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Classification

• Classification systems:
• Supervised learning

• Make a rational prediction 
given evidence

• There are several methods for 
this

• Useful when you have labeled 
data (or can get it)

2



Clustering

• Clustering systems:
• Unsupervised learning
• Detect patterns in unlabeled 

data
• Useful when don’t know 

what you’re looking for
• Requires data, but no labels

• Typical applications
• As a stand-alone tool to get 

insight into data distribution 
• As a preprocessing step for 

other algorithms
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What is Cluster Analysis?
• Finding groups of objects such that the objects in a group 

will be similar (or related) to one another and different 
from (or unrelated to) the objects in other groups

Inter-cluster 
distances are 
maximized

Intra-cluster 
distances are 

minimized



Clustering
• Basic idea: group together similar instances

• Example: 2D point patterns

• What could “similar” mean?
• One option: small (squared) Euclidean distance
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Notion of a Cluster can be 
Ambiguous

How many 

clusters?

Four ClustersTwo Clusters

Six Clusters 



Quality: What Is Good 
Clustering?

• A good clustering method will produce high quality clusters

• high intra-class similarity: cohesive within clusters

• low inter-class similarity: distinctive between clusters

• The quality of a clustering method depends on

• the similarity measure used by the method 

• its implementation, and

• Its ability to discover some or all of the hidden patterns
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Types of Clusterings

• A clustering is a set of clusters

• Important distinction between hierarchical and 
partitional sets of clusters 

• Partitional Clustering
• A division data objects into non-overlapping subsets (clusters) 

such that each data object is in exactly one subset

• Hierarchical clustering
• A set of nested clusters organized as a hierarchical tree
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Partitional Clustering

Original Points A Partitional  Clustering
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Hierarchical Clustering
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Clustering Algorithms

• K-means and its variants

• Hierarchical clustering

• Density-based clustering
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K-means Clustering

• Partitional clustering approach 

• Each cluster is associated with a centroid (center point) 

• Each point is assigned to the cluster with the closest centroid

• Number of clusters, K, must be specified

• The basic algorithm is very simple



K-Means
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Solution of K-Means

• Iterations
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K-means Clustering – Details

• Initial centroids are often chosen randomly.
• Clusters produced vary from one run to another.

• The centroid is (typically) the mean of the points in the cluster.

• ‘Closeness’ is measured by Euclidean distance, cosine similarity, 
correlation, etc.

• K-means will converge for common similarity measures 

• Most of the convergence happens in the first few iterations.
• Often the stopping condition is changed to ‘Until relatively few points 

change clusters’

• Complexity is O( n * K * I * d )
• n = number of points, K = number of clusters, 

I = number of iterations, d = number of attributes
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Two different K-means Clusterings
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Importance of Choosing Initial Centroids
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Importance of Choosing Initial 
Centroids 
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Evaluating K-means Clusters
• Most common measure is Sum of Squared Error (SSE)

• For each point, the error is the distance to the nearest cluster

• To get SSE, we square these errors and sum them.

• x is a data point in cluster Ci and mi is the representative point for 
cluster Ci

• can show that mi corresponds to the center (mean) of the cluster

• Given two clusters, we can choose the one with the smallest error

• One easy way to reduce SSE is to increase K, the number of clusters

• A good clustering with smaller K can have a lower SSE than a poor 
clustering with higher K
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10 Clusters Example
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Starting with two initial centroids in one cluster of each pair of clusters

Sometimes the initial 
centroids will readjust 
themselves in ‘right’ 
way, and sometimes 
they don’t
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10 Clusters Example

Starting with some pairs of clusters having three initial centroids, while other have only one.
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Sometimes the initial 
centroids will readjust 
themselves in ‘right’ 
way, and sometimes 
they don’t
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Solutions to Initial Centroids 
Problem

• Multiple runs
• Helps, but probability is not on your side

• Sample and use hierarchical clustering to determine initial centroids

• Select more than k initial centroids and then select among these 
initial centroids
• Select most widely separated

• Postprocessing

• Bisecting K-means
• Not as susceptible to initialization issues
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Bisecting K-means

• Bisecting K-means algorithm
• Variant of K-means that can produce a partitional or a 

hierarchical clustering
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Bisecting K-means Example
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Limitations of K-means

• K-means has problems when clusters are of differing 
• Sizes

• Densities

• Non-globular shapes

• K-means has problems when the data contains outliers.
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Limitations of K-means: Differing Sizes

Original Points K-means (3 Clusters)
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Limitations of K-means: Differing 
Density

Original Points K-means (3 Clusters)
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Limitations of K-means: Non-globular Shapes

Original Points K-means (2 Clusters)

One solution is to use many clusters.
Find parts of clusters, but need to put together.
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Overcoming K-means Limitations

Original Points K-means Clusters

One solution is to use many clusters.
Find parts of clusters, but need to put together.



K-means is sensitive to outliers

• The k-means algorithm is sensitive to outliers !

