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10 nearest neighbors from a collection of 2 million 

images

Scene Completion Problem 
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A Common Metaphor

• Many problems can be expressed as 
finding “similar” sets:
– Find near-neighbors in high-dimensional space

• Examples:
– Pages with similar words

• For duplicate detection, classification by topic

– Customers who purchased similar products
• Products with similar customer sets

– Images with similar features



Problem for Today’s Lecture

• Given: High dimensional data points 𝒙𝟏, 𝒙𝟐, …
– For example: Image is a long vector of pixel colors

1 2 1
0 2 1
0 1 0

→ [1 2 1 0 2 1 0 1 0]

• And some distance function 𝒅(𝒙𝟏, 𝒙𝟐)
– Which quantifies the “distance” between 𝒙𝟏 and 𝒙𝟐

• Goal: Find all pairs of data points (𝒙𝒊, 𝒙𝒋) that are 
within some distance threshold 𝒅 𝒙𝒊, 𝒙𝒋 ≤ 𝒔

• Note: Naïve solution would take 𝑶 𝑵𝟐 
where 𝑵 is the number of data points

• MAGIC: This can be done in 𝑶 𝑵 !! How?



Finding Similar Items



Distance Measures

 Goal: Find near-neighbors in high-dim. space
– We formally define “near neighbors” as 

points that are a “small distance” apart

• For each application, we first need to define what 
“distance” means

• Today: Jaccard distance/similarity
– The Jaccard similarity of two sets is the size of their 

intersection divided by the size of their union:
sim(C1, C2) = |C1C2|/|C1C2|

– Jaccard distance: d(C1, C2) = 1 - |C1C2|/|C1C2|
3 in intersection

8 in union

Jaccard similarity= 3/8

Jaccard distance = 5/8



Task: Finding Similar Documents

• Goal: Given a large number (𝑵 in the millions or 
billions) of documents, find “near duplicate” pairs

• Applications:
– Mirror websites, or approximate mirrors

• Don’t want to show both in search results

– Similar news articles at many news sites
• Cluster articles by “same story”

• Problems:
– Many small pieces of one document can appear 

out of order in another

– Too many documents to compare all pairs

– Documents are so large or so many that they cannot 
fit in main memory



3 Essential Steps for Similar Docs

1. Shingling: Convert documents to sets

2. Min-Hashing: Convert large sets to short 
signatures, while preserving similarity

3. Locality-Sensitive Hashing: Focus on 
pairs of signatures likely to be from 
similar documents

– Candidate pairs!



The Big Picture
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Shingling

Step 1: Shingling: Convert documents to sets

Docu-

ment

The set

of strings

of length k

that appear

in the doc-

ument



Define: Shingles

• A k-shingle (or k-gram) for a document is a 
sequence of k tokens that appears in the doc

– Tokens can be characters, words or something 
else, depending on the application

– Assume tokens = characters for examples

• Example: k=2; document D1 = abcab

Set of 2-shingles: S(D1) = {ab, bc, ca}

– Option: Shingles as a bag (multiset), count ab

twice: S’(D1) = {ab, bc, ca, ab}



Examples

• Input text:

“The most effective way to represent documents as 
sets is to construct from the document the set of 
short strings that appear within it.”

• 5-shingles:
“The m”, “he mo”, “e mos”, “ most”, “ ost ”, “ost e”, “st ef”, “t eff”,
“ effe”, “effec”, “ffect”, “fecti”, “ectiv”, …

• 9-shingles:
“The most ”, “he most e”, “e most ef”, “ most eff”, “most effe”, 

“ost effec”, “st effect”, “t effecti”, “ effectiv”, “effective”, …



Hashing Shingles

• Storage of k-shingles: k bytes per shingle

• Instead, hash each shingle to a 4-byte integer.
– E.g. “The most ”  4320

“he most e”   56456

“e most ef”   214509

• Which one is better?

