Constraint Satisfaction
Problems

Fundamentals of Artificial Intelligence

Slides are mostly adapted from AIMA, MIT Open Courseware
Svetlana Lazebnik (UIUC) and Manuela Veloso (CMU)

What Is search for?

« Assumptions: single agent,
deterministic, fully observable,
discrete environment

« Search for planning

— The path to the goal Is the important
thing

— Paths have various costs, depths
 Search for assignment

— Assign values to variables while
respecting certain constraints

— The goal (complete, consistent
assignment) is the important thing

Constraint satisfaction problems (CSPs)

« Definition:
— State Is defined by variables X; with values from domain D,

— Goal test Is a set of constraints specifying allowable
combinations of values for subsets of variables

— Solution is a complete, consistent assignment

* How does this compare to the “generic” tree search
formulation?

— A more structured representation for states, expressed in a
formal representation language

— Allows useful general-purpose algorithms with more power
than standard search algorithms

Constraint Satisfaction Problems

General class of Problems: Binary CSP

Variable vV, with

Unary constraint arc. :
’\ /\ values in domrain D,

Binary [Unary constraints]

constraint V3
arc

This diagram is called a constraint graph

just cut down domains

Basic probhlem:

Find a d; D, for each V,; s.t. all constraints satisfied
(finding consistent labeling for variables)

tlp =Sept 0D -2

¢

Varieties of CSPs

» Discrete variables

— finite domains:
* n variables, domain size d -> O(dn) complete assignments
* ¢.g., Boolean CSPs, incl.~Boolean satisfiability (NP-complete)

— infinite domains:
* integers, strings, etc.
* ¢.g., job scheduling, variables are start/end days for each job

* need a constraint language, e.g., StartJobl + 5 < StartJob3

« Continuous variables
— e.g., start/end times for Hubble Space Telescope observations
— linear constraints solvable in polynomial time by linear programming

CSP definition

CSP={V, D, C}
 Variables: V = {V1,..,VN}
— Example: The values of the nodes in the graph
« Domain: The set of d values that each variable can take
— Example: D = {R, G, B}
« Constraints: C = {C1,..,,CK}
 Each constraint consists of a tuple of variables and a list of values

that the tuple is allowed to take for this problem
— Example: [(V2,V3),{(R,B),(R,G),(B,R),(B,G),(G,R),(G,B)}]

* Constraints are usually defined implicitly a1 A function is defined to

test if a tuple of variables satisfies the constraint
— Example: Vi £ Vj for every edge (i,))
Unary constraints involve a single variable,
—e.g., SA # green
Binary constraints involve pairs of variables,
—e.g., SA#WA

Graph Coloring as CSP

Pick colors for map regions,
avoiding coloring adjacent
regions with the same color

Variables regions

Domains colors allowed

Constraints adjacent regions must have different colors

tlp = Sept 00 -6

¢

Graph Coloring

10

Consider N nodes in a graph
Assign values V., ..,V to each of the N nodes
The values are taken in {R,G,B}

Constraints: If there is an edge between /i and J,
then V; must be different from V,

Graph Coloring

11

Example: Map Coloring

12

Northern
Territory

Weastarn

Quesnsland
Australia

South —
Australia

New South Wales

Tasmania

« Variables: WA, NT, Q, NSW, V, SA, T
« Domains: {red, green, blue}

« Constraints: adjacent regions must have different colors
e.g., WA = NT, or (WA, NT) in {(red, green), (red, blue),
(green, red), (green, blue), (blue, red), (blue, green)}

Example: Map Coloring

13

l
28

Tasm"a

 Solutions are complete and consistent assignments, e.g.,
WA =red, NT = green, Q =red, NSW = green,
V =red, SA =Dblue, T = green

Example: n-queens problem

14

« Put n queens on an n x n board with no two queens on the
same row, column, or diagonal

N-Queens:

15

 Variables: Q
 Domains: {1, ..., N}
« Constraints:

V i, j non-threatening (Q;, Q;)

N- Queens

16

« Variables: Q
 Domains: D, = {1, 2, 3, 4}
« Constraints

— Q=Q (cannot be in the same
row)

