
BBS654
Data Mining

Pinar Duygulu

Slides are adapted from
J. Leskovec, A. Rajaraman, J. Ullman: Mining of

Massive Datasets, http://www.mmds.org
And

Mustafa Ozdal

http://www.mmds.org/

Lecture 3: Similarity Modeling

CS425: Algorithms for Web Scale Data

Most of the slides are from the Mining of Massive Datasets book.

These slides have been modified for CS425. The original slides can be accessed at: www.mmds.org

http://www.mmds.org/

Scene Completion Problem
[Hays and Efros, SIGGRAPH 2007]

Scene Completion Problem
[Hays and Efros, SIGGRAPH 2007]

10 nearest neighbors from a collection of 20,000

images

Scene Completion Problem

[Hays and Efros, SIGGRAPH 2007]

10 nearest neighbors from a collection of 2 million

images

Scene Completion Problem

[Hays and Efros, SIGGRAPH 2007]

A Common Metaphor

• Many problems can be expressed as
finding “similar” sets:
– Find near-neighbors in high-dimensional space

• Examples:
– Pages with similar words

• For duplicate detection, classification by topic

– Customers who purchased similar products
• Products with similar customer sets

– Images with similar features

Problem for Today’s Lecture

• Given: High dimensional data points 𝒙𝟏, 𝒙𝟐, …
– For example: Image is a long vector of pixel colors

1 2 1
0 2 1
0 1 0

→ [1 2 1 0 2 1 0 1 0]

• And some distance function 𝒅(𝒙𝟏, 𝒙𝟐)
– Which quantifies the “distance” between 𝒙𝟏 and 𝒙𝟐

• Goal: Find all pairs of data points (𝒙𝒊, 𝒙𝒋) that are
within some distance threshold 𝒅 𝒙𝒊, 𝒙𝒋 ≤ 𝒔

• Note: Naïve solution would take 𝑶 𝑵𝟐 
where 𝑵 is the number of data points

• MAGIC: This can be done in 𝑶 𝑵 !! How?

Finding Similar Items

Distance Measures

 Goal: Find near-neighbors in high-dim. space
– We formally define “near neighbors” as

points that are a “small distance” apart

• For each application, we first need to define what
“distance” means

• Today: Jaccard distance/similarity
– The Jaccard similarity of two sets is the size of their

intersection divided by the size of their union:
sim(C1, C2) = |C1C2|/|C1C2|

– Jaccard distance: d(C1, C2) = 1 - |C1C2|/|C1C2|
3 in intersection

8 in union

Jaccard similarity= 3/8

Jaccard distance = 5/8

Task: Finding Similar Documents

• Goal: Given a large number (𝑵 in the millions or
billions) of documents, find “near duplicate” pairs

• Applications:
– Mirror websites, or approximate mirrors

• Don’t want to show both in search results

– Similar news articles at many news sites
• Cluster articles by “same story”

• Problems:
– Many small pieces of one document can appear

out of order in another

– Too many documents to compare all pairs

– Documents are so large or so many that they cannot
fit in main memory

3 Essential Steps for Similar Docs

1. Shingling: Convert documents to sets

2. Min-Hashing: Convert large sets to short
signatures, while preserving similarity

3. Locality-Sensitive Hashing: Focus on
pairs of signatures likely to be from
similar documents

– Candidate pairs!

The Big Picture

Docu-

ment

The set

of strings

of length k

that appear

in the doc-

ument

Signatures:

short integer

vectors that

represent the

sets, and

reflect their

similarity

Locality-

Sensitive

Hashing

Candidate

pairs:

those pairs

of signatures

that we need

to test for

similarity

Shingling

Step 1: Shingling: Convert documents to sets

Docu-

ment

The set

of strings

of length k

that appear

in the doc-

ument

Define: Shingles

• A k-shingle (or k-gram) for a document is a
sequence of k tokens that appears in the doc

– Tokens can be characters, words or something
else, depending on the application

– Assume tokens = characters for examples

• Example: k=2; document D1 = abcab

Set of 2-shingles: S(D1) = {ab, bc, ca}

– Option: Shingles as a bag (multiset), count ab

twice: S’(D1) = {ab, bc, ca, ab}

Examples

• Input text:

“The most effective way to represent documents as
sets is to construct from the document the set of
short strings that appear within it.”