1. Using 4 shingles?

2. Using 9-shingles, and then hashing each to 4 byte 
integer?

• Consider the # of distinct elements represented with 4 bytes



Hashing Shingles

• Not all characters are common.
– e.g. Unlikely to have shingles like “zy%p”

• Rule of thumb: # of k-shingles is about 20k

• Using 4-shingles:
– # of shingles: 204 = 160K

• Using 9-shingles and then hashing to 4-byte values:
– # of shingles: 209 = 512B

– # of buckets: 232 = 4.3B

– 512B shingles (uniformly) distributed to 4.3B buckets



Similarity Metric for Shingles

• Document D1 is a set of its k-shingles C1=S(D1)

• Equivalently, each document is a 
0/1 vector in the space of k-shingles

– Each unique shingle is a dimension

– Vectors are very sparse

• A natural similarity measure is the 
Jaccard similarity:

sim(D1, D2) = |C1C2|/|C1C2|



Working Assumption

• Documents that have lots of shingles in 
common have similar text, even if the text 
appears in different order

• Caveat: You must pick k large enough, or most 
documents will have most shingles

– k = 5 is OK for short documents

– k = 10 is better for long documents



Motivation for Minhash/LSH

• Suppose we need to find near-duplicate 
documents among 𝑵 = 𝟏million documents

• Naïvely, we would have to compute pairwise 
Jaccard similarities for every pair of docs

– 𝑵(𝑵 − 𝟏)/𝟐 ≈ 5*1011 comparisons

– At 105 secs/day and 106 comparisons/sec, 
it would take 5 days

• For 𝑵 = 𝟏𝟎million, it takes more than a year…



MinHashing

Step 2: Minhashing: Convert large sets to 
short signatures, while preserving similarity

Docu-

ment

The set

of strings

of length k

that appear

in the doc-

ument

Signatures:

short integer

vectors that

represent the

sets, and

reflect their

similarity



Encoding Sets as Bit Vectors

• Many similarity problems can be 
formalized as finding subsets that 
have significant intersection

• Encode sets using 0/1 (bit, boolean) vectors 
– One dimension per element in the universal set

• Interpret set intersection as bitwise AND, and 
set union as bitwise OR

• Example: C1 = 10111; C2 = 10011
– Size of intersection = 3; size of union = 4, 

– Jaccard similarity (not distance) = 3/4

– Distance: d(C1,C2) = 1 – (Jaccard similarity) = 1/4



From Sets to Boolean Matrices

• Rows = elements (shingles)

• Columns = sets (documents)
– 1 in row e and column s if and 

only if e is a member of s

– Column similarity is the Jaccard
similarity of the corresponding 
sets (rows with value 1)

– Typical matrix is sparse!

• Each document is a column:
– Example: sim(C1 ,C2) = ?

• Size of intersection = 3; size of union = 6, 
Jaccard similarity (not distance) = 3/6

• d(C1,C2) = 1 – (Jaccard similarity) = 3/6

0101

0111

1001

1000

1010

1011

0111 

Documents

S
h
in

g
le

s



Outline: Finding Similar Columns

• So far:

– Documents  Sets of shingles

– Represent sets as boolean vectors in a matrix

• Next goal: Find similar columns while 
computing small signatures

– Similarity of columns == similarity of signatures



Hashing Columns (Signatures)

• Key idea: “hash” each column C to a small 
signature h(C), such that:

– (1) h(C) is small enough that the signature fits in RAM

– (2) sim(C1, C2) is the same as the “similarity” of 
signatures h(C1) and h(C2)

• Goal: Find a hash function h(·) such that:

– If sim(C1,C2) is high, then with high prob. h(C1) = h(C2)

– If sim(C1,C2) is low, then with high prob. h(C1) ≠ h(C2)

• Hash docs into buckets. Expect that “most” pairs 
of near duplicate docs hash into the same bucket!



Min-Hashing

• Goal: Find a hash function h(·) such that:

– if sim(C1,C2) is high, then with high prob. h(C1) = h(C2)

– if sim(C1,C2) is low, then with high prob. h(C1) ≠ h(C2)

• Clearly, the hash function depends on 
the similarity metric:

– Not all similarity metrics have a suitable 
hash function

• There is a suitable hash function for 
the Jaccard similarity: It is called Min-Hashing



Min-Hashing

• Imagine the rows of the boolean matrix 
permuted under random permutation 

• Define a “hash” function h(C) = the index of 
the first (in the permuted order ) row in 
which column C has value 1:

h (C) = min (C)

• Use several (e.g., 100) independent hash 
functions (that is, permutations) to create a 
signature of a column



