BBS654 Data Mining

Pinar Duygulu

Slides are adapted from

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Note to other teachers and users of these slides: We would be delighted if you found this our material useful in giving your own lectures. Feel free to use these slides verbatim, or to modify them to fit your own needs. If you make use of a significant portion of these slides in your own lecture, please include this message, or a link to our web site: http://www.mmds.org

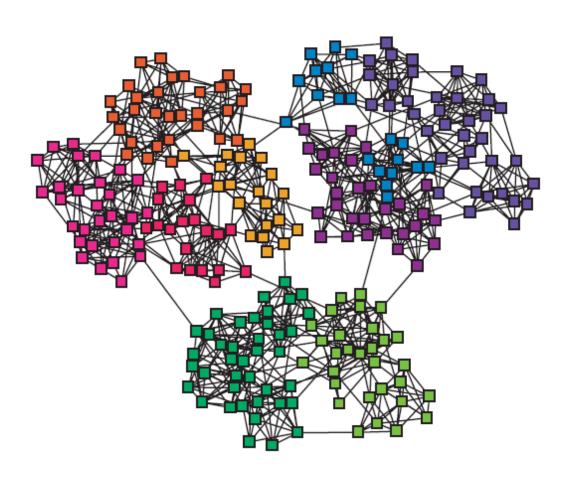
Analysis of Large Graphs: Community Detection

Mining of Massive Datasets Jure Leskovec, Anand Rajaraman, Jeff Ullman Stanford University

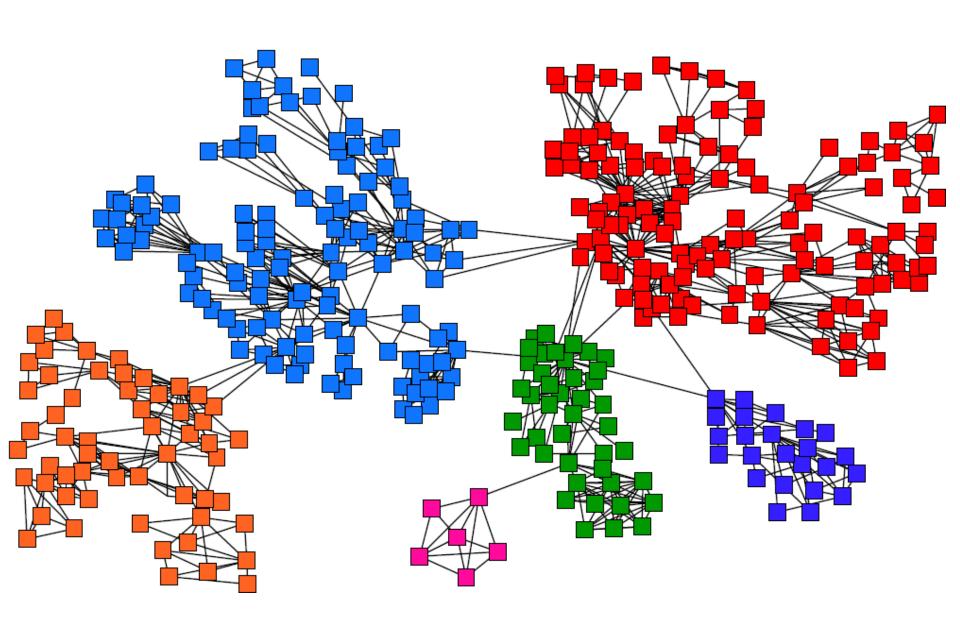
http://www.mmds.org

Networks & Communities

 We often think of networks being organized into modules, cluster, communities:

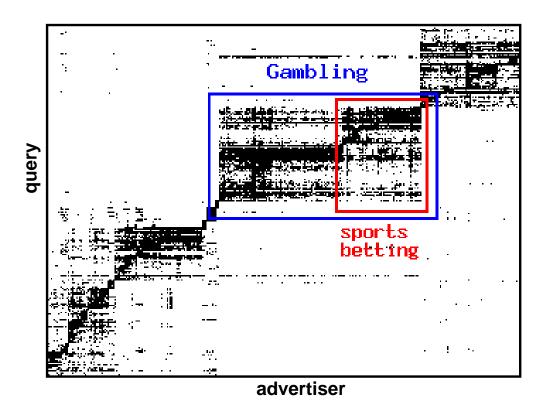


Goal: Find Densely Linked Clusters



Micro-Markets in Sponsored Search

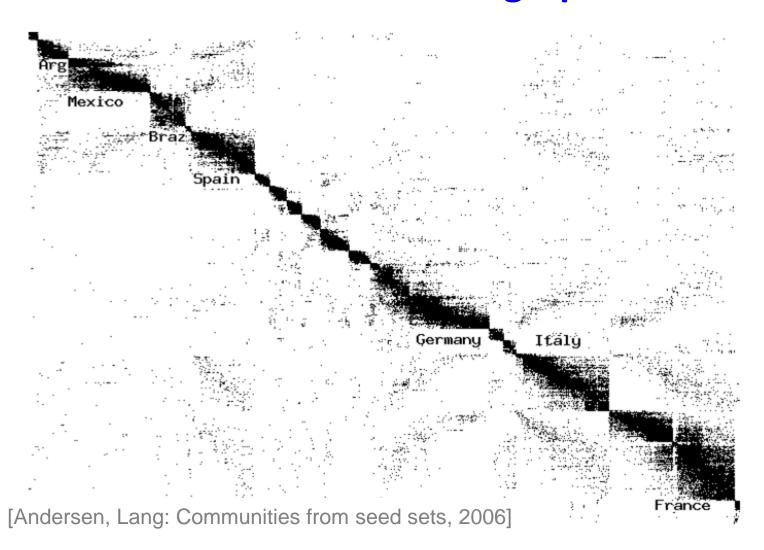
 Find micro-markets by partitioning the queryto-advertiser graph:



[Andersen, Lang: Communities from seed sets, 2006]

Movies and Actors

Clusters in Movies-to-Actors graph:



Twitter & Facebook

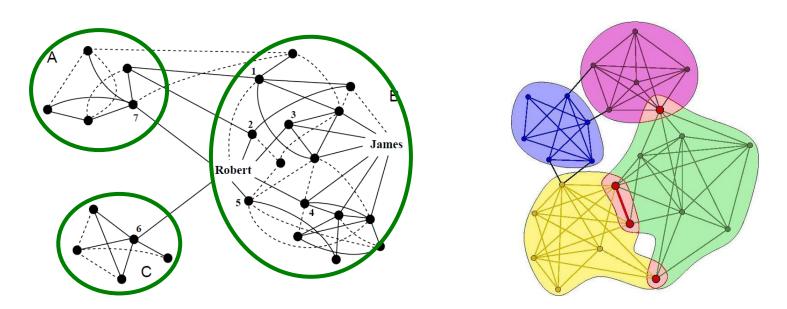
Discovering social circles, circles of trust:

friends under the same advisor CS department friends family members college friendsego' u'alters' v_i highschool friends

[McAuley, Leskovec: Discovering social circles in ego networks, 2012]

COMMUNITY DETECTION

How to find communities?



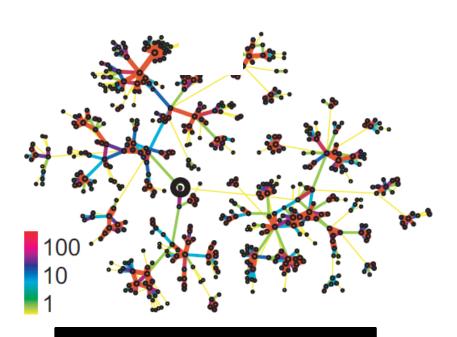
We will work with undirected (unweighted) networks

Method 1: Strength of Weak Ties

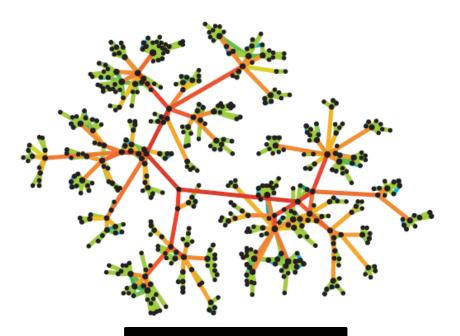
 Edge betweenness: Number of shortest paths passing over the edge

b=16 b=7.5

Intuition:



Edge strengths (call volume) in a real network



Edge betweenness in a real network

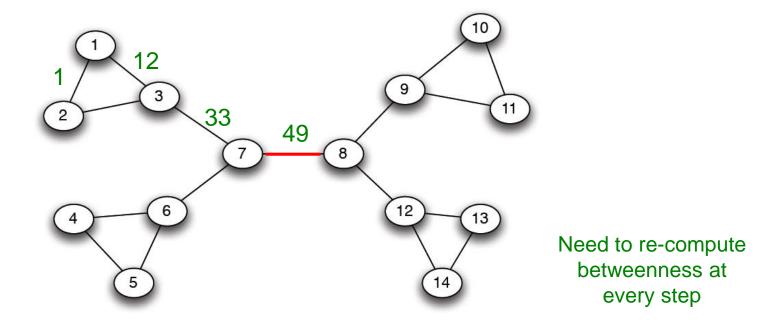
Method 1: Girvan-Newman

 Divisive hierarchical clustering based on the notion of edge betweenness:

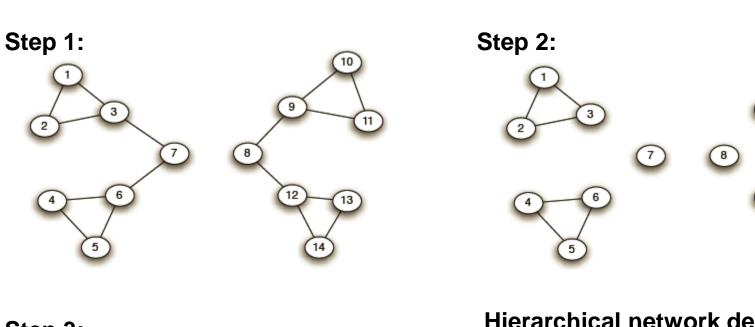
Number of shortest paths passing through the edge

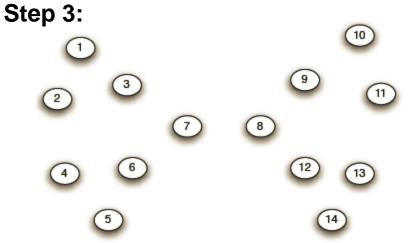
- Girvan-Newman Algorithm:
 - » Undirected unweighted networks
 - Repeat until no edges are left:
 - Calculate betweenness of edges
 - Remove edges with highest betweenness
 - Connected components are communities
 - Gives a hierarchical decomposition of the network