• Since an object with an extremely large value may substantially 

distort the distribution of the data

• K-Medoids:  Instead of taking the mean value of the object in a cluster 

as a reference point, medoids can be used, which is the most 

centrally located object in a cluster
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Hierarchical Clustering 

• Produces a set of nested clusters organized as a hierarchical tree

• Can be visualized as a dendrogram
• A tree like diagram that records the sequences of merges or splits
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Strengths of Hierarchical Clustering

• Do not have to assume any particular number of clusters
• Any desired number of clusters can be obtained by ‘cutting’ the dendogram at 

the proper level

• They may correspond to meaningful taxonomies
• Example in biological sciences (e.g., animal kingdom, phylogeny 

reconstruction, …)
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Hierarchical Clustering
• Two main types of hierarchical clustering

• Agglomerative:  
• Start with the points as individual clusters

• At each step, merge the closest pair of clusters until only one cluster 
(or k clusters) left

• Divisive:  
• Start with one, all-inclusive cluster 

• At each step, split a cluster until each cluster contains a point (or there 
are k clusters)

• Traditional hierarchical algorithms use a similarity or distance 
matrix
• Merge or split one cluster at a time
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Agglomerative Clustering Algorithm

• More popular hierarchical clustering technique

• Basic algorithm is straightforward
1. Compute the proximity matrix
2. Let each data point be a cluster
3. Repeat
4. Merge the two closest clusters
5. Update the proximity matrix
6. Until only a single cluster remains

• Key operation is the computation of the proximity of 
two clusters
• Different approaches to defining the distance between 

clusters distinguish the different algorithms
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Starting Situation 
• Start with clusters of individual points and a proximity matrix
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Intermediate Situation
• After some merging steps, we have some clusters 
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Intermediate Situation
• We want to merge the two closest clusters (C2 and C5)  and update the proximity 

matrix. 
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After Merging
• The question is “How do we update the proximity matrix?” 
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How to Define Inter-Cluster Similarity
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How to Define Inter-Cluster Similarity
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How to Define Inter-Cluster Similarity
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How to Define Inter-Cluster Similarity
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How to Define Inter-Cluster Similarity
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Hierarchical Clustering: MIN or Single 
Link

Nested Clusters Dendrogram
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• Similarity of two clusters is based on the two most similar 
(closest) points in the different clusters
– Determined by one pair of points, i.e., by one link in the proximity graph.
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Strength of MIN

Original Points Two Clusters

• Can handle non-elliptical shapes
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Limitations of MIN

Original Points Two Clusters

• Sensitive to noise and outliers
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Cluster Similarity: MAX or Complete Linkage

• Similarity of two clusters is based on the two least similar (most 
distant) points in the different clusters
• Determined by all pairs of points in the two clusters

I1 I2 I3 I4 I5

I1 1.00 0.90 0.10 0.65 0.20

I2 0.90 1.00 0.70 0.60 0.50

I3 0.10 0.70 1.00 0.40 0.30

I4 0.65 0.60 0.40 1.00 0.80

I5 0.20 0.50 0.30 0.80 1.00 1 2 3 4 5
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Strength of MAX

Original Points Two Clusters

• Less susceptible to noise and outliers
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Limitations of MAX

Original Points Two Clusters

•Tends to break large clusters

•Biased towards globular clusters
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Cluster Similarity: Group Average
• Proximity of two clusters is the average of pairwise proximity 

between points in the two clusters.

• Need to use average connectivity for scalability since total 
proximity favors large clusters

• Compromise between Single and Complete Link

• Strengths
• Less susceptible to noise and outliers

• Limitations
• Biased towards globular clusters
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Cluster Similarity: Ward’s Method

• Similarity of two clusters is based on the increase in squared error 
when two clusters are merged
• Similar to group average if distance between points is distance squared

• Less susceptible to noise and outliers

• Biased towards globular clusters

• Can be used to initialize K-means
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Hierarchical Clustering: Comparison
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CHAMELEON: Hierarchical Clustering Using 
Dynamic Modeling (1999)

• CHAMELEON: G. Karypis, E. H. Han, and V. Kumar, 1999 

• Measures the similarity based on a dynamic model

• Two clusters are merged only if the interconnectivity

and closeness (proximity) between two clusters are 

high relative to the internal interconnectivity of the 

clusters and closeness of items within the clusters 

• Graph-based, and a two-phase algorithm

1. Use a graph-partitioning algorithm: cluster objects into 

a large number of relatively small sub-clusters

2. Use an agglomerative hierarchical clustering algorithm: 

find the genuine clusters by repeatedly combining 

these sub-clusters
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Overall Framework of CHAMELEON

Construct (K-NN)

Sparse Graph Partition the Graph

Merge Partition

Final Clusters

Data Set

K-NN Graph

P and q are connected if 
q is among the top k 
closest neighbors of p

Relative interconnectivity:  
connectivity of c1 and c2

over internal connectivity

Relative closeness: 
closeness of c1 and c2 over 
internal closeness 54
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CHAMELEON (Clustering Complex Objects)
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Hierarchical Clustering:  Problems and Limitations

• Once a decision is made to combine two clusters, it 
cannot be undone

• No objective function is directly minimized

• Different schemes have problems with one or more of 
the following:
• Sensitivity to noise and outliers

• Difficulty handling different sized clusters and convex 
shapes

• Breaking large clusters