Min-Hashing Example

0001

0101

1010

0010

1010

1001

0101 

Input Matrix

Documents

S
h

in
g

le
s

0101

1010

1001

0101

0001

1010

0010

Permuted Matrix

Documents

2413

Min-hash values



Min-Hashing Example

3

4

7

2

6

1

5

Signature matrix M

1212

5

7

6

3

1

2

4

1412

4

5

1

6

7

3

2

2121

2nd element of the permutation 

is the first to map to a 1

4th element of the permutation 

is the first to map to a 1

0101

0101

1010

1010

1010

1001

0101 

Input matrix (Shingles x Documents) Permutation 



The Min-Hash Property

• Choose a random permutation 

• Claim: Pr[h(Ci) = h(Cj)] = sim(Ci, Cj)

• Proof:

– Consider 3 types of rows:
type X: Ci and Cj both have 1s

type Y: only one of Ci and Cj has 1

type Z: Ci and Cj both have 0s

– After random permutation , what 
if the first X-type row is before the 
first Y-type row? 

h(Ci) = h(Cj)

01

11

00

00

00

01

11 

Input Matrix

Ci Cj

X

Y

Z

Z

Z

Y

X



The Min-Hash Property

• What is the probability that the first not-Z row is of type X?

|𝑋|

𝑋 +|𝑌|

 Pr[h(Ci) = h(Cj)] = 
|𝑿|

𝑿 +|𝒀|

• sim(Ci, Cj) = 
|𝑪
𝒊
∩𝑪
𝐣
|

|𝑪
𝒊
∪𝑪
𝐣
|

= 
|𝑿|

𝑿 +|𝒀|
= Pr[h(Ci) = h(Cj)] 

• Conclusion: Pr[h(Ci) = h(Cj)] = sim(Ci, Cj)



Similarity for Signatures

• We know: Pr[h(C1) = h(C2)] = sim(C1, C2)

• Now generalize to multiple hash functions

• The similarity of two signatures is the 
fraction of the hash functions in which they 
agree

• Note: Because of the Min-Hash property, the 
similarity of columns is the same as the 
expected similarity of their signatures



Min-Hashing Example

Similarities:

1-3      2-4    1-2   3-4

Col/Col 0.75    0.75    0       0

Sig/Sig 0.67    1.00    0       0

Signature matrix M

1212

5

7

6

3

1

2

4

1412

4

5

1

6

7

3

2

2121

0101

0101

1010

1010

1010

1001

0101 

Input matrix (Shingles x Documents) 
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4
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2

6

1

5

Permutation 



Similarity of Signatures

• What is the expected value of Jaccard similarity of two 
signatures sig1 and sig2? Assume there are s min-hash values 
in each signature.

𝐸 𝑠𝑖𝑚 𝑠𝑖𝑔1, 𝑠𝑖𝑔2 = 𝐸
# 𝑜𝑓 π 𝑠. 𝑡. ℎπ 𝐶1 = ℎπ 𝐶2

𝑠

=
1

𝑠
 =1
𝑠 Pr[ℎ𝜋 C1 = h𝜋(𝐶2)]

= 𝑠𝑖𝑚(𝐶1, 𝐶2)

• Law of large numbers: Average of the results obtained from a large 
number of trials should be close to the expected value, and will tend to 
become closer as more trials are performed.



Min-Hash Signatures

• Pick K=100 random permutations of the rows

• Think of sig(C) as a column vector

• sig(C)[i] = according to the i-th permutation, the 
index of the first row that has a 1 in column C

sig(C)[i] = min (i(C))

• Note: The sketch (signature) of document C is 
small  ~𝟒𝟎𝟎 bytes!

• We achieved our goal! We “compressed” 
long bit vectors into short signatures



Implementation Trick

• Permuting rows even once is prohibitive

• Row hashing!

– Pick K = 100 hash functions ki

– Ordering under ki gives a random row (almost) permutation!

How to pick a random

hash function h(x)?

Universal hashing:

ha,b(x)=((a·x+b) mod p) mod N

where:

a,b … random integers

p … prime number (p > N)

D1 D2 D3 D4
Row
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3
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0

1

4

2

0

3



Implementation Trick

• One-pass implementation

– For each column C and hash-func. ki keep a “slot” 
for the min-hash value

– Initialize all sig(C)[i] = 

– Scan rows looking for 1s

• Suppose row j has 1 in column C

• Then for each ki :

– If ki(j) < sig(C)[i], then sig(C)[i]  ki(j)



