BBS654
 Data Mining

Pinar Duygulu

Slides are adapted from
J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

And
Mustafa Ozdal

CS425: Algorithms for Web Scale Data

Lecture 3: Similarity Modeling

Scene Completion Problem

Scene Completion Problem

Scene Completion Problem

10 nearest neighbors from a collection of 20,000 imnenc

Scene Completion Problem

10 nearest neighbors from a collection of 2 million

A Common Metaphor

- Many problems can be expressed as finding "similar" sets:
- Find near-neighbors in high-dimensional space
- Examples:
- Pages with similar words
- For duplicate detection, classification by topic
- Customers who purchased similar products
- Products with similar customer sets
- Images with similar features

Problem for Today's Lecture

- Given: High dimensional data points x_{1}, x_{2}, \ldots
- For example: Image is a long vector of pixel colors

$$
\left[\begin{array}{lll}
1 & 2 & 1 \\
0 & 2 & 1 \\
0 & 1 & 0
\end{array}\right] \rightarrow\left[\begin{array}{lllllllll}
1 & 2 & 1 & 0 & 2 & 1 & 0 & 1 & 0
\end{array}\right]
$$

- And some distance function $d\left(x_{1}, x_{2}\right)$
- Which quantifies the "distance" between x_{1} and x_{2}
- Goal: Find all pairs of data points $\left(x_{i}, x_{j}\right)$ that are within some distance threshold $\boldsymbol{d}\left(\boldsymbol{x}_{\boldsymbol{i}}, \boldsymbol{x}_{\boldsymbol{j}}\right) \leq \boldsymbol{s}$
- Note: Naïve solution would take $\boldsymbol{O}\left(N^{2}\right)$:
where \boldsymbol{N} is the number of data points
- MAGIC: This can be done in $O(N)$!! How?

Finding Similar Items

Distance Measures

- Goal: Find near-neighbors in high-dim. space
- We formally define "near neighbors" as points that are a "small distance" apart
- For each application, we first need to define what "distance" means
- Today: Jaccard distance/similarity
- The Jaccard similarity of two sets is the size of their intersection divided by the size of their union:
$\operatorname{sim}\left(C_{1}, C_{2}\right)=\left|C_{1} \cap C_{2}\right| /\left|C_{1} \cup C_{2}\right|$
- Jaccard distance: $d\left(C_{1}, C_{2}\right)=1-\left|C_{1} \cap C_{2}\right| /\left|C_{1} \cup C_{2}\right|$

3 in intersection 8 in union Jaccard similarity= $3 / 8$ Jaccard distance $=5 / 8$

Task: Finding Similar Documents

- Goal: Given a large number (N in the millions or billions) of documents, find "near duplicate" pairs
- Applications:
- Mirror websites, or approximate mirrors
- Don't want to show both in search results
- Similar news articles at many news sites
- Cluster articles by "same story"
- Problems:
- Many small pieces of one document can appear out of order in another
- Too many documents to compare all pairs
- Documents are so large or so many that they cannot fit in main memory

3 Essential Steps for Similar Docs

1. Shingling: Convert documents to sets
2. Min-Hashing: Convert large sets to short signatures, while preserving similarity
3. Locality-Sensitive Hashing: Focus on pairs of signatures likely to be from similar documents

- Candidate pairs!

The Big Picture

Shingling

Step 1: Shingling: Convert documents to sets

Define: Shingles

- A k-shingle (or k-gram) for a document is a sequence of k tokens that appears in the doc
- Tokens can be characters, words or something else, depending on the application
- Assume tokens = characters for examples
- Example: $\mathbf{k}=\mathbf{2}$; document $\mathbf{D}_{\mathbf{1}}=\mathrm{abcab}$ Set of 2-shingles: $S\left(D_{1}\right)=\{a b, b c, c a\}$
- Option: Shingles as a bag (multiset), count ab twice: $\mathbf{S}^{\prime}\left(\mathbf{D}_{1}\right)=\{\mathrm{ab}, \mathrm{bc}, \mathrm{ca}, \mathrm{ab}\}$

Examples

- Input text:
"The most effective way to represent documents as sets is to construct from the document the set of short strings that appear within it."
- 5-shingles:
"The m", "he mo", "e mos", " most", " ost ", "ost e", "st ef", "t eff", " effe", "effec", "ffect", "fecti", "ectiv", ...
- 9-shingles:
"The most ", "he most e", "e most ef", " most eff", "most effe", "ost effec", "st effect", "t effecti", " effectiv", "effective", ...

Hashing Shingles

- Storage of k-shingles: k bytes per shingle
- Instead, hash each shingle to a 4-byte integer.
- E.g. "The most" $\rightarrow 4320$

$$
\begin{aligned}
& \text { "he most e" } \rightarrow 56456 \\
& \text { "e most ef" } \rightarrow 214509
\end{aligned}
$$

- Which one is better?