— Q- Q= |i - J| (or same diagonal)

+ Valid values for (Q,, Q,) are
(1,3) (1,4)(2,4) (3,1) (4,1) (4,2

o,=10,=3

Alternative formulation

N-Queens as CSP

Classic “benchmark” problem

1 Q |/'
Place N queens on an NxN > a
chesshoard so that none can 7
atiack the other. i .- = »

Variables are board positions in NxN chessboard

Domains Queen or blank

Constraints Two positions on a line {verical,
horizontal, diagonal) cannot both be Q

tlp = Sept 00 - 3 ‘Q

Example: N-Queens

18

» Variables: X;;
« Domains: {0, 1}

 Constraints:
% Xi; =N
(Xij1 Xi) € {(0,0), (0, 1), (1, 0)}
(Xij’ ij) e {(0,0),(0,1),(1,0)}
(Xij» Xk j+1) € 1(0,0), (0, 1), (1, 0)}
(xij’ Kisk, j—k) € {(0,0),(0,1),(1,0)}

Example: Sudoku

19

* Variables: X;
 Domains: {1, 2, ..., 9}
« Constraints:

Alldiff(X;; In the same unit)

a|h|lO}|-

NN (00| W
47

N

Example: Cryptarithmetic

20

 Variables: T, W, O, F, U, R
X1’ XZ

 Domains: {0,1,2, ...,9}

e Constraints:
O+0=R+10*X,
W+W+ X, =U+10* X,
T+T+X,=0+10*F
Alldiff(T, W, O, F, U, R)
T+0,F#0

M|+

o|— -

Cl= =
0|0 O

Real-world CSPs

24

Assignment problems
— e.g., who teaches what class

Timetable problems
— e.g., which class is offered when and where?

Transportation scheduling
 Factory scheduling

* More examples of CSPs:

http://www.csplib.org/

25

Scheduling as CSP

Choose time for activities e.q.

observations on Hubble e
tEIESEHpE. or terms to take 5 I
required classes. 4
2
Variables are activities ; time
Domains sets of start times {or "chunks” of time}

Constraints 1. Activities that use same
resource cannot overlap in time

2. Preconditions satisfied

tlp = Sep OO =5

¢

27

CSP Example

Given 40 courses (8.01, 8.02, 6.840) & 10terms (Fall 1,
Spring1,...., Spring 9). Find a legal schedule.

Consirainis Pre-requisites

Courses offered on limited terms
Limited number of courses per term

Avoid time conflicts

MNote, CS5Ps are not for expressing (soft) preferences e.g.,
minimize difficulty, balance subject areas, eic.

28

Choice

VARIABLES

A.Temnms?

E. Termm Slois?

subdivide terms into
slots e.q. 4 of them
(Fall 1,1} (Fall 1,2)
(Fall1,3) {(Fall 1.4)

. Courses?

of variables & values

DOMAINS

Legal combinations of for example 4
courses (but this is huge set of
values).

Courses offered during that term

Terms or term slots {Term slots allow
exprassing constraint on limited numhber ¢
of courses fterm.)

29

Constraints

Use courses as variables and term slois as values.

term
’ bhefore

Prerequisitie =» @I@ For pairs of courses that

must be ordered.

(term
arter

Courses offered only in some terms % Filter domain

slot not equal
P 4

Limit # courses =» O‘—O Use term-siots only once

for all pairs of vars.

e - 7~ term not equal
Avoid time conflicts = O_.O For pairs offered at same
or overiapping times

tlp - Sept 00 - 19

30

Good News | Bad News

Good News - very general & interesting class problems
Bad News - includes NP-Hard {intractable) problems

S0, good behavior is a function of domain not the
formulation as CSP.

tlp = Sept 00 -9

¢

Standard search formulation (incremental)

31

« States:

— Variables and values assigned so far
 Initial state:

— The empty assignment
« Action:

— Choose any unassigned variable and assign to it a value
that does not violate any constraints
Fail if no legal assignments

e Goal test:

— The current assignment is complete and satisfies all
constraints

CSP as a Standard search problem

32

w

Example state:
(V,=G,V=B, V,=7 V,=7 V.= V,=7)