Example: Computing Min-Hash 
Signatures

D1 D2 D3 D4
Row

0

1

2

3

4

1

0

0

1

0

0

0

1

0

0

0

1

0

1

1

1

0

1

1

0

(r+1) % 5

Hash func. 1

(3r+1) % 5

Hash func. 2

D1 D2 D3 D4

∞

∞

∞

∞

∞

∞

∞

∞

1

2

3

4

0

1

4

2

0

3

Signatures



Example: Computing Min-Hash 
Signatures
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Example: Computing Min-Hash 
Signatures
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Example: Computing Min-Hash 
Signatures
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Example: Computing Min-Hash 
Signatures
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Example: Computing Min-Hash 
Signatures
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Example: Computing Min-Hash 
Signatures
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Locality Sensitive Hashing

Step 3: Locality-Sensitive Hashing:
Focus on pairs of signatures likely to be from 

similar documents
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LSH: First Cut

• Goal: Find documents with Jaccard similarity at 
least s (for some similarity threshold, e.g., s=0.8)

• LSH – General idea: Use a function f(x,y) that 
tells whether x and y is a candidate pair: a pair 
of elements whose similarity must be evaluated

• For Min-Hash matrices: 
– Hash columns of signature matrix M to many buckets

– Each pair of documents that hashes into the 
same bucket is a candidate pair

1212

1412

2121



LSH for Min-Hash

• Big idea: Hash columns of 
signature matrix M several times

• Arrange that (only) similar columns are 
likely to hash to the same bucket, with 
high probability

• Candidate pairs are those that hash to 
the same bucket

1212

1412

2121



Partition M into b Bands

Signature matrix  M

r rows

per band

b bands

One

signature

1212

1412

2121



Partition M into Bands

• Divide matrix M into b bands of r rows

• For each band, hash its portion of each 
column to a hash table with k buckets
– Make k as large as possible

• Candidate column pairs are those that hash 
to the same bucket for ≥ 1 band

• Tune b and r to catch most similar pairs, 
but few non-similar pairs



Matrix M

r rows b bands

Buckets
Columns 2 and 6

are probably identical 

(candidate pair)

Columns 6 and 7 are

surely different.

Hashing Bands



Banding Example
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Banding Example
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Banding Example
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Banding Example
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Banding Example

1

3

0

0

2

1

0

1

3

0

2

1

2

2

1

4

3

0

2

2

5

4

3

5

BucketsSignature Matrix

Candidate pairs: {(2,4); (1,6); (3,8)} 

2

4

3

2

3

1

1

4

2

2

3

1

5

5

0

2

4

3

5

4

0

5

3

0

2

5

1

1

3

2

0

2

5

1

1

2

0

2

0

2

0

1

1

2

0

0

2

5

True positive



Banding Example
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Simplifying Assumption

• There are enough buckets that columns are 
unlikely to hash to the same bucket unless 
they are identical in a particular band

• Hereafter, we assume that “same bucket” 
means “identical in that band”

• Assumption needed only to simplify analysis, 
not for correctness of algorithm



Example of Bands

Assume the following case:

• Suppose 100,000 columns of M (100k docs)

• Signatures of 100 integers (rows)

• Therefore, signatures take 40Mb

• Choose b = 20 bands of r = 5 integers/band

• Goal: Find pairs of documents that 
are at least s = 0.8 similar

1212

1412

2121



C1, C2 are 80% Similar

• Find pairs of  s=0.8 similarity, set b=20, r=5

• Assume: sim(C1, C2) = 0.8

– Since sim(C1, C2)  s, we want C1, C2 to be a candidate pair: We want them 
to hash to at least 1 common bucket (at least one band is identical)

• Probability C1, C2 identical in one particular band: 

(0.8)5 = 0.328

• Probability C1, C2 are different in all of the 20 bands: 

(1-0.328)20 = 0.00035 
– i.e., about 1/3000th of the 80%-similar column pairs 

are false negatives (we miss them)

– We would find 99.965% pairs of truly similar documents

1212
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C1, C2 are 30% Similar

• Find pairs of  s=0.8 similarity, set b=20, r=5

• Assume: sim(C1, C2) = 0.3
– Since sim(C1, C2) < s we want C1, C2 to hash to NO 

common buckets (all bands should be different)

• Probability C1, C2 identical in one particular band: 

(0.3)5 = 0.00243

• Probability C1, C2 identical in at least 1 of 20 bands: 

1 - (1 - 0.00243)20 = 0.0474
– In other words, approximately 4.74% pairs of docs with 

similarity 0.3% end up becoming candidate pairs
• They are false positives since we will have to examine them (they 

are candidate pairs) but then it will turn out their similarity is 
below threshold s