1. Using 4 shingles?
2. Using 9-shingles, and then hashing each to 4 byte integer?

- Consider the \# of distinct elements represented with 4 bytes

Hashing Shingles

- Not all characters are common.
- e.g. Unlikely to have shingles like "zy\%p"
- Rule of thumb: \# of k-shingles is about 20^{k}
- Using 4-shingles:
- \# of shingles: $20^{4}=160 \mathrm{~K}$
- Using 9-shingles and then hashing to 4-byte values:
- \# of shingles: $20^{9}=512 \mathrm{~B}$
- \# of buckets: $2^{32}=4.3 \mathrm{~B}$
- 512B shingles (uniformly) distributed to 4.3B buckets

Similarity Metric for Shingles

- Document D_{1} is a set of its k-shingles $C_{1}=S\left(D_{1}\right)$
- Equivalently, each document is a $0 / 1$ vector in the space of k-shingles
- Each unique shingle is a dimension
- Vectors are very sparse
- A natural similarity measure is the Jaccard similarity:

$$
\operatorname{sim}\left(D_{1}, D_{2}\right)=\left|C_{1} \cap C_{2}\right| /\left|C_{1} \cup C_{2}\right|
$$

Working Assumption

- Documents that have lots of shingles in common have similar text, even if the text appears in different order
- Caveat: You must pick \boldsymbol{k} large enough, or most documents will have most shingles
$-\boldsymbol{k}=5$ is OK for short documents
$-\boldsymbol{k}=10$ is better for long documents

Motivation for Minhash/LSH

- Suppose we need to find near-duplicate documents among $N=1$ million documents
- Naïvely, we would have to compute pairwise Jaccard similarities for every pair of docs
$-N(N-1) / 2 \approx 5^{*} 10^{11}$ comparisons
- At 10^{5} secs/day and 10^{6} comparisons/sec, it would take 5 days
- For $\boldsymbol{N}=\mathbf{1 0}$ million, it takes more than a year...

MinHashing

Step 2: Minhashing: Convert large sets to short signatures, while preserving similarity

Encoding Sets as Bit Vectors

- Many similarity problems can be formalized as finding subsets that have significant intersection

- Encode sets using 0/1 (bit, boolean) vectors
- One dimension per element in the universal set
- Interpret set intersection as bitwise AND, and set union as bitwise OR
- Example: $\mathrm{C}_{1}=10111 ; \mathrm{C}_{2}=10011$
- Size of intersection $=3$; size of union $=4$,
- Jaccard similarity (not distance) = 3/4
- Distance: $d\left(C_{1}, C_{2}\right)=1$ (Jaccard similarity) $=1 / 4$

From Sets to Boolean Matrices

- Rows = elements (shingles)
- Columns = sets (documents)
- 1 in row \boldsymbol{e} and column s if and only if \boldsymbol{e} is a member of \boldsymbol{s}
- Column similarity is the Jaccard similarity of the corresponding sets (rows with value 1)
- Typical matrix is sparse!
- Each document is a column:
- Example: $\operatorname{sim}\left(\mathrm{C}_{1}, \mathrm{C}_{2}\right)=$?
- Size of intersection = 3; size of union = 6, Jaccard similarity (not distance) $=3 / 6$
- $d\left(C_{1}, C_{2}\right)=1-($ Jaccard similarity $)=3 / 6$

Outline: Finding Similar Columns

- So far:
- Documents \rightarrow Sets of shingles
- Represent sets as boolean vectors in a matrix
- Next goal: Find similar columns while computing small signatures
- Similarity of columns == similarity of signatures

Hashing Columns (Signatures)

- Key idea: "hash" each column C to a small signature $h(C)$, such that:
- (1) $h(C)$ is small enough that the signature fits in RAM
- (2) $\operatorname{sim}\left(C_{1}, C_{2}\right)$ is the same as the "similarity" of signatures $h\left(C_{1}\right)$ and $h\left(C_{2}\right)$
- Goal: Find a hash function $h(\cdot)$ such that:
- If $\operatorname{sim}\left(C_{1}, C_{2}\right)$ is high, then with high prob. $h\left(C_{1}\right)=h\left(C_{2}\right)$
- If $\operatorname{sim}\left(C_{1}, C_{2}\right)$ is low, then with high prob. $h\left(C_{1}\right) \neq \boldsymbol{h}\left(C_{2}\right)$
- Hash docs into buckets. Expect that "most" pairs of near duplicate docs hash into the same bucket!

Min-Hashing

- Goal: Find a hash function $h(\cdot)$ such that:
- if $\operatorname{sim}\left(C_{1}, C_{2}\right)$ is high, then with high prob. $h\left(C_{1}\right)=h\left(C_{2}\right)$
- if $\operatorname{sim}\left(C_{1}, C_{2}\right)$ is low, then with high prob. $h\left(C_{1}\right) \neq h\left(C_{2}\right)$
- Clearly, the hash function depends on the similarity metric:
- Not all similarity metrics have a suitable hash function
- There is a suitable hash function for the Jaccard similarity: It is called Min-Hashing

Min-Hashing

- Imagine the rows of the boolean matrix permuted under random permutation π
- Define a "hash" function $h_{\pi}(C)=$ the index of the first (in the permuted order π) row in which column C has value 1 :

$$
h_{\pi}(C)=\min _{\pi} \pi(C)
$$

- Use several (e.g., 100) independent hash functions (that is, permutations) to create a signature of a column