CSP as a Standard search problem

33

Example state:
V.=G,V,=B, V,=? V,=7 V.=7 V;=7)

« State: assignment to k variables with k+1,..,N unassigned

« Successor. Assignment of a value to variable k+1, keeping
the others unchanged

« Start state: (V,=7,V,=?, V,=? V,=7 V=7 V,=7)
» Goal state: All variables assigned with constraints satisfied
« No concept of cost on transition = just a solution, no path

24

V, |V, | V.|V,

Vi |V,

21?2?27 |? |7 7?7

= e
= e
NN
= e
= e
S0
=7 o
N
/ U_..q .
=7 e
S e
> ©
© > o,
>0 -
V_.__..u ? V ﬂ/...
=t
..u.._v.a. o > 0.
[ap]
Vﬁ___.u ﬂ/... v A/...
[t |
Sled] [@
Sl > |

o
93]

Depth First Search
V. |V, | V.|V, | V: |V

1 2 3 4 5 6

- Recursively:
* For every possible value in D:
» Set the next unassigned variable in the successor
to that value
» Evaluate the successor of the current state with
this variable assignment
» Stop as soon as a solution Is found

9d

Standard search formulation (incremental)

36

« What is the depth of any solution (assuming n variables)?
n (this is good)

« Given that there are m possible values for any variable,
how many paths are there in the search tree?

n! - mn" (this is bad)

« How can we reduce the branching factor?

solving CSPs

Solving CSPs involves some comhbination of:

1. Constraint propagation, to eliminate values that could
not be part of any solution

2. Search, to explore valid assignments

37

Backtracking DFS

38

For every possible value x in D:
— If assigning x to the next unassigned variable
Vk+1 does not violate any constraint with the k

already assigned variables:
« Set the variable Vk+1 to x

* Evaluate the successors of the current state with this variable
assignment

e If no valid assignment 1s found:
Backtrack to previous state

 Stop as soon as a solution 1s found

Backtracking DFS

Ve

?

O
@'&“9 @

v,

v;

4

Vs

Order of values:

~— (BRG)

B

B

72

2

Don’

with the parent state,_>

-

Te

ven consi
that branch because
V,=B Is inconsistent

Jer

Vs | V; | Backtrack to the

W <

| <

w| <

previous state
because no valid

assignment can

W<

| <

w|<

V|V
G

6
> | be found for Vj

(o]

Backtracking search algorithm

function RECURSIVE-BACKTRACKING(assignment, csp)

if assignmentis complete then return assignment

var+— SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp|, assignment, csp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp)

if value is consistent with assignment given CONSTRAINTS|[csp]
add {var = value} to assignment
result «—— RECURSIVE-BACKTRACKING(assignment, csp)
if result # failure then return result
remove {var = value} from assignment
return faulure

Example

41

Example

42

o 8L

Example

Example

Improving Backtracking Efficiency

46

» Making backtracking search efficient:
— Can we detect inevitable failure early?
— Which variable should be assigned next?
— In what order should its values be tried?

Early detection of failure

47

NT| q

. SR

o

NSW

Apply inference to reduce the space of possible
assignments and detect failure early

Early detection of failure: Forward checking

48

« Keep track of remaining legal values for unassigned variables
 Terminate search when any variable has no legal values

Early detection of failure

49

function RECURSIVE-BACKTRACKING(assignment, csp)
if assignment is complete then return assignment
var+«— SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp|, assignment, csp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp)
if value is consistent with assignment given CONSTRAINTS|csp]
add {var = value} to assignment
result +— RECURSIVE-BACKTRACKING(assignment, csp)
if result # failure then return result
remove {var = value} from assignment
return faulure

Apply inference to reduce the space of possible
assignments and detect failure early

Forward Checking

+ Keep track of remaining legal values for
unassigned variables

« Backtrack when any variable has no legal values

AAIAIATAL @‘@
Rl?2 |2 1|2]2 2 2 '@
Bl?2 |2 2|2 2 2
G| ? 72|22 |72 |2 @mi@

Warning: Different example with order (R,B,G)

Forward Checking

» Keep track of remaining legal values for
unassigned variables

« Backtrack when any variable has no legal values

V, [V, [V, |V, V.|V, @'@
R ox|? Ix x|? '@
B| 2?22 2|7
G 2 12 1?2?22 @m@

Forward Checking

+ Keep track of remaining legal values for
unassigned variables

« Backtrack when any variable has no legal values

AAIAIAIAL @‘@
R ol |72 |x|x]|? '@

B olx|? |x 2

G 2 (2 |2 |2 @m@

unassigned variables

« Backtrack when no variable has a legal value

Vi

V.