Girvan-Newman: Example

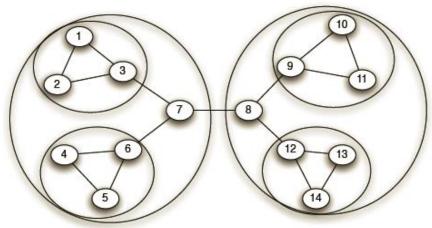


Girvan-Newman: Example

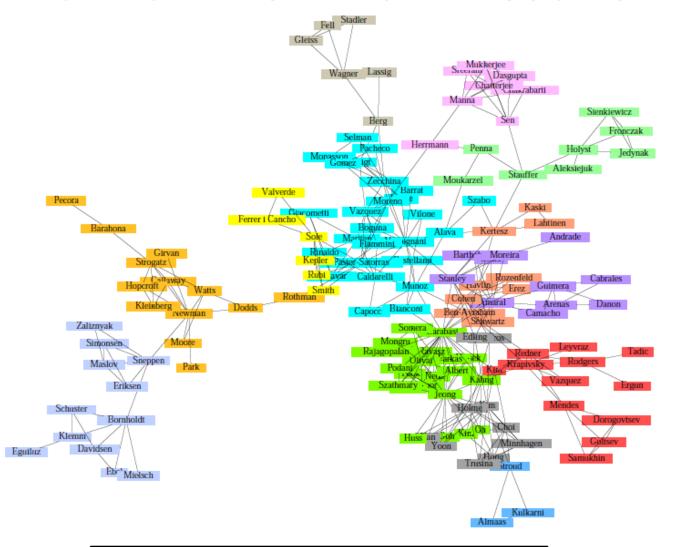




Hierarchical network decomposition:



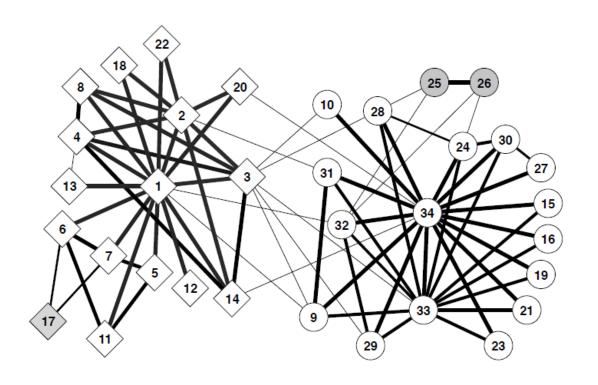
Girvan-Newman: Results

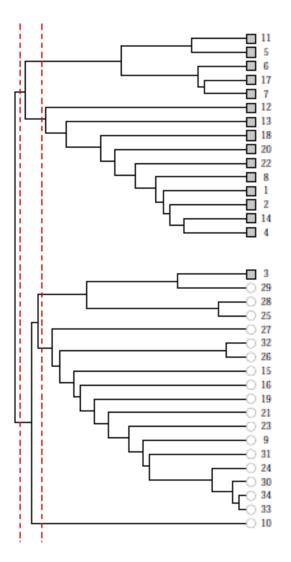


Communities in physics collaborations

Girvan-Newman: Results

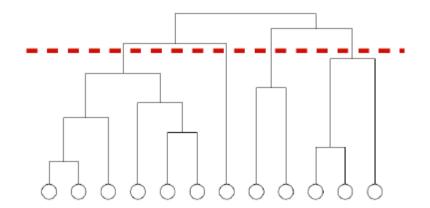
Zachary's Karate club:
 Hierarchical decomposition



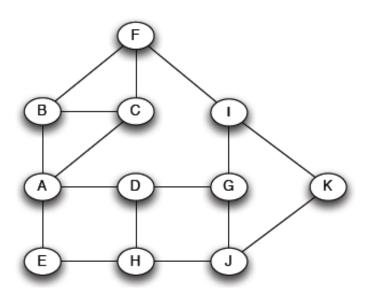


WE NEED TO RESOLVE 2 QUESTIONS

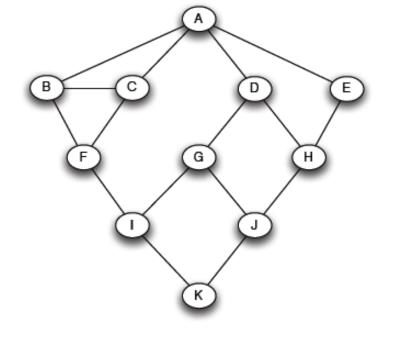
- 1. How to compute betweenness?
- 2. How to select the number of clusters?



 Want to compute betweenness of paths starting at node A



 Breath first search starting from A:



0

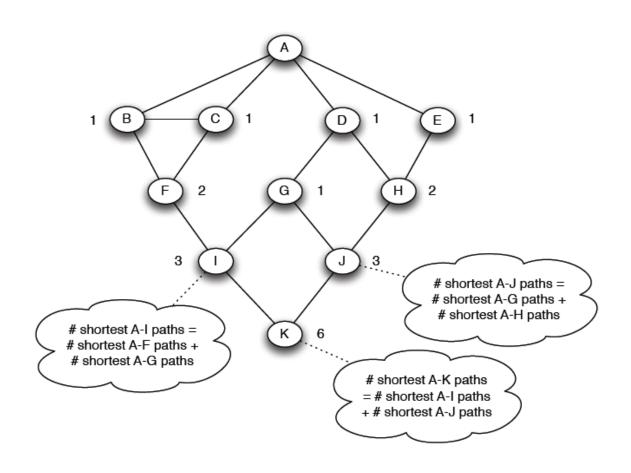
1

2

3

4

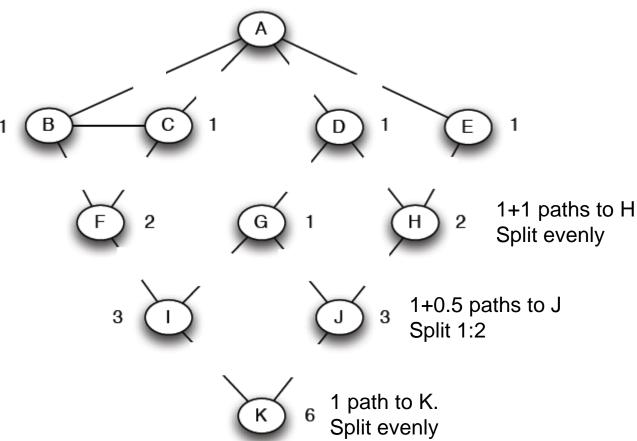
• Count the number of shortest paths from A to all other nodes of the network:



Compute betweenness by working up the tree: If there are multiple paths count them fractionally

The algorithm:

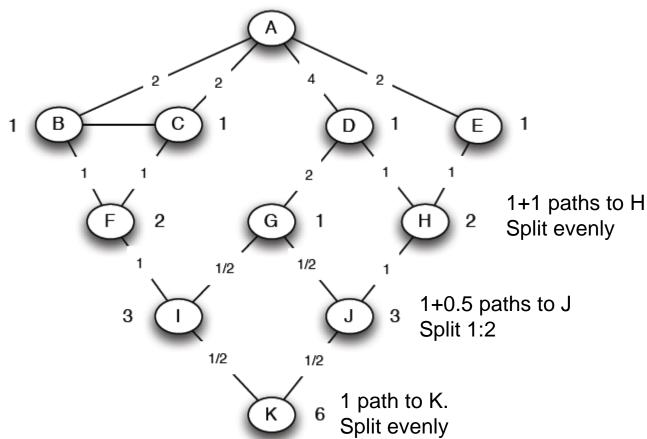
- •Add edge **flows**:
 - -- node flow = 1+∑child edges
- -- split the flow up based on the parent value
- Repeat the BFS procedure for each starting node *U*

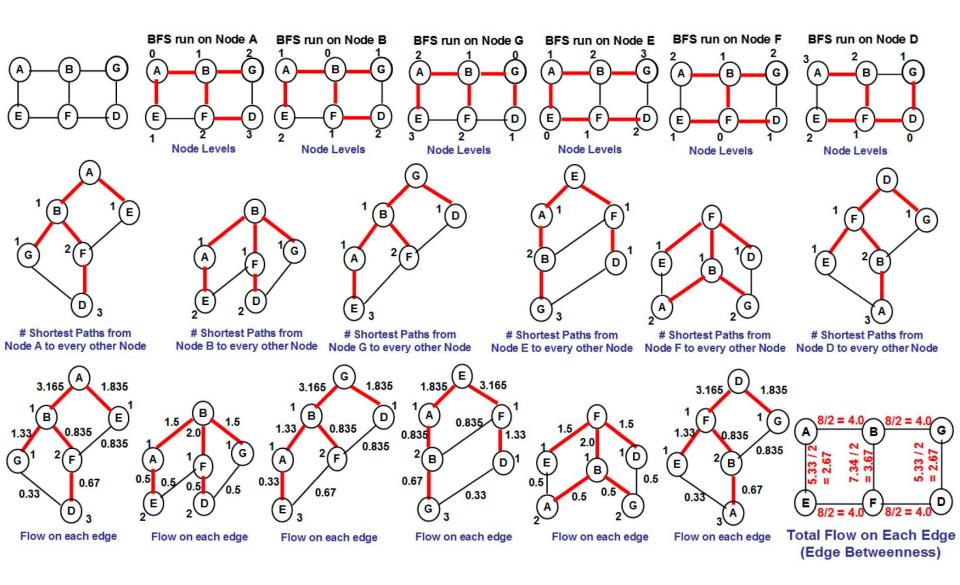


Compute betweenness by working up the tree: If there are multiple paths count them fractionally

The algorithm:

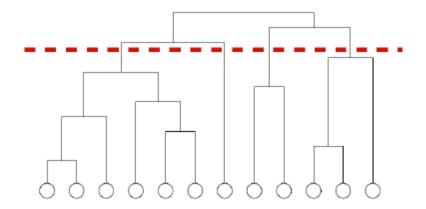
- •Add edge **flows**:
 - -- node flow = 1+∑child edges
- -- split the flow up based on the parent value
- Repeat the BFS procedure for each starting node *U*





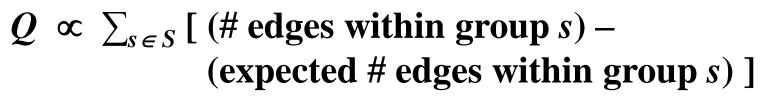
WE NEED TO RESOLVE 2 QUESTIONS

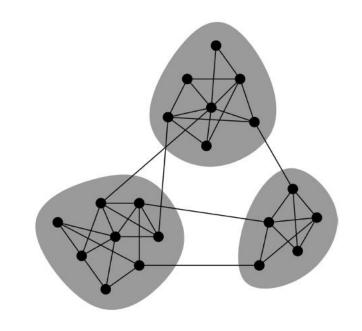
- 1. How to compute betweenness?
- 2. How to select the number of clusters?