Min-Hashing Example

Min-Hashing Example

$2^{\text {nd }}$ element of the permutation
is the first to map to a 1
Permutation π Input phatrix (Shingles x Documents)
Signature matrix M

The Min-Hash Property

- Choose a random permutation π
- Claim: $\operatorname{Pr}\left[h_{\pi}\left(\mathrm{C}_{\mathrm{i}}\right)=h_{\pi}\left(\mathrm{C}_{\mathrm{j}}\right)\right]=\operatorname{sim}\left(\mathrm{C}_{\mathrm{i}}, \mathrm{C}_{\mathrm{j}}\right)$
- Proof:
- Consider 3 types of rows:
type X : C_{i} and C_{j} both have 1 s
type Y : only one of C_{i} and C_{j} has 1
type $Z: C_{i}$ and C_{j} both have $0 s$
- After random permutation π, what if the first X-type row is before the first Y -type row?

$$
h_{\pi}\left(\mathrm{C}_{\mathrm{i}}\right)=h_{\pi}\left(\mathrm{C}_{\mathrm{j}}\right)
$$

Input Matrix

The Min-Hash Property

- What is the probability that the first not-Z row is of type X ?

$$
\frac{|X|}{|X|+|Y|}
$$

$\square \operatorname{Pr}\left[h_{\pi}\left(\mathrm{C}_{\mathbf{i}}\right)=h_{\pi}\left(\mathrm{C}_{\mathrm{j}}\right)\right]=\frac{|X|}{|X|+|Y|}$

- $\operatorname{sim}\left(\mathrm{C}_{\mathrm{i}}, \mathrm{C}_{\mathrm{j}}\right)=\frac{\left|C_{i} \cap C_{\mathrm{j}}\right|}{\left|C_{i} \cup C_{\mathrm{j}}\right|}=\frac{|X|}{|X|+|Y|}=\operatorname{Pr}\left[h_{\pi}\left(\mathrm{C}_{\mathrm{i}}\right)=h_{\pi}\left(\mathrm{C}_{\mathrm{j}}\right)\right]$
- Conclusion: $\operatorname{Pr}\left[h_{\pi}\left(\mathrm{C}_{\mathrm{i}}\right)=h_{\pi}\left(\mathrm{C}_{\mathrm{j}}\right)\right]=\operatorname{sim}\left(\mathrm{C}_{\mathrm{i}}, \mathrm{C}_{\mathrm{j}}\right)$

Similarity for Signatures

- We know: $\operatorname{Pr}\left[h_{\pi}\left(\mathrm{C}_{1}\right)=h_{\pi}\left(\mathrm{C}_{2}\right)\right]=\operatorname{sim}\left(\mathrm{C}_{1}, \mathrm{C}_{2}\right)$
- Now generalize to multiple hash functions
- The similarity of two signatures is the fraction of the hash functions in which they agree
- Note: Because of the Min-Hash property, the similarity of columns is the same as the expected similarity of their signatures

Min-Hashing Example

Permutation π Input matrix (Shingles x Documents)
Signature matrix M

2	4	3
3	2	4
7	1	7
6	3	2
1	6	6
5	7	1
4	5	5

1	0	1	0
1	0	0	1
0	1	0	1
0	1	0	1
0	1	0	1
1	0	1	0
1	0	1	0

Similarities:

| | $1-3$ | $2-4$ | $1-2$ | $3-$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Col/Col | 0.75 | 0.75 | 0 | 0 |
| Cig/Sig | 0.67 | 1.00 | 0 | 0 |

Similarity of Signatures

- What is the expected value of Jaccard similarity of two signatures sig_{1} and sig_{2} ? Assume there are s min-hash values in each signature.

$$
\begin{aligned}
E\left[\operatorname{sim}\left(\operatorname{sig}_{1}, \operatorname{sig}_{2}\right)\right] & =E\left[\frac{\# \text { of } \pi \text { s.t. } h_{\pi}\left(C_{1}\right)=h_{\pi}\left(C_{2}\right)}{s}\right] \\
& =\frac{1}{s} \sum_{=1}^{s} \operatorname{Pr}\left[h_{\pi}\left(\mathrm{C}_{1}\right)=\mathrm{h}_{\pi}\left(C_{2}\right)\right] \\
& =\operatorname{sim}\left(C_{1}, C_{2}\right)
\end{aligned}
$$

- Law of large numbers: Average of the results obtained from a large number of trials should be close to the expected value, and will tend to become closer as more trials are performed.

Min-Hash Signatures

- Pick $\mathrm{K}=100$ random permutations of the rows
- Think of $\operatorname{sig}(\mathrm{C})$ as a column vector
- $\operatorname{sig}(\mathrm{C})[i]=$ according to the i-th permutation, the index of the first row that has a 1 in column C

$$
\operatorname{sig}(\mathrm{C})[\mathrm{i}]=\min \left(\pi_{\mathrm{i}}(\mathrm{C})\right)
$$

- Note: The sketch (signature) of document C is small ~400 bytes!
- We achieved our goal! We "compressed" long bit vectors into short signatures

Implementation Trick

- Permuting rows even once is prohibitive
- Row hashing!
- Pick K=100 hash functions $\boldsymbol{k}_{\boldsymbol{i}}$
- Ordering under $\boldsymbol{k}_{\boldsymbol{i}}$ gives a random row (almost) permutation!