Vs

Va

Vs

Forward Checking

« Keep track of remaining legal values for

Ve

O

O

O

QO W

X
?
?

X
X
?

X
?
?

« Backtrack when any variable has no legal values

Forward Checking

« Keep track of remaining legal values for
unassigned variables

v,

v,

Vs

V.

Vs

0,

O

O

O

R
B
G

X
X
?

v G
x| | ol

54

Forward Checking

+ Keep track of remaining legal values for
unassigned variables

« Backtrack when any variable has no legal values

V, |V, |V, |V, V.|V, '@

There are no valid assignments left
for V; we need to backtrack

27f

56

Constraint Propagation (aka Arc Consistency)

Arc consistency eliminates values from domain of variable that can
never be par of a consistent solution.

vi—*"u{j

Directed arc (V/;, V) is arc consistent if
Vx=D; dyeD; suchthat (x.y) is allowed by the constiraint on the arc

We can achieve consistency on arc by deleting values form D,
(domain of variahle at tail of constraint arc) that fail this condition.

Assume domains are size at most d and there are g hinary
constraints.

A simple algorithm for arc consistency is Ofed?) — note that just verifying
arre rancictanm~ takae Oy far carh are

Constraint Propagation Example

Graph Coloring

Initial Domains are indicated

Arc examined |Value deleted Vi
V=V, none o
Vi =V V4(6) V Vs
V2 = VS V2(G)
Vi =V, V4(R]
Vi— Vs none
Vo — Vs none

58

But, arc consistency is not enough in general

Graph Colorin
P 9 @ arc consistent but no

.@ solutions

arc consistent but 2
@ solutions B.R.G ;

BGR.
1B.®

arc consistent but 1

m solution
- ' B, R not allowed
(R.6) (.62

Need to do search to find solutions (if any)

searching for solutions — backtracking (BT)

When we have too many values in domain (and/or constraints are
weak) arc consistency doesn't do much, so we need to search.
Simplest approach is pure hacktracking (depth-first search).

Yy assignments G

Vz assignments

searching for solutions — backtracking (BT)

When we have too many values in domain (and/or constraints are
weak) arc consistency doesn't do much, so we need to search.
Simplest approach is pure backtiracking (depth-first search).

........... .-R..----.-----.B-----------
V, assignments G
Vo, assignments G'
__________ o, W5 | o,
Vi, assignments:” R G
3 (OO

Inconsistent
with v, = R

Backup at
inconsistent
assionment

searching for solutions — backiracking (BT)

When we have too many values in domain (and/or constraints are

weak) arc consistency doesn't do much, so we need to search.
Simplest approach is pure backiracking (depth-first search).

V1 assignments G

Vz assignments

W, assignments

-
c®
.
"
.

Inconsistent
with v, = R

Backup at

inconsistent
=ccirntrmnmeant

searching for solutions — backtracking (BT)

When we have too many values in domain (and/or constraints are
weak) arc consistency doesn't do much, so we need to search.
Simplest approach is pure backtracking (depth-first search).

Y, assignments G

Y, assignments

Wy assignments.”

.
o
.

i
CCC
-

Inconsistent Incons‘.istent
with vy = R with V, = G
Backup at

inconsistent
—~ccirMrrnomt

R

searching for solutions — backtracking (BT)

When we have too many values in domain (and/or constraints are

weak) arc consistency doesn't do much, so we need to search.
Simplest approach is pure backiracking (depth-first search).

W assignments

Y, assignments

W, assignmentss

-
.
- ot
"
-

Inconsistent Inconé}stent
with vy = R with V, = G
Backup at

inconsistent
assianment

64

Combine Backtracking & Constraint Propagation

A node in BT tree is partial assignment in which the domain of each
variable has been set (lentatively) to singleton set.