Network Communities

- Communities: sets of tightly connected nodes
- Define: Modularity Q
 - A measure of how well a network is partitioned into communities
 - Given a partitioning of the network into groups $s \in S$:

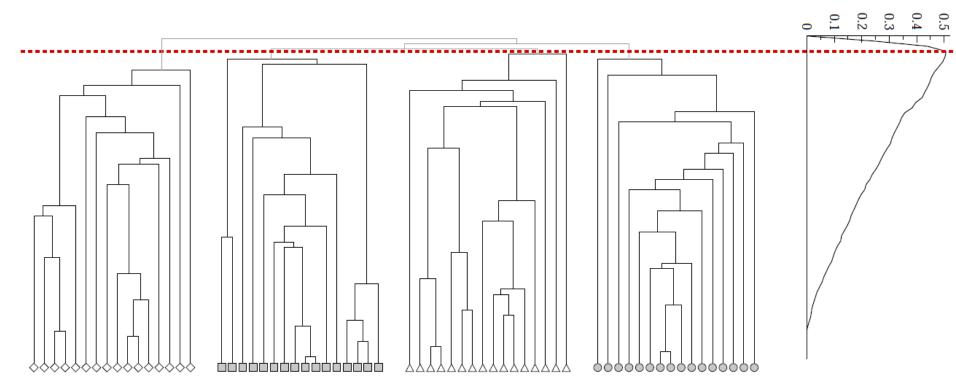




Modularity: Number of clusters

modularity

 Modularity is useful for selecting the number of clusters:

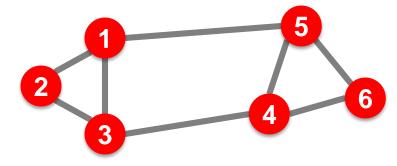


Next time: Why not optimize Modularity directly?

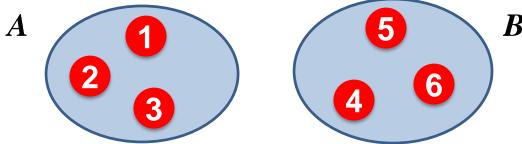
Spectral Clustering

Graph Partitioning

• Undirected graph G(V, E):



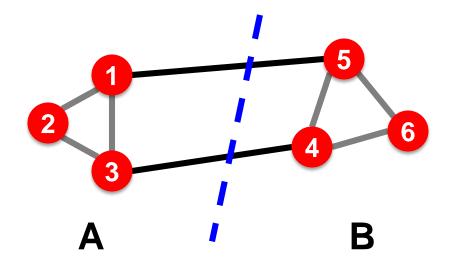
- Bi-partitioning task:
 - Divide vertices into two disjoint groups A, B



- Questions:
 - How can we define a "good" partition of G?
 - How can we efficiently identify such a partition?

Graph Partitioning

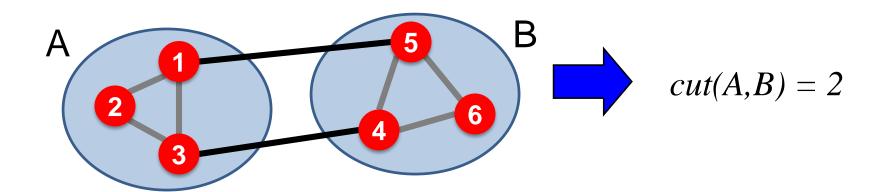
- What makes a good partition?
 - Maximize the number of within-group connections
 - Minimize the number of between-group connections



Graph Cuts

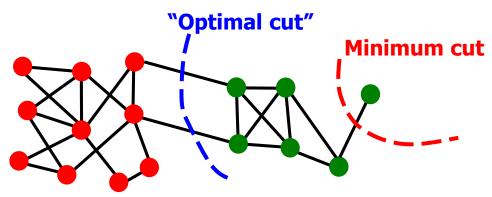
- Express partitioning objectives as a function of the "edge cut" of the partition
- Cut: Set of edges with only one vertex in a group:

$$cut(A,B) = \sum_{i \in A, j \in B} w_{ij}$$



Graph Cut Criterion

- Criterion: Minimum-cut
 - Minimize weight of connections between groups $\arg\min_{A,B} cut(A,B)$
- Degenerate case:



- Problem:
 - Only considers external cluster connections
 - Does not consider internal cluster connectivity

Graph Cut Criteria

- Criterion: Normalized-cut [Shi-Malik, '97]
 - Connectivity between groups relative to the density of each group

$$ncut(A, B) = \frac{cut(A, B)}{vol(A)} + \frac{cut(A, B)}{vol(B)}$$

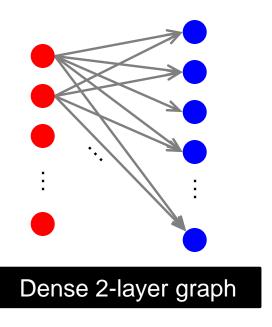
vol(A): total weight of the edges with at least one endpoint in A: $vol(A) = \sum_{i \in A} k_i$

- Why use this criterion?
 - Produces more balanced partitions
- How do we efficiently find a good partition?
 - Problem: Computing optimal cut is NP-hard

Analysis of Large Graphs: Trawling

Trawling

- Searching for small communities in the Web graph
- What is the signature of a community / discussion in a Web graph?



Use this to define "topics": What the same people on the left talk about on the right Remember HITS!

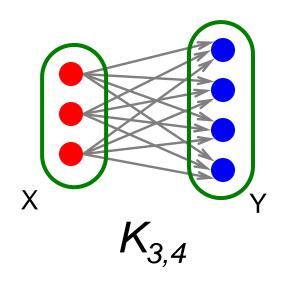
Intuition: Many people all talking about the same things

Searching for Small Communities

A more well-defined problem:

Enumerate complete bipartite subgraphs $K_{s,t}$

- Where $K_{s,t}$: s nodes on the "left" where each links to the same t other nodes on the "right"



$$|X| = s = 3$$

 $|Y| = t = 4$

Fully connected

Frequent Itemset Enumeration

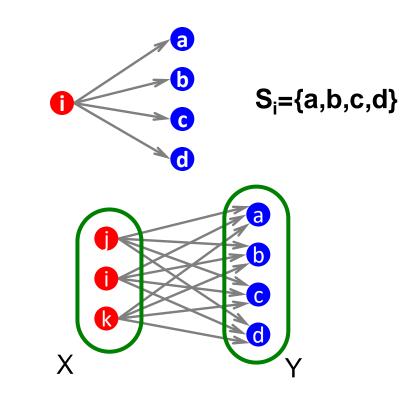
- Market basket analysis. Setting:
 - Market: Universe U of n items
 - Baskets: m subsets of $U: S_1, S_2, ..., S_m \subseteq U$ (S_i is a set of items one person bought)
 - **Support:** Frequency threshold f
- Goal:
 - Find all subsets T s.t. $T \subseteq S_i$ of at least f sets S_i (items in T were bought together at least f times)
- What's the connection between the itemsets and complete bipartite graphs?

