
1

Constraint Satisfaction

Problems

Fundamentals of Artificial Intelligence

Slides are mostly adapted from AIMA, MIT Open Courseware

Svetlana Lazebnik (UIUC) and Manuela Veloso (CMU)

2

3

What is search for?

• Assumptions: single agent,

deterministic, fully observable,

discrete environment

• Search for planning

– The path to the goal is the important

thing

– Paths have various costs, depths

• Search for assignment

– Assign values to variables while

respecting certain constraints

– The goal (complete, consistent

assignment) is the important thing

4

Constraint satisfaction problems (CSPs)

• Definition:

– State is defined by variables Xi with values from domain Di

– Goal test is a set of constraints specifying allowable

combinations of values for subsets of variables

– Solution is a complete, consistent assignment

• How does this compare to the “generic” tree search

formulation?

– A more structured representation for states, expressed in a

formal representation language

– Allows useful general-purpose algorithms with more power

than standard search algorithms

5

7

Varieties of CSPs

• Discrete variables

– finite domains:

• n variables, domain size d -> O(dn) complete assignments

• e.g., Boolean CSPs, incl.~Boolean satisfiability (NP-complete)

– infinite domains:

• integers, strings, etc.

• e.g., job scheduling, variables are start/end days for each job

• need a constraint language, e.g., StartJob1 + 5 ≤ StartJob3

• Continuous variables

– e.g., start/end times for Hubble Space Telescope observations

– linear constraints solvable in polynomial time by linear programming

8

CSP definition

CSP = {V, D, C}

• Variables: V = {V1,..,VN}

– Example: The values of the nodes in the graph

• Domain: The set of d values that each variable can take

– Example: D = {R, G, B}

• Constraints: C = {C1,..,CK}

• Each constraint consists of a tuple of variables and a list of values

that the tuple is allowed to take for this problem

– Example: [(V2,V3),{(R,B),(R,G),(B,R),(B,G),(G,R),(G,B)}]

• Constraints are usually defined implicitly a A function is defined to

test if a tuple of variables satisfies the constraint

– Example: Vi ≠ Vj for every edge (i,j)

Unary constraints involve a single variable,

– e.g., SA ≠ green

Binary constraints involve pairs of variables,

– e.g., SA ≠ WA

9

10

Graph Coloring

11

Graph Coloring

12

Example: Map Coloring

• Variables: WA, NT, Q, NSW, V, SA, T

• Domains: {red, green, blue}

• Constraints: adjacent regions must have different colors

e.g., WA ≠ NT, or (WA, NT) in {(red, green), (red, blue),

(green, red), (green, blue), (blue, red), (blue, green)}

13

Example: Map Coloring

• Solutions are complete and consistent assignments, e.g.,

WA = red, NT = green, Q = red, NSW = green,

V = red, SA = blue, T = green

14

Example: n-queens problem

• Put n queens on an n × n board with no two queens on the

same row, column, or diagonal

15

N-Queens:

• Variables: Qi

• Domains: {1, … , N}

• Constraints:

 i, j non-threatening (Qi , Qj)
Q2

Q1

Q3

Q4

16

N- Queens

17

Alternative formulation

18

Example: N-Queens

• Variables: Xij

• Domains: {0, 1}

• Constraints:

i,j Xij = N

(Xij, Xik) {(0, 0), (0, 1), (1, 0)}

(Xij, Xkj) {(0, 0), (0, 1), (1, 0)}

(Xij, Xi+k, j+k) {(0, 0), (0, 1), (1, 0)}

(Xij, Xi+k, j–k) {(0, 0), (0, 1), (1, 0)}

Xij

19

Example: Sudoku

• Variables: Xij

• Domains: {1, 2, …, 9}

• Constraints:

Alldiff(Xij in the same unit)

Xij

20

Example: Cryptarithmetic

• Variables: T, W, O, F, U, R

X1, X2

• Domains: {0, 1, 2, …, 9}

• Constraints:

O + O = R + 10 * X1

W + W + X1 = U + 10 * X2

T + T + X2 = O + 10 * F

Alldiff(T, W, O, F, U, R)

T ≠ 0, F ≠ 0

X2 X1

24

Real-world CSPs

• Assignment problems

– e.g., who teaches what class

• Timetable problems

– e.g., which class is offered when and where?