Use constraint propagation (arc-consistency) to propagate the effect of
this tentative assignment, i.e., eliminate values inconsistent with current

values.

Guestion: How much propagation to do?

Answer: Not much, just local propagation from domains with
unigue assignments, which is called forward checking
(FC). This conclusion is not necessarily obvious, but it
generalty holds in practice.

Backiracking with Forward Checking (BT-FC)

When examining assignment V,=d,, remove any values inconsistent
with that assignment from neighboring domains in constraint graph.

Y, assignments

Y, assignments

Y, assignments

Backiracking with Forward Checking (BT-FC)

When examining assignment V,=d,, remove any values inconsistent
with that assignment from neighboring domains in constraint graph.

Y, assignments

V?_ assignments

W, assignments

Backtracking with Forward Checking (BT-FC)

When examining assignment V.=d,, remove any values inconsistent
with that assignment from neighboring domains in constraint graph.

Y, assignments

Y., assignments

Y, assignments

We have a conflict Wy
whenever a domain y
becomes empty. :

Backiracking with Forward Checking (BT-FC)

When examining assignment V.=d,, remove any values inconsistent
with that assignment from neighboring domains in constraint graph.

Y, assignments

Y., assignments

Y, assignments

Ywhen backing up, need to
restore domain values,
since deletions were done
to reach consistency with
tentative assignments
considered during search.

Backitracking with Forward Checking (BT-FC)

When examining assignment V,=d,, remove any values inconsistent
with that assignment from neighboring domains in constraint graph.

e ____A-,_ e
"‘-.""1 assignments G

\/2 assignments

Y, assignments

Backiracking with Forward Checking (BT-FC)

When examining assignment V,=d,, remove any values inconsistent
with that assignment from neighboring domains in constraint graph.

Yy assignments

"'-/2 assignments

"'-/3 assignments

Backiracking with Forward Checking (BT-FC)

When examining assignment V,=d,, remove any values inconsistent
with that assignment from neighboring domains in constraint graph.

Y, assignments

W, assignments

"'~.f"3 assignments

Backtracking with Forward Checking (BT-FC)

When examining assignment V,=d,, remove any values inconsistent
with that assignment from neighboring domains in constraint graph.

Y, assignments

Y, assignments

Y, assignments

Backiracking with Forward Checking (BT-FC)

When examining assignment V,=d,, remove any values inconsistent
with that assignment from neighboring domains in constraint graph.

Y, assignments

Y, assignments

Y, assignments

Backitracking with Forward Checking (BT-FC)

When examining assignment V,=d,, remove any values inconsistent
with that assignment from neighhoring domains in constraint graph.

Yy assignments

"'-/2 assignments

Vo assignments

Backtracking with Forward Checking (BT-FC)

When examining assignment V,=d,, remove any values inconsistent
with that assignment from neighboring domains in constraint graph.

V1 assignments

Wy assignments

Vg assignments

Backiracking with Forward Checking (BT-FC)

When examining assignment V.=d,, remove any values inconsistent
with that assignment from neighboring domains in constraint graph.

Y, assignments

Y., assignments

Y, assignments

Backitracking with Forward Checking (BT-FC)

When examining assignment V.=d,, remove any values inconsistent
with that assignment from neighboring domains in constraint graph.

Y, assignments

Y., assignments

Y, assignments

No need to check
previous assignments

Generally preferable
to pure BT

78

Constraint Propagation

« Forward checking does not detect all the -
Inconsistencies, only those that can be detected by
looking at the constraints which contain the current
variable.

« Can we look ahead further?

O

v, |V, |V, v, V. |V,
R |O 0 X |x
B 0 o |x X 3@ @
G |7 |2 @A‘

At this point, it Is already obvious that this branch will not
lead to a solution because there are no consistent values

In the remaining domain for V, and V,.

Constraint Propagation, not “just” checking -

« V= variable being assigned at the current
level of the search

» Set variable Vto a value in D(V)

 For every variable V' connected to V:

— Remove the values in D(V’) that are inconsistent
with the assigned variables

— For every variable V” connected to V.