From Itemsets to Bipartite K_{s,t}

Frequent itemsets = complete bipartite graphs!

How?

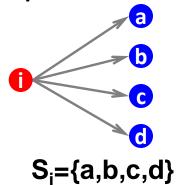
- View each node i as a set S_i of nodes i points to
- $-K_{s,t}$ = a set Y of size t that occurs in s sets S_i
- Looking for $K_{s,t} \rightarrow$ set of frequency threshold to s and look at layer t all frequent sets of size t



s ... minimum support (|X|=s) **t** ... itemset size (|Y|=t)

From Itemsets to Bipartite K_{s,t}

View each node i as a set S_i of nodes i points to

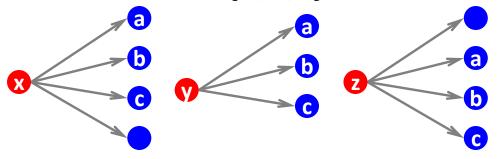


Find frequent itemsets:

s ... minimum support

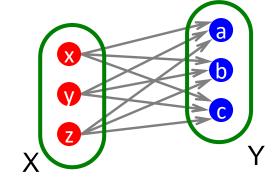
t ... itemset size

Say we find a **frequent itemset** *Y*={*a*,*b*,*c*} of supp *s*So, there are *s* nodes that
link to all of {a,b,c}:

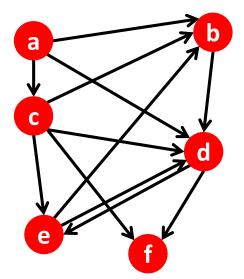


We found $K_{s,t}$!

 $K_{s,t}$ = a set Y of size t that occurs in s sets S_i



Example (1)



Itemsets:

$$a = \{b,c,d\}$$

 $b = \{d\}$

$$c = \{b,d,e,f\}$$

$$d = \{e,f\}$$

$$e = \{b,d\}$$

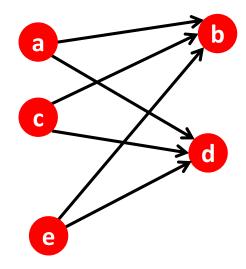
$$f = \{\}$$

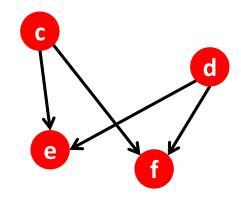
Support threshold s=2

- **{b,d}**: support 3

 $-\{e,f\}$: support 2

 And we just found 2 bipartite subgraphs:





Example (2)

Example of a community from a web graph

A community of Australian fire brigades

Nodes on the right	Nodes on the left
NSW Rural Fire Service Internet Site	New South Wales Firial Australian Links
NSW Fire Brigades	Feuerwehrlinks Australien
Sutherland Rural Fire Service	FireNet Information Network
CFA: County Fire Authority	The Cherrybrook Rurre Brigade Home Page
"The National Centeted Children's Ho	New South Wales Firial Australian Links
CRAFTI Internet Connexions-INFO	Fire Departments, F Information Network
Welcome to Blackwoo Fire Safety Serv	The Australian Firefighter Page
The World Famous Guestbook Server	Kristiansand brannvdens brannvesener
Wilberforce County Fire Brigade	Australian Fire Services Links
NEW SOUTH WALES FIRES 377 STATION	The 911 F,P,M., Firmp; Canada A Section
Woronora Bushfire Brigade	Feuerwehrlinks Australien
Mongarlowe Bush Fire – Home Page	Sanctuary Point Rural Fire Brigade
Golden Square Fire Brigade	Fire Trails "lghters around the
FIREBREAK Home Page	FireSafe – Fire and Safety Directory
Guises Creek Voluntfficial Home Page	Kristiansand Firededepartments of th

[Kumar, Raghavan, Rajagopalan, Tomkins: Trawling the Web for emerging cyber-communities 1999]