Hash func. 1 Hash func. 2

Row	\mathbf{D}_{1}	\mathbf{D}_{2}	\mathbf{D}_{3}	\mathbf{D}_{4}	$(r+1) \% 5$	$(3 r+1) \% 5$
0	1	0	0	1	1	1
1	0	0	1	0	2	4
2	0	1	0	1	3	2
3	1	0	1	1	4	0
4	0	0	1	0	0	3

How to pick a random hash function $\mathrm{h}(\mathrm{x})$?
Universal hashing:
$h_{a, b}(x)=((a \cdot x+b) \bmod p) \bmod N$ where:
a,b ... random integers
p ... prime number ($\mathrm{p}>\mathrm{N}$)

Implementation Trick

- One-pass implementation
- For each column \boldsymbol{C} and hash-func. $\boldsymbol{k}_{\boldsymbol{i}}$ keep a "slot" for the min-hash value
- Initialize all sig(C)[i] = ∞
- Scan rows looking for 1s
- Suppose row \boldsymbol{j} has 1 in column \boldsymbol{C}
- Then for each $\boldsymbol{k}_{\boldsymbol{i}}$:
- If $k_{i}(j)<\operatorname{sig}(C)[i]$, then $\operatorname{sig}(C)[i] \leftarrow k_{i}(j)$

Example: Computing Min-Hash Signatures

Hash func. 1 Hash func. 2

Row	\mathbf{D}_{1}	\mathbf{D}_{2}	\mathbf{D}_{3}	\mathbf{D}_{4}	$(\mathrm{r}+1) \% 5$	$(3 \mathrm{r}+1) \% 5$
0	1	0	0	1	1	1
1	0	0	1	0	2	4
2	0	1	0	1	3	2
3	1	0	1	1	4	0
4	0	0	1	0	0	3

Signatures

D_{1}	D_{2}	D_{3}	D_{4}
∞	∞	∞	∞
∞	∞	∞	∞

Example: Computing Min-Hash Signatures

Hash func. 1 Hash func. 2

Row	\mathbf{D}_{1}	\mathbf{D}_{2}	\mathbf{D}_{3}	\mathbf{D}_{4}	$(\mathrm{r}+1) \% 5$	$(3 \mathrm{r}+1) \% 5$
0	1	0	0	1	1	1
1	0	0	1	0	2	4
2	0	1	0	1	3	2
3	1	0	1	1	4	0
4	0	0	1	0	0	3

Signatures

\mathbf{D}_{1}	\mathbf{D}_{2}	\mathbf{D}_{3}	\mathbf{D}_{4}
1	∞	∞	1
1	∞	∞	1

Example: Computing Min-Hash Signatures

Hash func. 1 Hash func. 2

Row	\mathbf{D}_{1}	\mathbf{D}_{2}	\mathbf{D}_{3}	\mathbf{D}_{4}	$(r+1) \% 5$	$(3 r+1) \% 5$
0	1	0	0	1	1	1
1	0	0	1	0	2	4
2	0	1	0	1	3	2
3	1	0	1	1	4	0
4	0	0	1	0	0	3

Signatures

\mathbf{D}_{1}	\mathbf{D}_{2}	\mathbf{D}_{3}	\mathbf{D}_{4}
1	∞	2	1
1	∞	4	1

Example: Computing Min-Hash Signatures

Hash func. 1 Hash func. 2

Row	\mathbf{D}_{1}	\mathbf{D}_{2}	\mathbf{D}_{3}	\mathbf{D}_{4}	$(\mathrm{r}+1) \% 5$	$(3 r+1) \% 5$
0	1	0	0	1	1	1
1	0	0	1	0	2	4
2	0	1	0	1	3	2
3	1	0	1	1	4	0
4	0	0	1	0	0	3

Signatures

D_{1}	D_{2}	D_{3}	\mathbf{D}_{4}
1	3	2	1
1	2	4	1

Example: Computing Min-Hash Signatures

Hash func. 1 Hash func. 2

Row	\mathbf{D}_{1}	\mathbf{D}_{2}	\mathbf{D}_{3}	\mathbf{D}_{4}	$(\mathrm{r}+1) \% 5$	$(3 \mathrm{r}+1) \% 5$
0	1	0	0	1	1	1
1	0	0	1	0	2	4
2	0	1	0	1	3	2
3	1	0	1	1	4	0
4	0	0	1	0	0	3

Signatures

\mathbf{D}_{1}	\mathbf{D}_{2}	\mathbf{D}_{3}	\mathbf{D}_{4}
1	3	2	1
0	2	0	0

Example: Computing Min-Hash Signatures

Hash func. 1 Hash func. 2

Row	\mathbf{D}_{1}	\mathbf{D}_{2}	\mathbf{D}_{3}	\mathbf{D}_{4}	$(r+1) \% 5$	$(3 r+1) \% 5$
0	1	0	0	1	1	1
1	0	0	1	0	2	4
2	0	1	0	1	3	2
3	1	0	1	1	4	0
4	0	0	1	0	0	3