« Remove the values in D(V") that are no longer
possible candidates
« And do this again with the variables connected to V”

— until no more values can be discarded

Constraint Propagation

assid| Forward Checking

Ne\z_v: Constraint
as before

Propagation :
Pag —v—od Value In

very variable V’ conn/ <ted to V-

move the values in D(V’) that are inconsistent
h the assigned variables

r every variable V” connected to V”

Remove the values in D(V") that are no longer
possible candidates

« And do this again with the variables connected to V”
— . until no more values can be discarded

CP for the graph coloring problem

Propagate (node, color)

1. Remove color from the domain of all
of the neighbors
2. For every neighbor N:

If D(N) was reduced to only one color
after step 1 (D(N) = {c}):

Propagate (N,c)

After Propagate (V,, R):

Vi

v,

Vs

Vs

Vs

Ve

Py

O

0

®

X
2
?

?
?
?

X
2
?

X
2
?

?
?
?

After Propagate (V,, B):

V.1V, V.|V, |V, |V, 0‘@
0

X X |x|?
o|X |? X |X @
? X 1?2 |x

X

0

3

Note: We get directly to a solution in one step of
CP after setting V, without any additional search

Some problems can even be solved by applying
CP directly without search

Early detection of failure: Forward checking

« Keep track of remaining legal values for unassigned variables
 Terminate search when any variable has no legal values

NT Q
WA‘ﬁL‘:
NSW

\

WA NT Q NSW v SA T
EfEENfEIETEEfEIEf EIENE"EIETDEH

Early detection of failure: Forward checking

« Keep track of remaining legal values for unassigned variables
 Terminate search when any variable has no legal values

NT|
H: ~4
NSW
Y
NT

WA Q NSW v SA T
ENfEENFEIETFEEfEIEf EIETEE"DE

Early detection of failure: Forward checking

« Keep track of remaining legal values for unassigned variables
 Terminate search when any variable has no legal values

Early detection of failure: Forward checking

« Keep track of remaining legal values for unassigned variables
« Terminate search when any variable has no legal values

St &

WA

NT

Q

NSW

v

SA

T

88

Constraint propagation

» Forward checking propagates information from assigned to
unassigned variables, but doesn't provide early detection for all

fatlures
WA NT Q NSW v SA T
ENEECTEECTEIRENEIETEIDESERET"DE
T AL LRI L
] B /W Em|EmLm L

« NT and SA cannot both be blue!
» Constraint propagation repeatedly enforces constraints locally

Arc consistency

« Simplest form of propagation makes each pair of variables
consistent:

— X =2Y is consistent iff for every value of X there is some allowed value of Y

T

WA Q NSW v SA T
| | |H EET N 1L N

\é/

91

Arc consistency

« Simplest form of propagation makes each pair of variables
consistent:
— X =2Y is consistent iff for every value of X there is some allowed value of Y

— When checking X =Y, throw out any values of X for which there isn’t an
allowed value of Y

NT| q
NSW
vV

WA NT Q NSW v SA T
| | IIMII 1L N

~—

 |f X loses a value, all pairs Z - X need to be rechecked

92

Arc consistency

« Simplest form of propagation makes each pair of variables
consistent:
— X =2Y is consistent iff for every value of X there is some allowed value of Y

— When checking X =Y, throw out any values of X for which there isn’t an
allowed value of Y

T

WA Q NSW v SA T
| | Ilmll 1L N

~—

 |f X loses a value, all pairs Z - X need to be rechecked

93

Arc consistency

« Simplest form of propagation makes each pair of variables
consistent:
— X =2Y is consistent iff for every value of X there is some allowed value of Y

— When checking X =Y, throw out any values of X for which there isn’t an
allowed value of Y

T

WA Q NSW v SA T
] B m i m EErE

~—

 |f X loses a value, all pairs Z - X need to be rechecked

94

Arc consistency

« Simplest form of propagation makes each pair of variables
consistent:
— X =2Y is consistent iff for every value of X there is some allowed value of Y

— When checking X =Y, throw out any values of X for which there isn’t an
allowed value of Y