1212

1412

2121



LSH Summary

• Tune M, b, r to get almost all pairs with 
similar signatures, but eliminate most pairs 
that do not have similar signatures

• Check in main memory that candidate pairs
really do have similar signatures

• Optional: In another pass through data, 
check that the remaining candidate pairs 
really represent similar documents



Summary: 3 Steps

• Shingling: Convert documents to sets

– We used hashing to assign each shingle an ID

• Min-Hashing: Convert large sets to short 
signatures, while preserving similarity

– We used similarity preserving hashing to generate 
signatures with property Pr[h(C1) = h(C2)] = sim(C1, C2)

– We used hashing to get around generating random 
permutations

• Locality-Sensitive Hashing: Focus on pairs of 
signatures likely to be from similar documents

– We used hashing to find candidate pairs of similarity  s



Distance Metrics



Distance Measure

• A distance measure d(x,y) must have the following properties:

1. d(x,y) ≥ 0

2. d(x,y) = 0 iff x = y

3. d(x,y) = d(y,x)

4. d(x,y) ≤ d(x,z) + d(z,y) 



Euclidean Distance

• Consider two items x and y with n numeric 
attributes

• Euclidean distance in n-dimensions:

𝑑 𝑥1, 𝑥2, … , 𝑥𝑛 , 𝑦1, 𝑦2, … , 𝑦𝑛 =

 𝑖=1
𝑛 𝑥𝑖 − 𝑦𝑖

2

• Useful when you want to penalize larger 
differences more than smaller ones



Lr- Norm

• Definition of Lr-norm:

𝑑 𝑥1, 𝑥2, … , 𝑥𝑛 , 𝑦1, 𝑦2, … , 𝑦𝑛 =  

𝑖=1

𝑛

𝑥𝑖 − 𝑦𝑖
𝑟

1/𝑟

• Special cases:
– L1-norm: Manhattan distance

• Useful when you want to penalize differences in a linear way (e.g. 
a difference of 10 for one attribute is equivalent to difference of 1 
for 10 attributes)

– L2-norm: Euclidean distance
– L∞-norm: Maximum distance among all attributes

• Useful when you want to penalize the largest difference in an 
attribute



Jaccard Distance

• Given two sets x and y:

𝑑 𝑥, 𝑦 = 1 −
|𝑥∩𝑦|

|𝑥∪𝑦|

• Useful for set representations

– i.e. An element either exists or does not exist

• What if the attributes are weighted?

– e.g. Term frequency in a document 



Cosine Distance

• Consider x and y represented as vectors in an n-
dimensional space

cos 𝜃 =
𝑥.𝑦

𝑥 .| 𝑦 |

• The cosine distance is defined as the θ value
– Or, cosine similarity is defined as cos(θ)

• Only direction of vectors considered, not the 
magnitudes

• Useful when we are dealing with vector spaces

θ

x
y



Cosine Distance: Example

cos 𝜃 =
𝑥. 𝑦

𝑥 . | 𝑦 |

=
0.2 + 0.2 − 0.1

0.01 + 0.04 + 0.01 . 4 + 1 + 1

=
0.3

0.36
= 0.5  θ = 600

Note: The distance is independent of vector magnitudes

θ
x = [0.1, 0.2, -0.1]

y = [2.0, 1.0, 1.0]



Edit Distance

• What happens if you search for “Blkent” in Google?
– “Showing results for Bilkent.”

• Edit distance between x and y: Smallest number of 
insertions, deletions, or mutations needed to go from x to 
y.

• What is the edit distance between “BILKENT” and 
“BLANKET”?

B  I  L K E N T B  I L            K  E  N T
B  L A N K E     T B       L  A  N K  E       T

dist(BILKENT, BLANKET) = 4
• Efficient dynamic-programming algorithms exist to compute edit distance (CS473)



Distance Metrics Summary

• Important to choose the right distance metric for your 
application
– Set representation?
– Vector space?
– Strings?

• Distance metric chosen also affects complexity of 
algorithms
– Sometimes more efficient to optimize L1 norm than L2 norm.
– Computing edit distance for long sequences may be expensive

• Many other distance metrics exist. 



Applications of LSH



Entity Resolution



Entity Resolution

• Many records exist for the same person with 
slight variations

– Name: “Robert W. Carson” vs. “Bob Carson Jr.”

– Date of birth: “Jan 15, 1957” vs. “1957” vs none

– Address: Old vs. new, incomplete, typo, etc.