• 5-shingles:
“The m”, “he mo”, “e mos”, “ most”, “ ost ”, “ost e”, “st ef”, “t eff”,
“ effe”, “effec”, “ffect”, “fecti”, “ectiv”, …

• 9-shingles:
“The most ”, “he most e”, “e most ef”, “ most eff”, “most effe”,

“ost effec”, “st effect”, “t effecti”, “ effectiv”, “effective”, …

Hashing Shingles

• Storage of k-shingles: k bytes per shingle

• Instead, hash each shingle to a 4-byte integer.
– E.g. “The most ”  4320

“he most e”  56456

“e most ef”  214509

• Which one is better?

1. Using 4 shingles?

2. Using 9-shingles, and then hashing each to 4 byte
integer?

• Consider the # of distinct elements represented with 4 bytes

Hashing Shingles

• Not all characters are common.
– e.g. Unlikely to have shingles like “zy%p”

• Rule of thumb: # of k-shingles is about 20k

• Using 4-shingles:
– # of shingles: 204 = 160K

• Using 9-shingles and then hashing to 4-byte values:
– # of shingles: 209 = 512B

– # of buckets: 232 = 4.3B

– 512B shingles (uniformly) distributed to 4.3B buckets

Similarity Metric for Shingles

• Document D1 is a set of its k-shingles C1=S(D1)

• Equivalently, each document is a
0/1 vector in the space of k-shingles

– Each unique shingle is a dimension

– Vectors are very sparse

• A natural similarity measure is the
Jaccard similarity:

sim(D1, D2) = |C1C2|/|C1C2|

Working Assumption

• Documents that have lots of shingles in
common have similar text, even if the text
appears in different order

• Caveat: You must pick k large enough, or most
documents will have most shingles

– k = 5 is OK for short documents

– k = 10 is better for long documents

Motivation for Minhash/LSH

• Suppose we need to find near-duplicate
documents among 𝑵 = 𝟏million documents

• Naïvely, we would have to compute pairwise
Jaccard similarities for every pair of docs

– 𝑵(𝑵 − 𝟏)/𝟐 ≈ 5*1011 comparisons

– At 105 secs/day and 106 comparisons/sec,
it would take 5 days

• For 𝑵 = 𝟏𝟎million, it takes more than a year…

MinHashing

Step 2: Minhashing: Convert large sets to
short signatures, while preserving similarity

Docu-

ment

The set

of strings

of length k

that appear

in the doc-

ument

Signatures:

short integer

vectors that

represent the

sets, and

reflect their

similarity

Encoding Sets as Bit Vectors

• Many similarity problems can be
formalized as finding subsets that
have significant intersection

• Encode sets using 0/1 (bit, boolean) vectors
– One dimension per element in the universal set

• Interpret set intersection as bitwise AND, and
set union as bitwise OR

• Example: C1 = 10111; C2 = 10011
– Size of intersection = 3; size of union = 4,

– Jaccard similarity (not distance) = 3/4

– Distance: d(C1,C2) = 1 – (Jaccard similarity) = 1/4

From Sets to Boolean Matrices

• Rows = elements (shingles)

• Columns = sets (documents)
– 1 in row e and column s if and

only if e is a member of s

– Column similarity is the Jaccard
similarity of the corresponding
sets (rows with value 1)

– Typical matrix is sparse!

• Each document is a column:
– Example: sim(C1 ,C2) = ?

• Size of intersection = 3; size of union = 6,
Jaccard similarity (not distance) = 3/6

• d(C1,C2) = 1 – (Jaccard similarity) = 3/6

0101

0111

1001

1000

1010

1011

0111

Documents

S
h
in

g
le

s

Outline: Finding Similar Columns

• So far:

– Documents  Sets of shingles

– Represent sets as boolean vectors in a matrix

• Next goal: Find similar columns while
computing small signatures

– Similarity of columns == similarity of signatures

Hashing Columns (Signatures)

• Key idea: “hash” each column C to a small
signature h(C), such that:

– (1) h(C) is small enough that the signature fits in RAM

– (2) sim(C1, C2) is the same as the “similarity” of
signatures h(C1) and h(C2)

• Goal: Find a hash function h(·) such that:

– If sim(C1,C2) is high, then with high prob. h(C1) = h(C2)

– If sim(C1,C2) is low, then with high prob. h(C1) ≠ h(C2)

• Hash docs into buckets. Expect that “most” pairs
of near duplicate docs hash into the same bucket!