T

WA NT Q NSW SA T

v
] L m x| E[ErE
— y; ——
S

95

Arc consistency

« Simplest form of propagation makes each pair of variables
consistent:
— X =2Y is consistent iff for every value of X there is some allowed value of Y

— When checking X =Y, throw out any values of X for which there isn’t an
allowed value of Y

‘%"‘H:—"“t:

WA Q NSW SA T
] B |lml) (I
— ———

\

 Arc consistency detects failure earlier than forward checking
 Can be run before or after each assignment

Arc consistency algorithm AC-3

96

function AC-3(csp) returns the CSP, possibly with reduced domains
inputs: csp, a binary CSP with variables { X1, Xy, ..., X, }
local variables: queue, a queue of arcs, initially all the arcs in csp

while queue is not empty
(Xi, X;)— REMOVE-FIRST(queue)
if REMOVE-INCONSISTENT-VALUES(.X;, X)) then
for each X in NEIGHBORS[X)] do
add (X, X}) to queue

function REMOVE-INCONSISTENT-VALUES(X, X)) returns true iff succeeds
removed «— false
for each = in DOMAIN[.Y/]
if no value y in DOMAIN[X|] allows (z,7) to satisfy the constraint X; — X,
then delete = from DoOMAIN[X}]; removed — true
return removed

Variable and Value Heuristics

So far we have selected the next variable
and the next value by using a fixed order

. Is there a better way to pick the next
variable?

. Is there a better way to select the next
value to assign to the current variable?

Colors: R, G,B, ¥

A=Green
B=Blue
C=Red
Green,
Blue,
D
Red, Blue,

Which country should we color next —

What color should we pick for it? -

tlp - Spring 02 -5

¢

98

Colors: R, G,B, ¥

A=Creen
B=Blue
C=Red
Green,
Blue,
D
Red, Blue,

Which country should we colornext — E most-constrained variable
(smallest domain)

What color should we pick for it? — RED l|east-constraining value
(eliminates fewest values from
neighboring domains)

tlp « Spring 02 «7 Q

99

BT-FC with dynamic ordering

Traditional hackiracking uses fixed ordering of variahles & values, e.g.,
random order or place variables with many constraints first.

You can usually do better by choosing an order dynamically as the
search proceeds.

» Most constrained variable
when doing forward-checking, pick variahle with fewest legal
values to assign next (minimizes branching factor)

= Least constraining value
choose value that rules out the fewest values from neighboring
domains

E.g. this comhination improves feasible n-queens performance from
about n = 30 with just FC to abhout n = 1000 with FC & ordering.

CSP Heuristics: Variable Ordering |

01

CSP Heuristics: Variable Ordering |

Most Constraining Variable

Selecting a variable which contributes to the largest number of
constraints will have the largest effect on the other variables =
Hopefully will prune a larger part of the search

Equivalent to finding the variable that is connected to the largest
number of variables in the constraint graph.

For this state:

Setting variable V; affects 4
variables;

Setting any other variable
affects fewer than 4 variables

CSP Heuristics: Variable Ordering |l

« Minimum Remaining Values (MRYV)

« Selecting the variable that has the least number of
candidate values is most likely to cause a failure early
(“fail-first” heuristic)

V, |V, V.|V, V| V|V,

O) R

@‘oi@ of | 2127 :

V; Is the most constrained variable and is
the most likely to prune the search tree

\
\

\
\\

CSP Heuristics: Value Ordering

« [east Constraining Value

« Choose the value which causes the smallest
reduction in the number of available values for
the neighboring variables

Four colors: D ={R, G, B, Y}

Which value to try next for V,?

G R |?27 |7 |72 |2 |?

105

Which variable should be assigned next?

» Most constrained variable:
— Choose the variable with the fewest legal values
— A.k.a. minimum remaining values (MRV) heuristic

NT| q

SA
NSW

WA

106

Which variable should be assigned next?

» Most constraining variable:

— Choose the variable that imposes the most constraints
on the remaining variables

— Tie-breaker among most constrained variables

NT|

WA S

NSW

107

Given a variable, what should be the order of values?

» Choose the least constraining value:

— The value that rules out the fewest values in the remaining
variables

= .

NT - | I
WA \— Q —_—
NSW
V