• Transportation scheduling

• Factory scheduling

• More examples of CSPs: http://www.csplib.org/

http://www.csplib.org/

25

27

28

29

30

31

Standard search formulation (incremental)

• States:

– Variables and values assigned so far

• Initial state:

– The empty assignment

• Action:

– Choose any unassigned variable and assign to it a value

that does not violate any constraints

• Fail if no legal assignments

• Goal test:

– The current assignment is complete and satisfies all

constraints

32

CSP as a Standard search problem

33

CSP as a Standard search problem

34

35

36

Standard search formulation (incremental)

• What is the depth of any solution (assuming n variables)?

n (this is good)

• Given that there are m possible values for any variable,

how many paths are there in the search tree?

n! · mn (this is bad)

• How can we reduce the branching factor?

37

38

Backtracking DFS

For every possible value x in D:

– If assigning x to the next unassigned variable

Vk+1 does not violate any constraint with the k

already assigned variables:

• Set the variable Vk+1 to x

• Evaluate the successors of the current state with this variable

assignment

• If no valid assignment is found:

Backtrack to previous state

• Stop as soon as a solution is found

39

40

Backtracking search algorithm

41

Example

42

Example

43

Example

44

Example

46

Improving Backtracking Efficiency

• Making backtracking search efficient:

– Can we detect inevitable failure early?

– Which variable should be assigned next?

– In what order should its values be tried?

47

Early detection of failure

Apply inference to reduce the space of possible

assignments and detect failure early

48

Early detection of failure: Forward checking

• Keep track of remaining legal values for unassigned variables

• Terminate search when any variable has no legal values

49

Early detection of failure

Apply inference to reduce the space of possible

assignments and detect failure early

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

Early detection of failure: Forward checking

• Keep track of remaining legal values for unassigned variables

• Terminate search when any variable has no legal values

85

Early detection of failure: Forward checking

• Keep track of remaining legal values for unassigned variables

• Terminate search when any variable has no legal values

86

Early detection of failure: Forward checking

• Keep track of remaining legal values for unassigned variables

• Terminate search when any variable has no legal values

87

Early detection of failure: Forward checking

• Keep track of remaining legal values for unassigned variables
• Terminate search when any variable has no legal values

88

Constraint propagation

• Forward checking propagates information from assigned to

unassigned variables, but doesn't provide early detection for all

failures

• NT and SA cannot both be blue!

• Constraint propagation repeatedly enforces constraints locally

89

• Simplest form of propagation makes each pair of variables

consistent:

– X Y is consistent iff for every value of X there is some allowed value of Y

Arc consistency

Consistent!

91

• Simplest form of propagation makes each pair of variables

consistent:

– X Y is consistent iff for every value of X there is some allowed value of Y

– When checking X Y, throw out any values of X for which there isn’t an

allowed value of Y

• If X loses a value, all pairs Z X need to be rechecked

Arc consistency

92

Arc consistency

• Simplest form of propagation makes each pair of variables

consistent:

– X Y is consistent iff for every value of X there is some allowed value of Y

– When checking X Y, throw out any values of X for which there isn’t an

allowed value of Y

• If X loses a value, all pairs Z X need to be rechecked

93

Arc consistency

• Simplest form of propagation makes each pair of variables

consistent:

– X Y is consistent iff for every value of X there is some allowed value of Y

– When checking X Y, throw out any values of X for which there isn’t an

allowed value of Y

• If X loses a value, all pairs Z X need to be rechecked

94

• Simplest form of propagation makes each pair of variables

consistent:

– X Y is consistent iff for every value of X there is some allowed value of Y

– When checking X Y, throw out any values of X for which there isn’t an

allowed value of Y

Arc consistency

95

• Simplest form of propagation makes each pair of variables

consistent:

– X Y is consistent iff for every value of X there is some allowed value of Y

– When checking X Y, throw out any values of X for which there isn’t an

allowed value of Y

• Arc consistency detects failure earlier than forward checking
• Can be run before or after each assignment

Arc consistency

96

Arc consistency algorithm AC-3

97

98

99

100

101

102

103

104

105

Which variable should be assigned next?

• Most constrained variable:

– Choose the variable with the fewest legal values

– A.k.a. minimum remaining values (MRV) heuristic

106

Which variable should be assigned next?

• Most constraining variable:

– Choose the variable that imposes the most constraints

on the remaining variables

– Tie-breaker among most constrained variables

107

Given a variable, what should be the order of values?

• Choose the least constraining value:

– The value that rules out the fewest values in the remaining

variables

Which

assignment for

Q should we

choose?