Min-Hashing

• Goal: Find a hash function h(·) such that:

– if sim(C1,C2) is high, then with high prob. h(C1) = h(C2)

– if sim(C1,C2) is low, then with high prob. h(C1) ≠ h(C2)

• Clearly, the hash function depends on
the similarity metric:

– Not all similarity metrics have a suitable
hash function

• There is a suitable hash function for
the Jaccard similarity: It is called Min-Hashing

Min-Hashing

• Imagine the rows of the boolean matrix
permuted under random permutation 

• Define a “hash” function h(C) = the index of
the first (in the permuted order ) row in
which column C has value 1:

h (C) = min (C)

• Use several (e.g., 100) independent hash
functions (that is, permutations) to create a
signature of a column

Min-Hashing Example

0001

0101

1010

0010

1010

1001

0101

Input Matrix

Documents

S
h

in
g

le
s

0101

1010

1001

0101

0001

1010

0010

Permuted Matrix

Documents

2413

Min-hash values

Min-Hashing Example

3

4

7

2

6

1

5

Signature matrix M

1212

5

7

6

3

1

2

4

1412

4

5

1

6

7

3

2

2121

2nd element of the permutation

is the first to map to a 1

4th element of the permutation

is the first to map to a 1

0101

0101

1010

1010

1010

1001

0101

Input matrix (Shingles x Documents) Permutation 

The Min-Hash Property

• Choose a random permutation 

• Claim: Pr[h(Ci) = h(Cj)] = sim(Ci, Cj)

• Proof:

– Consider 3 types of rows:
type X: Ci and Cj both have 1s

type Y: only one of Ci and Cj has 1

type Z: Ci and Cj both have 0s

– After random permutation , what
if the first X-type row is before the
first Y-type row?

h(Ci) = h(Cj)

01

11

00

00

00

01

11

Input Matrix

Ci Cj

X

Y

Z

Z

Z

Y

X

The Min-Hash Property

• What is the probability that the first not-Z row is of type X?

|𝑋|

𝑋 +|𝑌|

 Pr[h(Ci) = h(Cj)] =
|𝑿|

𝑿 +|𝒀|

• sim(Ci, Cj) =
|𝑪
𝒊
∩𝑪
𝐣
|

|𝑪
𝒊
∪𝑪
𝐣
|

=
|𝑿|

𝑿 +|𝒀|
= Pr[h(Ci) = h(Cj)]

• Conclusion: Pr[h(Ci) = h(Cj)] = sim(Ci, Cj)

Similarity for Signatures

• We know: Pr[h(C1) = h(C2)] = sim(C1, C2)

• Now generalize to multiple hash functions

• The similarity of two signatures is the
fraction of the hash functions in which they
agree

• Note: Because of the Min-Hash property, the
similarity of columns is the same as the
expected similarity of their signatures

Min-Hashing Example

Similarities:

1-3 2-4 1-2 3-4

Col/Col 0.75 0.75 0 0

Sig/Sig 0.67 1.00 0 0

Signature matrix M

1212

5

7

6

3

1

2

4

1412

4

5

1

6

7

3

2

2121

0101

0101

1010

1010

1010

1001

0101

Input matrix (Shingles x Documents)

3

4

7

2

6

1

5

Permutation 

Similarity of Signatures

• What is the expected value of Jaccard similarity of two
signatures sig1 and sig2? Assume there are s min-hash values
in each signature.

𝐸 𝑠𝑖𝑚 𝑠𝑖𝑔1, 𝑠𝑖𝑔2 = 𝐸
𝑜𝑓 π 𝑠. 𝑡. ℎπ 𝐶1 = ℎπ 𝐶2

𝑠

=
1

𝑠
 =1
𝑠 Pr[ℎ𝜋 C1 = h𝜋(𝐶2)]

= 𝑠𝑖𝑚(𝐶1, 𝐶2)

• Law of large numbers: Average of the results obtained from a large
number of trials should be close to the expected value, and will tend to
become closer as more trials are performed.