Signatures

\mathbf{D}_{1}	\mathbf{D}_{2}	\mathbf{D}_{3}	\mathbf{D}_{4}
1	3	0	1
0	2	0	0

Example: Computing Min-Hash Signatures

Hash func. 1 Hash func. 2

Row	\mathbf{D}_{1}	\mathbf{D}_{2}	\mathbf{D}_{3}	\mathbf{D}_{4}	$(\mathrm{r}+1) \% 5$	$(3 r+1) \% 5$
0	1	0	0	1	1	1
1	0	0	1	0	2	4
2	0	1	0	1	3	2
3	1	0	1	1	4	0
4	0	0	1	0	0	3

Final signatures

D_{1}	\mathbf{D}_{2}	D_{3}	\mathbf{D}_{4}
1	3	0	1
0	2	0	0

Locality Sensitive Hashing

Step 3: Locality-Sensitive Hashing:
Focus on pairs of signatures likely to be from similar documents

2	1	4	1
1	2	1	2
2	1	2	1

- Goal: Find documents with Jaccard similarity at least s (for some similarity threshold, e.g., $s=0.8$)
- LSH - General idea: Use a function $f(x, y)$ that tells whether \boldsymbol{x} and \boldsymbol{y} is a candidate pair: a pair of elements whose similarity must be evaluated
- For Min-Hash matrices:
- Hash columns of signature matrix \boldsymbol{M} to many buckets
- Each pair of documents that hashes into the same bucket is a candidate pair

LSH for Min-Hash

2	1	4	1
1	2	1	2
2	1	2	1

- Big idea: Hash columns of signature matrix M several times
- Arrange that (only) similar columns are likely to hash to the same bucket, with high probability
- Candidate pairs are those that hash to the same bucket

\section*{$\begin{array}{llll}2 & 1 & 4 & 1\end{array}$
 Partition M into b Bands
 | 2 | 1 | 4 | 1 |
| :--- | :--- | :--- | :--- |
| 1 | 2 | 1 | 2 |
| 2 | 1 | 2 | 1 |}

Signature matrix M

Partition M into Bands

- Divide matrix \boldsymbol{M} into \boldsymbol{b} bands of \boldsymbol{r} rows
- For each band, hash its portion of each column to a hash table with \boldsymbol{k} buckets
- Make \boldsymbol{k} as large as possible
- Candidate column pairs are those that hash to the same bucket for $\geq \mathbf{1}$ band
- Tune \boldsymbol{b} and \boldsymbol{r} to catch most similar pairs, but few non-similar pairs

Hashing Bands

Banding Example

$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{2}$	$\mathbf{4}$	$\mathbf{2}$	$\mathbf{4}$
$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{3}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{3}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{5}$	$\mathbf{5}$
2	2	1	2	5	2	5	5
4	3	4	3	5	4	4	3
3	1	2	1	0	3	0	0
2	1	0	1	0	2	1	0
5	3	2	1	2	0	2	2
1	2	5	2	0	1	0	5

Buckets

Candidate pairs: \{(2,4);

Banding Example

Signature Matrix

| 1 | 0 | 0 | 0 | 2 | 4 | 2 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3 | 2 | 1 | 2 | 2 | 3 | 2 | 3 |
| 0 | 1 | 3 | 1 | 1 | 0 | 5 | 5 |
| $\mathbf{2}$ | $\mathbf{2}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{5}$ | $\mathbf{2}$ | $\mathbf{5}$ | $\mathbf{5}$ |
| $\mathbf{4}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{3}$ | $\mathbf{5}$ | $\mathbf{4}$ | $\mathbf{4}$ | $\mathbf{3}$ |
| $\mathbf{3}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{3}$ | $\mathbf{0}$ | $\mathbf{0}$ |
| 2 | 1 | 0 | 1 | 0 | 2 | 1 | 0 |
| 2 | 3 | 2 | 1 | 2 | 0 | 2 | 2 |
| 1 | 2 | 5 | 2 | 0 | 1 | 0 | 5 |

Buckets

Candidate pairs: \{(2,4);

Banding Example

Signature Matrix							
1	0	0	0	2	4	2	4
3	2	1	2	2	3	2	3
0	1	3	1	1	0	5	5
$\mathbf{2}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{5}$	$\mathbf{2}$	$\mathbf{5}$	$\mathbf{5}$
$\mathbf{4}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{4}$	$\mathbf{3}$
$\mathbf{3}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{3}$	$\mathbf{0}$	$\mathbf{0}$
	2	1	0	1	0	2	1

