding long frequent patterns to 
searching for shorter once recursively  and the concatenating the suffix

 It uses the least frequent suffix offering a good selectivity

 It reduces the search cost

 If the tree does not fit into main memory, partition the database

 Efficient and scalable for mining both long and short frequent patterns

68



Mining Association Rules

• Two-step approach: 
1. Frequent Itemset Generation

– Generate all itemsets whose support  minsup

2. Rule Generation
– Generate high confidence rules from each frequent itemset, where each rule is a binary 

partitioning of a frequent itemset

69



Re-Definition: Association Rule

Let D be database of transactions
– e.g.:

• Let I be the set of items that appear in the 
database, e.g., I={A,B,C,D,E,F}

• A rule is defined by X  Y, where XI, YI, 
and XY=
– e.g.: {B,C}  {A} is a rule

Transaction ID Items

2000 A, B, C

1000 A, C

4000 A, D

5000 B, E, F

70



Generating Association Rules

 Once the frequent itemsets have been found, it is straightforward to generate 
strong association rules that satisfy:  

 minimum Support 

 minimum confidence 

 Relation between support and confidence: 

support_count(AB)

Confidence(AB) = P(B|A)=  
support_count(A)

 Support_count(AB) is the number of transactions containing the itemsets A  B

 Support_count(A) is the number of transactions containing the itemset A. 

71



Generating Association Rules

 For each frequent itemset L, generate all non empty subsets of L

 For every no empty subset  S of L, output the rule:

S  (L-S)

If (support_count(L)/support_count(S)) >= min_conf

72



Example

TID List of item IDS

T100 I1,I2,I5

T200 I2,I4

T300 I2,I3

T400 I1,I2,I4

T500 I1,I3

T600 I2,I3

T700 I1,I3

T800 I1,I2,I3,I5

T900 I1,I2,I3

 Suppose the frequent Itemset 

L={I1,I2,I5}

 Subsets of L are:  {I1,I2},

{I1,I5},{I2,I5},{I1},{I2},{I5}

 Association rules :

I1  I2  I5        confidence = 2/4= 50%

I1  I5  I2        confidence=2/2=100%

I2  I5  I1        confidence=2/2=100%

I1  I2  I5      confidence=2/6=33%

I2  I1  I5      confidence=2/7=29%

I5  I2  I2      confidence=2/2=100%

If the minimum confidence =70%

Transactional Database

73



Rule Generation

• Given a frequent itemset L, find all non-empty subsets f  L such that 
f  L – f satisfies the minimum confidence requirement
• If {A,B,C,D} is a frequent itemset, candidate rules:

ABC D, ABD C, ACD B, BCD A, 
A BCD, B ACD, C ABD, D ABC
AB CD, AC  BD, AD  BC, BC AD, 
BD AC, CD AB,

• If |L| = k, then there are 2k – 2 candidate association rules (ignoring L 
 and  L)

74



Rule Generation

• How to efficiently generate rules from frequent itemsets?
• In general, confidence does not have an anti-monotone property

c(ABC D) can be larger or smaller than c(AB D)

• But confidence of rules generated from the same itemset has an anti-
monotone property

• e.g., L = {A,B,C,D}:

c(ABC  D)  c(AB  CD)  c(A  BCD) 

• Confidence is anti-monotone w.r.t. number of items on the RHS of the rule

75



Rule Generation for Apriori Algorithm
ABCD=>{ }

BCD=>A ACD=>B ABD=>C ABC=>D

BC=>ADBD=>ACCD=>AB AD=>BC AC=>BD AB=>CD

D=>ABC C=>ABD B=>ACD A=>BCD

Lattice of rules
ABCD=>{ }

BCD=>A ACD=>B ABD=>C ABC=>D

BC=>ADBD=>ACCD=>AB AD=>BC AC=>BD AB=>CD

D=>ABC C=>ABD B=>ACD A=>BCD

Pruned 
Rules

Low 
Confidence 
Rule

76



Rule Generation for Apriori Algorithm

• Candidate rule is generated by merging two rules that share the same 
prefix
in the rule consequent

• join(CD=>AB,BD=>AC)
would produce the candidate
rule D => ABC

• Prune rule D=>ABC if its
subset AD=>BC does not have
high confidence

BD=>ACCD=>AB

D=>ABC

77



Problems with the association mining
• Single minsup: It assumes that all items in the data 

are of the same nature and/or have similar 
frequencies. 