Min-Hash Signatures

• Pick K=100 random permutations of the rows

• Think of sig(C) as a column vector

• sig(C)[i] = according to the i-th permutation, the
index of the first row that has a 1 in column C

sig(C)[i] = min (i(C))

• Note: The sketch (signature) of document C is
small ~𝟒𝟎𝟎 bytes!

• We achieved our goal! We “compressed”
long bit vectors into short signatures

Implementation Trick

• Permuting rows even once is prohibitive

• Row hashing!

– Pick K = 100 hash functions ki

– Ordering under ki gives a random row (almost) permutation!

How to pick a random

hash function h(x)?

Universal hashing:

ha,b(x)=((a·x+b) mod p) mod N

where:

a,b … random integers

p … prime number (p > N)

D1 D2 D3 D4
Row

0

1

2

3

4

1

0

0

1

0

0

0

1

0

0

0

1

0

1

1

1

0

1

1

0

(r+1) % 5

Hash func. 1

(3r+1) % 5

Hash func. 2

1

2

3

4

0

1

4

2

0

3

Implementation Trick

• One-pass implementation

– For each column C and hash-func. ki keep a “slot”
for the min-hash value

– Initialize all sig(C)[i] = 

– Scan rows looking for 1s

• Suppose row j has 1 in column C

• Then for each ki :

– If ki(j) < sig(C)[i], then sig(C)[i]  ki(j)