Buckets

Candidate pairs: $\{(2,4) ;(1,6)$

Banding Example

Signature Matrix

| 1 | 0 | 0 | 0 | 2 | 4 | 2 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3 | 2 | 1 | 2 | 2 | 3 | 2 | 3 |
| 0 | 1 | 3 | 1 | 1 | 0 | 5 | 5 |
| 2 | 2 | 1 | 2 | 5 | 2 | 5 | 5 |
| 4 | 3 | 4 | 3 | 5 | 4 | 4 | 3 |
| 3 | 1 | 2 | 1 | 0 | 3 | 0 | 0 |
| $\mathbf{2}$ | $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{2}$ | $\mathbf{1}$ | $\mathbf{0}$ |
| $\mathbf{5}$ | $\mathbf{3}$ | $\mathbf{2}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{0}$ | $\mathbf{2}$ | $\mathbf{2}$ |
| $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{5}$ | $\mathbf{2}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{5}$ |

Buckets

Candidate pairs: $\{(2,4) ;(1,6)(3,8)\}$

Banding Example

Signature Matrix

1	0	0	0	2	4	2	4
3	2	1	2	2	3	2	3
0	1	3	1	1	0	5	5
2	2	1	2	5	2	5	5
4	3	4	3	5	4	4	3
3	1	2	1	0	3	0	0
2	1	0	1	0	2	1	0
5	3	2	1	2	0	2	2
1	2	5	2	0	1	0	5

True positive

Buckets

Candidate pairs: $\{(2,4) ;(1,6) ;(3,8)\}$

Banding Example

Signature Matrix

| 1 | 0 | 0 | 0 | 2 | 4 | 2 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3 | 2 | 1 | 2 | 2 | 3 | 2 | 3 |
| 0 | 1 | 3 | 1 | 1 | 0 | 5 | 5 |
| 2 | 2 | 1 | 2 | 5 | 2 | 5 | 5 |
| 4 | 3 | 4 | 3 | 5 | 4 | 4 | 3 |
| 3 | 1 | 2 | 1 | 0 | 3 | 0 | 0 |
| 2 | 1 | 0 | 1 | 0 | 2 | 1 | 0 |
| 5 | 3 | 2 | 1 | 2 | 0 | 2 | 2 |
| 1 | 2 | 5 | 2 | 0 | 1 | 0 | 5 |

True positive

Buckets

Candidate pairs: $\{(2,4) ;(1,6) ;(3,8)\}$

Banding Example

Signature Matrix

1	0	0	0	2	4	2	4
3	2	1	2	2	3	2	3
0	1	3	1	1	0	5	5
2	2	1	2	5	2	5	5
4	3	4	3	5	4	4	3
3	1	2	1	0	3	0	0
2	1	0	1	0	2	1	0
5	3	2	1	2	0	2	2
1	2	5	2	0	1	0	5

False positive?

Buckets

Candidate pairs: $\{(2,4) ;(1,6) ;(3,8)\}$

Banding Example

Signature Matrix

| 1 | 0 | 0 | 0 | 2 | 4 | 2 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3 | 2 | 1 | 2 | 2 | 3 | 2 | 3 |
| 0 | 1 | 3 | 1 | 1 | 0 | 5 | 5 |
| 2 | 2 | 1 | 2 | 5 | 2 | 5 | 5 |
| 4 | 3 | 4 | 3 | 5 | 4 | 4 | 3 |
| 3 | 1 | 2 | 1 | 0 | 3 | 0 | 0 |
| 2 | 1 | 0 | 1 | 0 | 2 | 1 | 0 |
| 5 | 3 | 2 | 1 | 2 | 0 | 2 | 2 |
| 1 | 2 | 5 | 2 | 0 | 1 | 0 | 5 |

False negative?

Buckets

Candidate pairs: $\{(2,4) ;(1,6) ;(3,8)\}$

Simplifying Assumption

- There are enough buckets that columns are unlikely to hash to the same bucket unless they are identical in a particular band
- Hereafter, we assume that "same bucket" means "identical in that band"
- Assumption needed only to simplify analysis, not for correctness of algorithm

2	1	4	1
1	2	1	2
2	1	2	1

Assume the following case:

Example of Bands

- Suppose 100,000 columns of \boldsymbol{M} (100k docs)
- Signatures of 100 integers (rows)
- Therefore, signatures take 40 Mb
- Choose $\boldsymbol{b}=20$ bands of $\boldsymbol{r}=5$ integers/band
- Goal: Find pairs of documents that are at least $\boldsymbol{s}=0.8$ similar

$\mathrm{C}_{1}, \mathrm{C}_{2}$ are 80% Similar

2	1	4	1
1	2	1	2
2	1	2	1

- Find pairs of $\geq s=0.8$ similarity, set $b=20, r=5$
- Assume: $\operatorname{sim}\left(C_{1}, C_{2}\right)=0.8$
- Since $\operatorname{sim}\left(C_{1}, C_{2}\right) \geq s$, we want C_{1}, C_{2} to be a candidate pair: We want them to hash to at least 1 common bucket (at least one band is identical)
- Probability $\mathrm{C}_{1}, \mathrm{C}_{2}$ identical in one particular band:

$$
(0.8)^{5}=0.328
$$

- Probability $\mathrm{C}_{1}, \mathrm{C}_{2}$ are different in all of the 20 bands:

$$
(1-0.328)^{20}=0.00035
$$

- i.e., about $1 / 3000$ th of the 80%-similar column pairs are false negatives (we miss them)
- We would find 99.965% pairs of truly similar documents