• Not true: In many applications, some items appear 
very frequently in the data, while others rarely 
appear. 

E.g., in a supermarket, people buy food processor and 
cooking pan much less frequently than they buy bread and 
milk. 

78



Effect of Support Distribution

• Many real data sets have skewed support distribution

Support 

distribution of 

a retail data set

79



Rare Item Problem
• If the frequencies of items vary a great deal, we will 

encounter two problems

• If minsup is set too high, those rules that involve rare items 
will not be found. 

• To find rules that involve both frequent and rare items, 
minsup has to be set very low. This may cause 
combinatorial explosion because those frequent items will 
be associated with one another in all possible ways.

• Using a single minimum support threshold may not be 
effective

80



Multiple minsups model

• The minimum support of a rule is expressed in 
terms of minimum item supports (MIS) of the items 
that appear in the rule. 

• Each item can have a minimum item support.

• By providing different MIS values for different 
items, the user effectively expresses different 
support requirements for different rules. 

81



Minsup of a rule

• Let MIS(i) be the MIS value of item i. The minsup of a 
rule R is the lowest MIS value of the items in the rule. 

• I.e., a rule R:    a1, a2, …, ak  ak+1, …, ar satisfies its 
minimum support if its actual support is 

min(MIS(a1), MIS(a2), …, MIS(ar)).

82



An Example

• Consider the following items:

bread, shoes, clothes

The user-specified MIS values are as follows:

MIS(bread) = 2% MIS(shoes) = 0.1%

MIS(clothes) = 0.2%

The following rule doesn’t satisfy its minsup:

clothes  bread [sup=0.15%,conf =70%]

The following rule satisfies its minsup:

clothes  shoes [sup=0.15%,conf =70%]

83



Pattern Evaluation
• Association rule algorithms tend to produce too many 

rules 
• many of them are uninteresting or redundant

• Redundant if {A,B,C}  {D} and {A,B}  {D}   
have same support & confidence

• Interestingness measures can be used to prune/rank 
the derived patterns

• In the original formulation of association rules, support 
& confidence are the only measures used

84



Application of Interestingness Measure

Interestingness 
Measures

85



Computing Interestingness Measure
• Given a rule X  Y, information needed to compute rule 

interestingness can be obtained from a contingency table

Y Y 

X f11 f10 f1+

X f01 f00 fo+

f+1 f+0 |T|

Contingency table for X  Y

f11: support of X and Y
f10: support of X and Y
f01: support of X and Y
f00: support of X and Y

Used to define various measures

support, confidence, lift, Gini,
J-measure, etc.

86



Drawback of Confidence

Coffee Coffee

Tea 15 5 20

Tea 75 5 80

90 10 100

Association Rule: Tea  Coffee

Confidence= P(Coffee|Tea) = 0.75

but P(Coffee) = 0.9

 Although confidence is high, rule is misleading

 P(Coffee|Tea) = 0.9375

87



Statistical-based Measures

• Measures that take into account statistical dependence

)](1)[()](1)[(

)()(),(

)()(),(

)()(

),(

)(

)|(

YPYPXPXP

YPXPYXP
tcoefficien

YPXPYXPPS

YPXP

YXP
Interest

YP

XYP
Lift














88



Example: Lift/Interest

Coffee Coffee

Tea 15 5 20

Tea 75 5 80

90 10 100

Association Rule: Tea  Coffee

Confidence= P(Coffee|Tea) = 0.75

but P(Coffee) = 0.9

 Lift = 0.75/0.9= 0.8333 (< 1, therefore is negatively associated)

89



Subjective Interestingness Measure
• Objective measure: 

• Rank patterns based on statistics computed from data

• e.g., 21 measures of association (support, confidence, Laplace, 
Gini, mutual information, Jaccard, etc).