Example: Computing Min-Hash
Signatures

D1 D2 D3 D4
Row

0

1

2

3

4

1

0

0

1

0

0

0

1

0

0

0

1

0

1

1

1

0

1

1

0

(r+1) % 5

Hash func. 1

(3r+1) % 5

Hash func. 2

D1 D2 D3 D4

∞

∞

∞

∞

∞

∞

∞

∞

1

2

3

4

0

1

4

2

0

3

Signatures

Example: Computing Min-Hash
Signatures

D1 D2 D3 D4
Row

0

1

2

3

4

1

0

0

1

0

0

0

1

0

0

0

1

0

1

1

1

0

1

1

0

(r+1) % 5

Hash func. 1

(3r+1) % 5

Hash func. 2

D1 D2 D3 D4

∞

∞

∞

∞

∞

∞

∞

∞

1

2

3

4

0

1

4

2

0

3
1

1

1

1

Signatures

Example: Computing Min-Hash
Signatures

D1 D2 D3 D4
Row

0

1

2

3

4

1

0

0

1

0

0

0

1

0

0

0

1

0

1

1

1

0

1

1

0

(r+1) % 5

Hash func. 1

(3r+1) % 5

Hash func. 2

D1 D2 D3 D4

1

1

∞

∞

∞

∞

1

1

1

2

3

4

0

1

4

2

0

3
2

4

Signatures

Example: Computing Min-Hash
Signatures

D1 D2 D3 D4
Row

0

1

2

3

4

1

0

0

1

0

0

0

1

0

0

0

1

0

1

1

1

0

1

1

0

(r+1) % 5

Hash func. 1

(3r+1) % 5

Hash func. 2

D1 D2 D3 D4

1

1

∞

∞

2

4

1

1

1

2

3

4

0

1

4

2

0

3
3

2

Signatures

Example: Computing Min-Hash
Signatures

D1 D2 D3 D4
Row

0

1

2

3

4

1

0

0

1

0

0

0

1

0

0

0

1

0

1

1

1

0

1

1

0

(r+1) % 5

Hash func. 1

(3r+1) % 5

Hash func. 2

D1 D2 D3 D4

1

1

3

2

2

4

1

1

1

2

3

4

0

1

4

2

0

3

0 0 0

Signatures

Example: Computing Min-Hash
Signatures

D1 D2 D3 D4
Row

0

1

2

3

4

1

0

0

1

0

0

0

1

0

0

0

1

0

1

1

1

0

1

1

0

(r+1) % 5

Hash func. 1

(3r+1) % 5

Hash func. 2

D1 D2 D3 D4

1

0

3

2

2

0

1

0

1

2

3

4

0

1

4

2

0

3
0

Signatures

Example: Computing Min-Hash
Signatures

D1 D2 D3 D4
Row

0

1

2

3

4

1

0

0

1

0

0

0

1

0

0

0

1

0

1

1

1

0

1

1

0

(r+1) % 5

Hash func. 1

(3r+1) % 5

Hash func. 2

D1 D2 D3 D4

1

0

3

2

0

0

1

0

1

2

3

4

0

1

4

2

0

3

Final signatures

Locality Sensitive Hashing

Step 3: Locality-Sensitive Hashing:
Focus on pairs of signatures likely to be from

similar documents

Docu-

ment

The set

of strings

of length k

that appear

in the doc-

ument

Signatures:

short integer

vectors that

represent the

sets, and

reflect their

similarity

Locality-

Sensitive

Hashing

Candidate

pairs:

those pairs

of signatures

that we need

to test for

similarity

LSH: First Cut

• Goal: Find documents with Jaccard similarity at
least s (for some similarity threshold, e.g., s=0.8)

• LSH – General idea: Use a function f(x,y) that
tells whether x and y is a candidate pair: a pair
of elements whose similarity must be evaluated

• For Min-Hash matrices:
– Hash columns of signature matrix M to many buckets

– Each pair of documents that hashes into the
same bucket is a candidate pair

1212

1412

2121

LSH for Min-Hash

• Big idea: Hash columns of
signature matrix M several times

• Arrange that (only) similar columns are
likely to hash to the same bucket, with
high probability

• Candidate pairs are those that hash to
the same bucket

1212

1412

2121

Partition M into b Bands

Signature matrix M

r rows

per band

b bands

One

signature

1212

1412

2121

Partition M into Bands

• Divide matrix M into b bands of r rows

• For each band, hash its portion of each
column to a hash table with k buckets
– Make k as large as possible

• Candidate column pairs are those that hash
to the same bucket for ≥ 1 band

• Tune b and r to catch most similar pairs,
but few non-similar pairs

Matrix M

r rows b bands

Buckets
Columns 2 and 6

are probably identical

(candidate pair)

Columns 6 and 7 are

surely different.

Hashing Bands

Banding Example

1

3

0

0

2

1

0

1

3

0

2

1

2

2

1

4

3

0

2

2

5

4

3

5

BucketsSignature Matrix

Candidate pairs: {(2,4);

2

4

3

2

3

1

1

4

2

2

3

1

5

5

0

2

4

3

5

4

0

5

3

0

2

5

1

1

3

2

0

2

5

1

1

2

0

2

0

2

0

1

1

2

0

0

2

5

Banding Example

1

3

0

0

2

1

0

1

3

0

2

1

2

2

1

4

3

0

2

2

5

4

3

5

BucketsSignature Matrix

Candidate pairs: {(2,4);

2

4

3

2

3

1

1

4

2

2

3

1

5

5

0

2

4

3

5

4

0

5

3

0

2

5

1

1

3

2

0

2

5

1

1

2

0

2

0

2

0

1

1

2

0

0

2

5

Banding Example

1

3

0

0

2

1

0

1

3

0

2

1

2

2

1

4

3

0

2

2

5

4

3

5

BucketsSignature Matrix

Candidate pairs: {(2,4);

2

4

3

2

3

1

1

4

2

2

3

1

5

5

0

2

4

3

5

4

0

5

3

0

(1,6)

2

5

1

1

3

2

0

2

5

1

1

2

0

2

0

2

0

1

1

2

0

0

2

5

Banding Example

1

3

0

0

2

1

0

1

3

0

2

1

2

2

1

4

3

0

2

2

5

4

3

5

BucketsSignature Matrix

Candidate pairs: {(2,4);