$\mathrm{C}_{1}, \mathrm{C}_{2}$ are 30% Similar

2	1	4	1
1	2	1	2
2	1	2	1

- Find pairs of $\geq s=0.8$ similarity, set $b=20, r=b$
- Assume: $\operatorname{sim}\left(C_{1}, C_{2}\right)=0.3$
- Since $\operatorname{sim}\left(C_{1}, C_{2}\right)<s$ we want C_{1}, C_{2} to hash to NO common buckets (all bands should be different)
- Probability $\mathrm{C}_{1}, \mathrm{C}_{2}$ identical in one particular band:

$$
(0.3)^{5}=0.00243
$$

- Probability $\mathrm{C}_{1}, \mathrm{C}_{2}$ identical in at least 1 of 20 bands:

$$
1-(1-0.00243)^{20}=0.0474
$$

- In other words, approximately 4.74% pairs of docs with similarity 0.3% end up becoming candidate pairs
- They are false positives since we will have to examine them (they are candidate pairs) but then it will turn out their similarity is below threshold s

LSH Summary

- Tune $\mathbf{M}, \boldsymbol{b}, r$ to get almost all pairs with similar signatures, but eliminate most pairs that do not have similar signatures
- Check in main memory that candidate pairs really do have similar signatures
- Optional: In another pass through data, check that the remaining candidate pairs really represent similar documents

Summary: 3 Steps

- Shingling: Convert documents to sets
- We used hashing to assign each shingle an ID
- Min-Hashing: Convert large sets to short signatures, while preserving similarity
- We used similarity preserving hashing to generate signatures with property $\operatorname{Pr}\left[h_{\pi}\left(\mathrm{C}_{1}\right)=\boldsymbol{h}_{\pi}\left(\mathrm{C}_{2}\right)\right]=\operatorname{sim}\left(\mathrm{C}_{1}, \mathrm{C}_{2}\right)$
- We used hashing to get around generating random permutations
- Locality-Sensitive Hashing: Focus on pairs of signatures likely to be from similar documents
- We used hashing to find candidate pairs of similarity $\geq \mathbf{s}$

Distance Metrics

Distance Measure

- A distance measure $\mathrm{d}(\mathrm{x}, \mathrm{y})$ must have the following properties:

1. $d(x, y) \geq 0$
2. $d(x, y)=0$ iff $x=y$
3. $d(x, y)=d(y, x)$
4. $d(x, y) \leq d(x, z)+d(z, y)$

Euclidean Distance

- Consider two items x and y with n numeric attributes
- Euclidean distance in n-dimensions:

$$
\frac{d\left(\left[x_{1}, x_{2}, \ldots, x_{n}\right],\left[y_{1}, y_{2}, \ldots, y_{n}\right]\right)=}{\sqrt{\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2}}}
$$

- Useful when you want to penalize larger differences more than smaller ones

L_{r} - Norm

- Definition of L_{r}-norm:

$$
d\left(\left[x_{1}, x_{2}, \ldots, x_{n}\right],\left(y_{1}, y_{2}, \ldots, y_{n}\right)\right]=\left(\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|^{r}\right)^{1 / r}
$$

- Special cases:
- L_{1}-norm: Manhattan distance
- Useful when you want to penalize differences in a linear way (e.g. a difference of 10 for one attribute is equivalent to difference of 1 for 10 attributes)
- L_{2}-norm: Euclidean distance
- L_{∞}-norm: Maximum distance among all attributes
- Useful when you want to penalize the largest difference in an attribute

Jaccard Distance

- Given two sets x and y :

$$
d(x, y)=1-\frac{|x \cap y|}{|x \cup y|}
$$

- Useful for set representations
- i.e. An element either exists or does not exist
- What if the attributes are weighted?
- e.g. Term frequency in a document

Cosine Distance

- Consider x and y represented as vectors in an n dimensional space

$$
\cos (\theta)=\frac{x \cdot y}{\|x\| \cdot \mid\|y\|}
$$

- The cosine distance is defined as the θ value
- Or, cosine similarity is defined as $\cos (\theta)$
- Only direction of vectors considered, not the magnitudes
- Useful when we are dealing with vector spaces

Cosine Distance: Example

$$
\begin{aligned}
& \cos (\theta)=\frac{x \cdot y}{\|x\| \cdot\|y\|} \\
& =\frac{0.2+0.2-0.1}{\sqrt{0.01+0.04+0.01} \cdot \sqrt{4+1+1}} \\
& \quad=\frac{0.3}{\sqrt{0.36}}=0.5 \rightarrow \theta=60^{\circ}
\end{aligned}
$$

Note: The distance is independent of vector magnitudes

Edit Distance

- What happens if you search for "Blkent" in Google?
- "Showing results for Bilkent."
- Edit distance between x and y : Smallest number of insertions, deletions, or mutations needed to go from x to y.
- What is the edit distance between "BILKENT" and "BLANKET"?

dist(BILKENT, BLANKET) $=4$
- Efficient dynamic-programming algorithms exist to compute edit distance (CS473)

Distance Metrics Summary

- Important to choose the right distance metric for your application
- Set representation?
- Vector space?
- Strings?
- Distance metric chosen also affects complexity of algorithms
- Sometimes more efficient to optimize L_{1} norm than L_{2} norm.
- Computing edit distance for long sequences may be expensive
- Many other distance metrics exist.