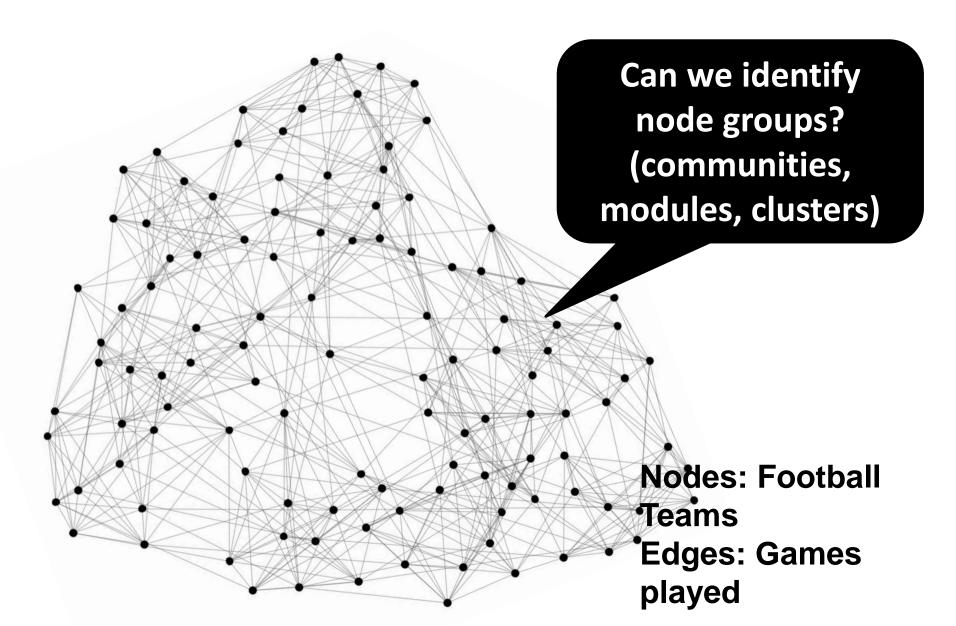
Note to other teachers and users of these slides: We would be delighted if you found this our material useful in giving your own lectures. Feel free to use these slides verbatim, or to modify them to fit your own needs. If you make use of a significant portion of these slides in your own lecture, please include this message, or a link to our web site: http://www.mmds.org

Analysis of Large Graphs: Overlapping Communities

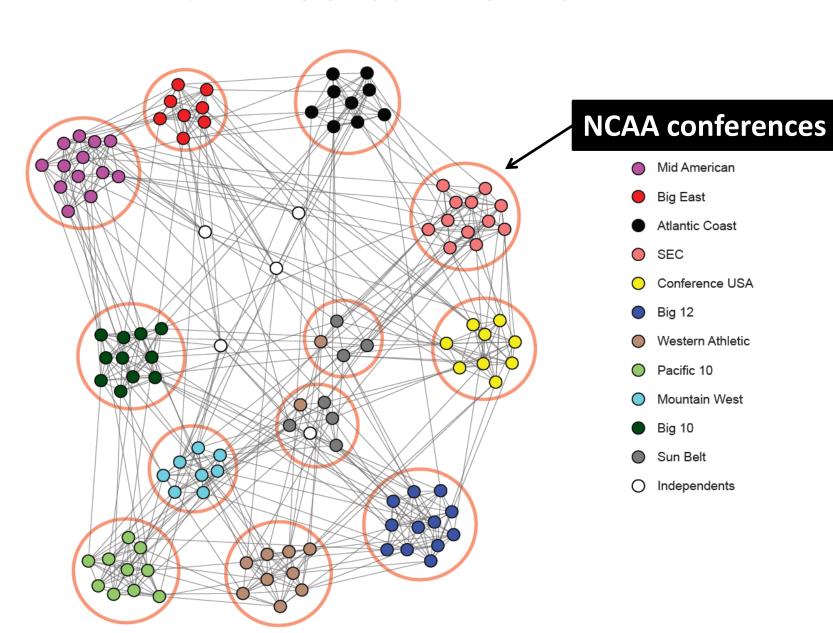
Mining of Massive Datasets
Jure Leskovec, Anand Rajaraman, Jeff Ullman
Stanford University