2

4

3

2

3

1

1

4

2

2

3

1

5

5

0

2

4

3

5

4

0

5

3

0

2

5

1

1

3

2

0

2

5

1

1

2

0

2

0

2

0

1

1

2

0

0

2

5

(1,6) (3,8)}

Banding Example

1

3

0

0

2

1

0

1

3

0

2

1

2

2

1

4

3

0

2

2

5

4

3

5

BucketsSignature Matrix

Candidate pairs: {(2,4); (1,6); (3,8)}

2

4

3

2

3

1

1

4

2

2

3

1

5

5

0

2

4

3

5

4

0

5

3

0

2

5

1

1

3

2

0

2

5

1

1

2

0

2

0

2

0

1

1

2

0

0

2

5

True positive

Banding Example

1

3

0

0

2

1

0

1

3

0

2

1

2

2

1

4

3

0

2

2

5

4

3

5

BucketsSignature Matrix

Candidate pairs: {(2,4); (1,6); (3,8)}

2

4

3

2

3

1

1

4

2

2

3

1

5

5

0

2

4

3

5

4

0

5

3

0

2

5

1

1

3

2

0

2

5

1

1

2

0

2

0

2

0

1

1

2

0

0

2

5

True positive

Banding Example

1

3

0

0

2

1

0

1

3

0

2

1

2

2

1

4

3

0

2

2

5

4

3

5

BucketsSignature Matrix

Candidate pairs: {(2,4); (1,6); (3,8)}

2

4

3

2

3

1

1

4

2

2

3

1

5

5

0

2

4

3

5

4

0

5

3

0

2

5

1

1

3

2

0

2

5

1

1

2

0

2

0

2

0

1

1

2

0

0

2

5

False positive?

Banding Example

1

3

0

0

2

1

0

1

3

0

2

1

2

2

1

4

3

0

2

2

5

4

3

5

BucketsSignature Matrix

Candidate pairs: {(2,4); (1,6); (3,8)}

2

4

3

2

3

1

1

4

2

2

3

1

5

5

0

2

4

3

5

4

0

5

3

0

2

5

1

1

3

2

0

2

5

1

1

2

0

2

0

2

0

1

1

2

0

0

2

5

False negative?

Simplifying Assumption

• There are enough buckets that columns are
unlikely to hash to the same bucket unless
they are identical in a particular band

• Hereafter, we assume that “same bucket”
means “identical in that band”

• Assumption needed only to simplify analysis,
not for correctness of algorithm

Example of Bands

Assume the following case:

• Suppose 100,000 columns of M (100k docs)

• Signatures of 100 integers (rows)

• Therefore, signatures take 40Mb

• Choose b = 20 bands of r = 5 integers/band

• Goal: Find pairs of documents that
are at least s = 0.8 similar

1212

1412

2121

C1, C2 are 80% Similar

• Find pairs of  s=0.8 similarity, set b=20, r=5

• Assume: sim(C1, C2) = 0.8

– Since sim(C1, C2)  s, we want C1, C2 to be a candidate pair: We want them
to hash to at least 1 common bucket (at least one band is identical)

• Probability C1, C2 identical in one particular band:

(0.8)5 = 0.328

• Probability C1, C2 are different in all of the 20 bands:

(1-0.328)20 = 0.00035
– i.e., about 1/3000th of the 80%-similar column pairs

are false negatives (we miss them)

– We would find 99.965% pairs of truly similar documents

1212

1412

2121

C1, C2 are 30% Similar

• Find pairs of  s=0.8 similarity, set b=20, r=5

• Assume: sim(C1, C2) = 0.3
– Since sim(C1, C2) < s we want C1, C2 to hash to NO

common buckets (all bands should be different)

• Probability C1, C2 identical in one particular band:

(0.3)5 = 0.00243

• Probability C1, C2 identical in at least 1 of 20 bands:

1 - (1 - 0.00243)20 = 0.0474
– In other words, approximately 4.74% pairs of docs with

similarity 0.3% end up becoming candidate pairs
• They are false positives since we will have to examine them (they

are candidate pairs) but then it will turn out their similarity is
below threshold s

1212

1412

2121

LSH Summary

• Tune M, b, r to get almost all pairs with
similar signatures, but eliminate most pairs
that do not have similar signatures

• Check in main memory that candidate pairs
really do have similar signatures

• Optional: In another pass through data,
check that the remaining candidate pairs
really represent similar documents