– Phone number: Cell vs. home vs. work, with or 
without country code, area code

• Objective: Match the same people in different 
databases



Locality Sensitive Hashing (LSH)

• Simple implementation of LSH:

– Hash each field separately

– If two people hash to the same bucket for any 
field, add them as a candidate pair

y.name

x.name

y.address

x.address

y.phone

x.phone



Candidate Pair Evaluation

• Define a scoring metric and evaluate candidate pairs
• Example: 

– Assign a score of 100 for each field. Perfect match gets 
100, no match gets 0.

– Which distance metric for names? 
• Edit distance, but with quadratic penalty

– How to evaluate phone numbers?
• Only exact matches allowed, but need to take care of missing area 

codes.

– Pick a score threshold empirically and accept the ones 
above that

• Depends on the application and importance of false positives vs. 
negatives

• Typically need cross validation



Fingerprint Matching



Fingerprint Matching

• Many-to-many matching: Find out all pairs with the same 
fingerprints
– Example: You want to find out if the same person appeared in 

multiple crime scenes

• One-to-many matching: Find out whose fingerprint is on 
the gun
– Too expensive to compare even one fingerprint with the whole 

database
– Need to use LSH even for one-to-many problem

• Preprocessing:
– Different sizes, different orientations, different lighting, etc.
– Need some normalization in preprocessing (not our focus here)



Fingerprint Features

• Minutia: Major features of a fingerprint

Ridge ending Bifurcation Short ridge

…

Image Source: Wikimedia Commons



Fingerprint Grid Representation

• Overlay a grid and identify points with minutia

X

X

X

X

X

X

X

X



Special Hash Function

• Choose 3 grid points

• If a fingerprint has minutia in 

all 3 points, add it to the bucket

• Otherwise, ignore the fingerprint.



Locality Sensitive Hashing

• Define 1024 hash functions

– i.e. Each hash function is defined as 3 grid points

• Add fingerprints to the buckets hash functions

• If multiple fingerprints are in the same 
bucket, add them as a candidate pair.



Example

• Assume: 
– Probability of finding a minutia at a random grid point = 20%

– If two fingerprints belong to the same finger: 

• Probability of finding a minutia at the same grid point = 80%

• For two different fingerprints:
– Probability that they have minutia at point (x, y)?

0.2 * 0.2 = 0.04

– Probability that they hash to the same bucket for a given hash function?

0.043 = 0.000064

• For two fingerprints from the same finger:
– Probability that they have minutia at point (x, y)?

0.2 * 0.8 = 0.16

– Probability that they hash to the same bucket for a given hash function?

0.163 = 0.004096



Example (cont’d)

• For two different fingerprints and 1024 hash functions:
– Probability that they hash to the same bucket at least once?

1 – (1-0.043)1024 = 0.063

• For two fingerprints from the same finger and 1024 hash functions:
– Probability that they hash to the same bucket at least once?

1 – (1-0.163)1024 = 0.985

• False positive rate?

6.3%

• False negative rate?

1.5%



Example (cont’d)

• How to reduce the false positive rate?

• Try: Increase the number grid points from 3 to 6

• For two different fingerprints and 1024 hash functions:
– Probability that they hash to the same bucket at least once?

1 – (1-0.046)1024 = 0.0000042

• For two fingerprints from the same finger and 1024 hash functions:
– Probability that they hash to the same bucket at least once?

1 – (1-0.166)1024 = 0.017

• False negative rate increased to 98.3%!



Example (cont’d)

• Second try: Add another AND function to the original setting

1. Define 2048 hash functions 
Each hash function is based on 3 grid points as before

2. Define two groups each with 1024 hash functions

3. For each group, apply LSH as before
Find fingerprints that share a bucket for at least one hash function

4. If two fingerprints share at least one bucket in 
both groups, add them as a candidate pair



Example (cont’d)

• Reminder:
– Probability that two fingerprints hash to the same bucket at least once for 1024 hash functions:

• If  two different fingerprints: 1 – (1-0.043)1024 = 0.063

• If from the same finger: 1 – (1-0.163)1024 = 0.985

• With the AND function at the end:
– Probability that two fingerprints are chosen as candidate pair:

• If two different fingerprints: 

0.063 x 0.063 = 0.004

• If from the same finger: 

0.985 x 0.985 = 0.97

• Reduced false positives to 0.4%, but increased false negatives to 3%

• What if we add another OR function at the end?