http://www.mmds.org

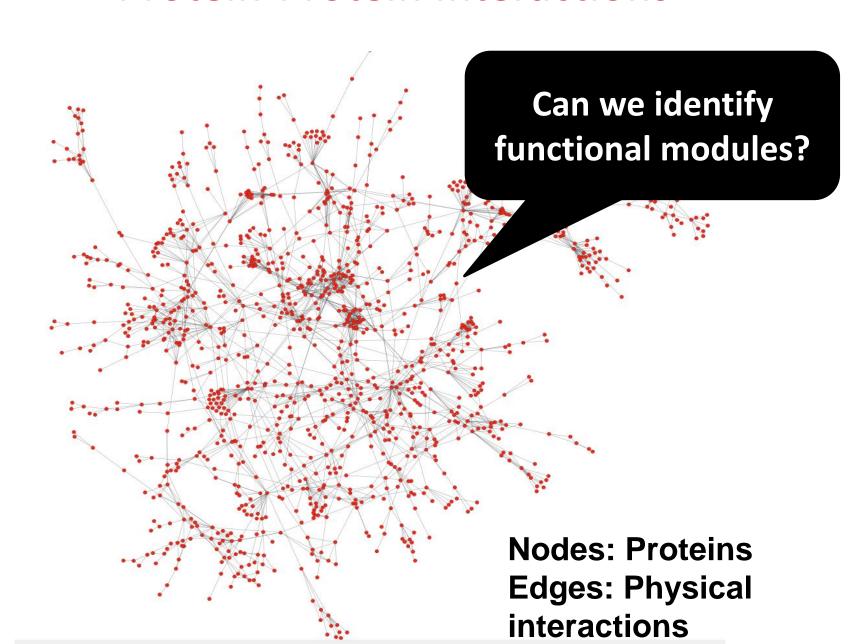
Identifying Communities



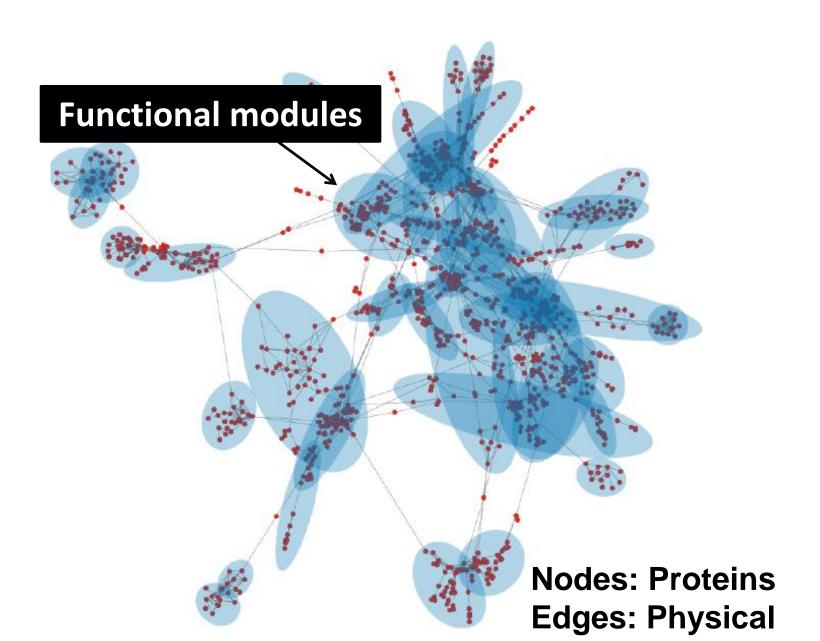
NCAA Football Network



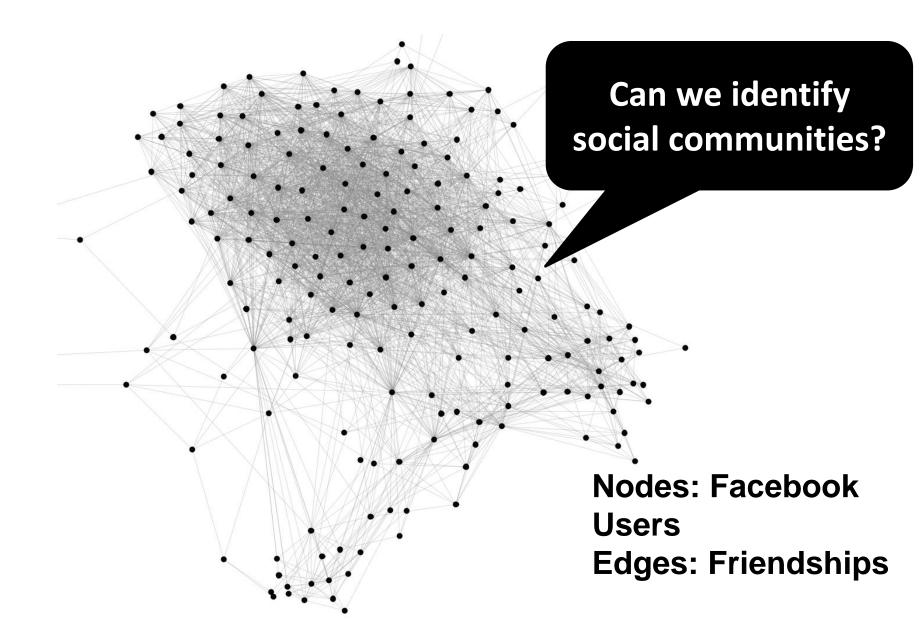
Protein-Protein Interactions



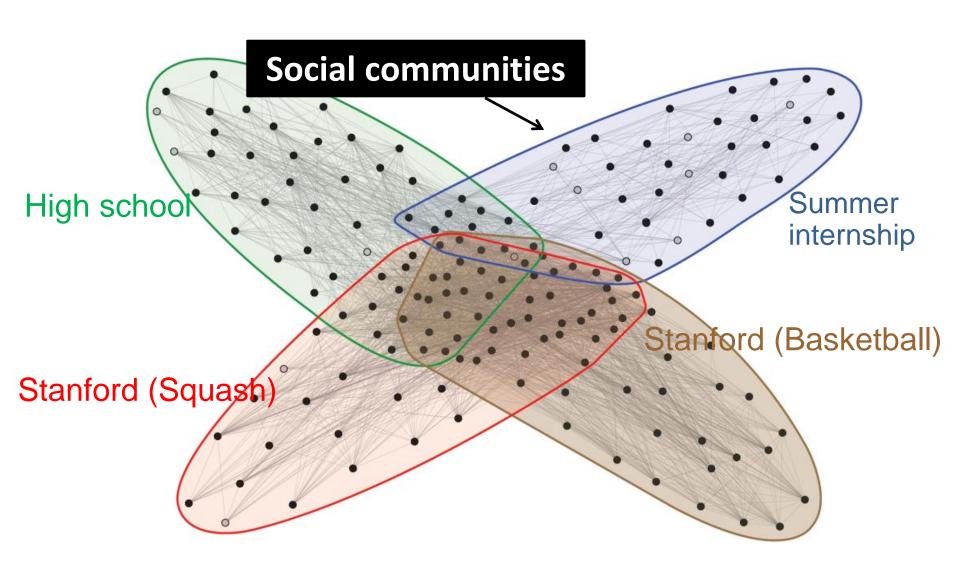
Protein-Protein Interactions



Facebook Network



Facebook Network



More details at...

- Overlapping Community Detection at Scale: A Nonnegative Matrix Factorization Approach by J. Yang, J. Leskovec. ACM International Conference on Web Search and Data Mining (WSDM), 2013.
- <u>Detecting Cohesive and 2-mode Communities in Directed and Undirected</u>
 <u>Networks</u> by J. Yang, J. McAuley, J. Leskovec. *ACM International Conference on Web Search and Data Mining (WSDM)*, 2014.
- <u>Community Detection in Networks with Node Attributes</u> by J. Yang, J. McAuley, J. Leskovec. *IEEE International Conference On Data Mining (ICDM)*, 2013.