Summary: 3 Steps

• Shingling: Convert documents to sets

– We used hashing to assign each shingle an ID

• Min-Hashing: Convert large sets to short
signatures, while preserving similarity

– We used similarity preserving hashing to generate
signatures with property Pr[h(C1) = h(C2)] = sim(C1, C2)

– We used hashing to get around generating random
permutations

• Locality-Sensitive Hashing: Focus on pairs of
signatures likely to be from similar documents

– We used hashing to find candidate pairs of similarity  s

Distance Metrics

Distance Measure

• A distance measure d(x,y) must have the following properties:

1. d(x,y) ≥ 0

2. d(x,y) = 0 iff x = y

3. d(x,y) = d(y,x)

4. d(x,y) ≤ d(x,z) + d(z,y)

Euclidean Distance

• Consider two items x and y with n numeric
attributes

• Euclidean distance in n-dimensions:

𝑑 𝑥1, 𝑥2, … , 𝑥𝑛 , 𝑦1, 𝑦2, … , 𝑦𝑛 =

 𝑖=1
𝑛 𝑥𝑖 − 𝑦𝑖

2

• Useful when you want to penalize larger
differences more than smaller ones

Lr- Norm

• Definition of Lr-norm:

𝑑 𝑥1, 𝑥2, … , 𝑥𝑛 , 𝑦1, 𝑦2, … , 𝑦𝑛 =

𝑖=1

𝑛

𝑥𝑖 − 𝑦𝑖
𝑟

1/𝑟

• Special cases:
– L1-norm: Manhattan distance

• Useful when you want to penalize differences in a linear way (e.g.
a difference of 10 for one attribute is equivalent to difference of 1
for 10 attributes)

– L2-norm: Euclidean distance
– L∞-norm: Maximum distance among all attributes

• Useful when you want to penalize the largest difference in an
attribute

Jaccard Distance

• Given two sets x and y:

𝑑 𝑥, 𝑦 = 1 −
|𝑥∩𝑦|

|𝑥∪𝑦|

• Useful for set representations

– i.e. An element either exists or does not exist

• What if the attributes are weighted?

– e.g. Term frequency in a document

Cosine Distance

• Consider x and y represented as vectors in an n-
dimensional space

cos 𝜃 =
𝑥.𝑦

𝑥 .| 𝑦 |

• The cosine distance is defined as the θ value
– Or, cosine similarity is defined as cos(θ)

• Only direction of vectors considered, not the
magnitudes

• Useful when we are dealing with vector spaces

θ

x
y

Cosine Distance: Example

cos 𝜃 =
𝑥. 𝑦

𝑥 . | 𝑦 |

=
0.2 + 0.2 − 0.1

0.01 + 0.04 + 0.01 . 4 + 1 + 1

=
0.3

0.36
= 0.5  θ = 600

Note: The distance is independent of vector magnitudes

θ
x = [0.1, 0.2, -0.1]

y = [2.0, 1.0, 1.0]

Edit Distance

• What happens if you search for “Blkent” in Google?
– “Showing results for Bilkent.”

• Edit distance between x and y: Smallest number of
insertions, deletions, or mutations needed to go from x to
y.

• What is the edit distance between “BILKENT” and
“BLANKET”?

B I L K E N T B I L K E N T
B L A N K E T B L A N K E T

dist(BILKENT, BLANKET) = 4
• Efficient dynamic-programming algorithms exist to compute edit distance (CS473)

Distance Metrics Summary

• Important to choose the right distance metric for your
application
– Set representation?
– Vector space?
– Strings?

• Distance metric chosen also affects complexity of
algorithms
– Sometimes more efficient to optimize L1 norm than L2 norm.
– Computing edit distance for long sequences may be expensive

• Many other distance metrics exist.

Applications of LSH

Entity Resolution

Entity Resolution

• Many records exist for the same person with
slight variations

– Name: “Robert W. Carson” vs. “Bob Carson Jr.”

– Date of birth: “Jan 15, 1957” vs. “1957” vs none

– Address: Old vs. new, incomplete, typo, etc.