• Subjective measure:
• Rank patterns according to user’s interpretation

• A pattern is subjectively interesting if it contradicts the
expectation of a user (Silberschatz & Tuzhilin)

• A pattern is subjectively interesting if it is actionable
(Silberschatz & Tuzhilin)

90



Interestingness via Unexpectedness• Need to model expectation of users (domain knowledge)

• Need to combine expectation of users with evidence from data 
(i.e., extracted patterns)

+ Pattern expected to be frequent

- Pattern expected to be infrequent

Pattern found to be frequent

Pattern found to be infrequent

+

-

Expected Patterns-

+ Unexpected Patterns

91



Extra



Illustration

93



Association Rule Discovery: Hash tree

1 5 9

1 4 5 1 3 6

3 4 5 3 6 7

3 6 8

3 5 6

3 5 7

6 8 9

2 3 4

5 6 7

1 2 4

4 5 7

1 2 5

4 5 8

1,4,7

2,5,8

3,6,9

Hash Function Candidate Hash Tree

Hash on 
1, 4 or 7

94



Association Rule Discovery: Hash tree

1 5 9

1 4 5 1 3 6

3 4 5 3 6 7

3 6 8

3 5 6

3 5 7

6 8 9

2 3 4

5 6 7

1 2 4

4 5 7

1 2 5

4 5 8

1,4,7

2,5,8

3,6,9

Hash Function Candidate Hash Tree

Hash on 
2, 5 or 8

95



Association Rule Discovery: Hash tree

1 5 9

1 4 5 1 3 6

3 4 5 3 6 7

3 6 8

3 5 6

3 5 7

6 8 9

2 3 4

5 6 7

1 2 4

4 5 7

1 2 5

4 5 8

1,4,7

2,5,8

3,6,9

Hash Function Candidate Hash Tree

Hash on 
3, 6 or 9

96



FP-growth Algorithm

• Use a compressed representation of the database using an FP-tree

• Once an FP-tree has been constructed, it uses a recursive divide-and-
conquer approach to mine the frequent itemsets

97



FP-tree construction

TID Items

1 {A,B}

2 {B,C,D}

3 {A,C,D,E}

4 {A,D,E}

5 {A,B,C}

6 {A,B,C,D}

7 {B,C}

8 {A,B,C}

9 {A,B,D}

10 {B,C,E}

null

A:1

B:1

null

A:1

B:1

B:1

C:1

D:1

After reading TID=1:

After reading TID=2:

98



FP-Tree Construction

null

A:7

B:5

B:3

C:3

D:1

C:1

D:1
C:3

D:1

D:1

E:1
E:1

TID Items

1 {A,B}

2 {B,C,D}

3 {A,C,D,E}

4 {A,D,E}

5 {A,B,C}

6 {A,B,C,D}

7 {B,C}

8 {A,B,C}

9 {A,B,D}

10 {B,C,E}

Pointers are used to assist 
frequent itemset generation

D:1

E:1

Transaction 
Database

Item Pointer

A

B

C

D

E

Header table

99



FP-growth

null

A:7

B:5

B:1

C:1

D:1

C:1

D:1
C:3

D:1

D:1

Conditional Pattern base for 
D: 

P = {(A:1,B:1,C:1),
(A:1,B:1), 

(A:1,C:1),
(A:1), 
(B:1,C:1)}

Recursively apply FP-growth 
on P

Frequent Itemsets found (with 
sup > 1):

AD, BD, CD, ACD, BCD

D:1

100