Applications of LSH

Entity Resolution

Entity Resolution

- Many records exist for the same person with slight variations
- Name: "Robert W. Carson" vs. "Bob Carson Jr."
- Date of birth: "Jan 15, 1957" vs. "1957" vs none
- Address: Old vs. new, incomplete, typo, etc.
- Phone number: Cell vs. home vs. work, with or without country code, area code
- Objective: Match the same people in different databases

Locality Sensitive Hashing (LSH)

- Simple implementation of LSH:
- Hash each field separately
- If two people hash to the same bucket for any field, add them as a candidate pair

Candidate Pair Evaluation

- Define a scoring metric and evaluate candidate pairs
- Example:
- Assign a score of 100 for each field. Perfect match gets 100, no match gets 0 .
- Which distance metric for names?
- Edit distance, but with quadratic penalty
- How to evaluate phone numbers?
- Only exact matches allowed, but need to take care of missing area codes.
- Pick a score threshold empirically and accept the ones above that
- Depends on the application and importance of false positives vs. negatives
- Typically need cross validation

Fingerprint Matching

Fingerprint Matching

- Many-to-many matching: Find out all pairs with the same fingerprints
- Example: You want to find out if the same person appeared in multiple crime scenes
- One-to-many matching: Find out whose fingerprint is on the gun
- Too expensive to compare even one fingerprint with the whole database
- Need to use LSH even for one-to-many problem
- Preprocessing:
- Different sizes, different orientations, different lighting, etc.
- Need some normalization in preprocessing (not our focus here)

Fingerprint Features

- Minutia: Major features of a fingerprint

Bifurcation

Image Source: Wikimedia Commons

Fingerprint Grid Representation

- Overlay a grid and identify points with minutia

	X					X	
			X				
			X		X		
							X
	X	X					

Special Hash Function

- Choose 3 grid points
- If a fingerprint has minutia in all 3 points, add it to the bucket
- Otherwise, ignore the fingerprint.

Locality Sensitive Hashing

- Define 1024 hash functions
- i.e. Each hash function is defined as 3 grid points
- Add fingerprints to the buckets hash functions
- If multiple fingerprints are in the same bucket, add them as a candidate pair.

Example

- Assume:
- Probability of finding a minutia at a random grid point $=20 \%$
- If two fingerprints belong to the same finger:
- Probability of finding a minutia at the same grid point $=80 \%$
- For two different fingerprints:
- Probability that they have minutia at point (x, y) ?

$$
0.2 * 0.2=0.04
$$

- Probability that they hash to the same bucket for a given hash function?

$$
0.04^{3}=0.000064
$$

- For two fingerprints from the same finger:
- Probability that they have minutia at point (x, y)?

$$
0.2 * 0.8=0.16
$$

- Probability that they hash to the same bucket for a given hash function?

$$
0.16^{3}=0.004096
$$

Example (cont'd)

- For two different fingerprints and 1024 hash functions:
- Probability that they hash to the same bucket at least once?

$$
1-\left(1-0.04^{3}\right)^{1024}=0.063
$$

- For two fingerprints from the same finger and 1024 hash functions:
- Probability that they hash to the same bucket at least once?

$$
1-\left(1-0.16^{3}\right)^{1024}=0.985
$$

- False positive rate?

$$
6.3 \%
$$

- False negative rate?
1.5%

Example (cont'd)

- How to reduce the false positive rate?
- Try: Increase the number grid points from 3 to 6
- For two different fingerprints and 1024 hash functions:
- Probability that they hash to the same bucket at least once?

$$
1-\left(1-0.04^{6}\right)^{1024}=0.0000042
$$

- For two fingerprints from the same finger and 1024 hash functions:
- Probability that they hash to the same bucket at least once?

$$
1-\left(1-0.16^{6}\right)^{1024}=0.017
$$

- False negative rate increased to 98.3% !

Example (cont'd)

- Second try: Add another AND function to the original setting 1. Define 2048 hash functions

Each hash function is based on 3 grid points as before
2. Define two groups each with 1024 hash functions
3. For each group, apply LSH as before

Find fingerprints that share a bucket for at least one hash function
4. If two fingerprints share at least one bucket in both groups, add them as a candidate pair

Example (cont'd)

- Reminder:
- Probability that two fingerprints hash to the same bucket at least once for 1024 hash functions:
- If two different fingerprints: $1-\left(1-0.04^{3}\right)^{1024}=0.063$
- If from the same finger: $1-\left(1-0.16^{3}\right)^{1024}=0.985$
- With the AND function at the end:
- Probability that two fingerprints are chosen as candidate pair:
- If two different fingerprints:

$$
0.063 \times 0.063=0.004
$$

- If from the same finger:

$$
0.985 \times 0.985=0.97
$$

- Reduced false positives to 0.4%, but increased false negatives to 3%
- What if we add another OR function at the end?