– Phone number: Cell vs. home vs. work, with or
without country code, area code

• Objective: Match the same people in different
databases

Locality Sensitive Hashing (LSH)

• Simple implementation of LSH:

– Hash each field separately

– If two people hash to the same bucket for any
field, add them as a candidate pair

y.name

x.name

y.address

x.address

y.phone

x.phone

Candidate Pair Evaluation

• Define a scoring metric and evaluate candidate pairs
• Example:

– Assign a score of 100 for each field. Perfect match gets
100, no match gets 0.

– Which distance metric for names?
• Edit distance, but with quadratic penalty

– How to evaluate phone numbers?
• Only exact matches allowed, but need to take care of missing area

codes.

– Pick a score threshold empirically and accept the ones
above that

• Depends on the application and importance of false positives vs.
negatives

• Typically need cross validation

Fingerprint Matching

Fingerprint Matching

• Many-to-many matching: Find out all pairs with the same
fingerprints
– Example: You want to find out if the same person appeared in

multiple crime scenes

• One-to-many matching: Find out whose fingerprint is on
the gun
– Too expensive to compare even one fingerprint with the whole

database
– Need to use LSH even for one-to-many problem

• Preprocessing:
– Different sizes, different orientations, different lighting, etc.
– Need some normalization in preprocessing (not our focus here)

Fingerprint Features

• Minutia: Major features of a fingerprint

Ridge ending Bifurcation Short ridge

…

Image Source: Wikimedia Commons

Fingerprint Grid Representation

• Overlay a grid and identify points with minutia

X

X

X

X

X

X

X

X

Special Hash Function

• Choose 3 grid points

• If a fingerprint has minutia in

all 3 points, add it to the bucket

• Otherwise, ignore the fingerprint.

Locality Sensitive Hashing

• Define 1024 hash functions

– i.e. Each hash function is defined as 3 grid points

• Add fingerprints to the buckets hash functions

• If multiple fingerprints are in the same
bucket, add them as a candidate pair.

Example

• Assume:
– Probability of finding a minutia at a random grid point = 20%

– If two fingerprints belong to the same finger:

• Probability of finding a minutia at the same grid point = 80%

• For two different fingerprints:
– Probability that they have minutia at point (x, y)?

0.2 * 0.2 = 0.04

– Probability that they hash to the same bucket for a given hash function?

0.043 = 0.000064

• For two fingerprints from the same finger:
– Probability that they have minutia at point (x, y)?

0.2 * 0.8 = 0.16

– Probability that they hash to the same bucket for a given hash function?

0.163 = 0.004096

Example (cont’d)

• For two different fingerprints and 1024 hash functions:
– Probability that they hash to the same bucket at least once?

1 – (1-0.043)1024 = 0.063

• For two fingerprints from the same finger and 1024 hash functions:
– Probability that they hash to the same bucket at least once?

1 – (1-0.163)1024 = 0.985

• False positive rate?

6.3%

• False negative rate?

1.5%

Example (cont’d)

• How to reduce the false positive rate?

• Try: Increase the number grid points from 3 to 6

• For two different fingerprints and 1024 hash functions:
– Probability that they hash to the same bucket at least once?

1 – (1-0.046)1024 = 0.0000042

• For two fingerprints from the same finger and 1024 hash functions:
– Probability that they hash to the same bucket at least once?

1 – (1-0.166)1024 = 0.017

• False negative rate increased to 98.3%!

Example (cont’d)

• Second try: Add another AND function to the original setting

1. Define 2048 hash functions
Each hash function is based on 3 grid points as before

2. Define two groups each with 1024 hash functions

3. For each group, apply LSH as before
Find fingerprints that share a bucket for at least one hash function

4. If two fingerprints share at least one bucket in
both groups, add them as a candidate pair

Example (cont’d)

• Reminder:
– Probability that two fingerprints hash to the same bucket at least once for 1024 hash functions:

• If two different fingerprints: 1 – (1-0.043)1024 = 0.063

• If from the same finger: 1 – (1-0.163)1024 = 0.985

• With the AND function at the end:
– Probability that two fingerprints are chosen as candidate pair:

• If two different fingerprints:

0.063 x 0.063 = 0.004

• If from the same finger:

0.985 x 0.985 = 0.97

• Reduced false positives to 0.4%, but increased false negatives to 3%

• What if we add another OR function at the end?

