
1

CS461 Artificial Intelligence © Pinar
Duygulu Spring

2008

First Order Logic

Artificial Intelligence

Slides are mostly adapted from AIMA and MIT Open Courseware,

and Milos Hauskrecht (U. Pittsburgh)

2

Pros and cons of propositional logic

☺ Propositional logic is declarative

☺ Propositional logic allows partial/disjunctive/negated
information
– (unlike most data structures and databases)

☺ Propositional logic is compositional:
– meaning of B1,1  P1,2 is derived from meaning of B1,1 and of P1,2

☺ Meaning in propositional logic is context-independent
– (unlike natural language, where meaning depends on context)

 Propositional logic has very limited expressive power
– (unlike natural language)

– E.g., cannot say "pits cause breezes in adjacent squares“

• except by writing one sentence for each square

3

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

4

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

5

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

6

First Order Logic

7

First-order logic

• First-order logic (like natural language) assumes the
world contains

– Objects: people, houses, numbers, colors, baseball games,
wars, …

– Relations: red, round, prime, brother of, bigger than, part
of, comes between, …

– Functions: father of, best friend, one more than, plus,

• (relations in which there is only one value for a given input)

8

FOL Motivation

9

Syntax of FOL: Basic elements

• Constants : KingJohn, 2, ...

• Predicates: Brother, >,...

• Functions : Sqrt, LeftLegOf,...

• Variables x, y, a, b,...

• Connectives , , , , 

• Equality =

• Quantifiers , 

10

Atomic sentences

Term = function (term1,...,termn)

or constant

or variable

Atomic sentence = predicate (term1,...,termn)

or term1 = term2

• E.g., Brother(KingJohn,RichardTheLionheart)

• > (Length(LeftLegOf(Richard)), Length(LeftLegOf(KingJohn)))

11

Complex sentences

Complex sentences are made from atomic sentences using

connectives

S, S1 S2, S1  S2, S1 S2, S1 S2,

E.g.

Sibling(KingJohn,Richard)  Sibling(Richard,KingJohn)

>(1,2)  ≤ (1,2)

>(1,2)   >(1,2)

12

Quantifiers

Universal quantification,  (pronounced as “For all”)

 x Cat(x)  Mammal(x)

All cats are mammals

Existential quantification,  (pronounced as “There exists”)

 x Sister (x, Spot)  Cat(x)

Spot has a sister who is a cat

• x P is true in a model m

iff P is true with x being each possible object in the model

• x P is true in a model m

iff P is true with x being some possible object in the model

13

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

14

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

15

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

16

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

17

Truth in first-order logic

• Sentences are true with respect to a model and an interpretation

• Model contains objects (domain elements) and relations among them

• An atomic sentence predicate(term1,...,termn) is true

iff the objects referred to by term1,...,termn

are in the relation referred to by predicate

• Interpretation specifies referents for

constant symbols → objects

predicate symbols → relations

function symbols → functional relations

18

Interpretation

19

Models for FOL: Example

20

Semantics

21

Semantics

22

Universal quantification

 <variables> <sentence>

All Kings are persons:

x King(x)  Person(x)

x P is true in a model m

iff P is true with x being each possible object in the model

Roughly speaking, equivalent to the conjunction of instantiations of P

Richard the Lionheart is a king  Richard the Lionheart is a person

 King John is a king  King John is a person

 Richard’s left leg is a king  Richard’s left leg is a person

 John’s left leg is a king  John’s left leg is a person

 The crown is a king  The crown is a person

23

A common mistake to avoid

• Typically,  is the main connective with 

x King(x)  Person(x)

• Common mistake: using  as the main connective with :

x King(x)  Person(x)

means “Everyone is a king and everyone is a person”

Richard the Lionheart is a king  Richard the Lionheart is a person

 King John is a king  King John is a person

 Richard’s left leg is a king  Richard’s left leg is a person

 John’s left leg is a king  John’s left leg is a person

 The crown is a king  The crown is a person

24

Existential quantification

<variables> <sentence>

x Crown(x)  OnHead(x,John)

x P is true in a model m

iff P is true with x being some possible object in the model

Roughly speaking, equivalent to the disjunction of

instantiations of P

The crown is a crown  the crown is on John’s head

 Richard the Lionheart is a crown  Richard the Lionheart is on John’s head

 King John is a crown  King John is on John’s head

 ...

25

Another common mistake to avoid

• Typically,  is the main connective with 

• x Crown(x)  OnHead(x,John)

• Common mistake: using  as the main connective with :

x Crown(x)  OnHead(x,John)

is true even if there is anything which is not a crown

The crown is a crown  the crown is on John’s head

 Richard the Lionheart is a crown  Richard the Lionheart is on John’s head

 King John is a crown  King John is on John’s head

26

Properties of quantifiers

x y is the same as y x, and can be written as x,y

x y is the same as y x , and can be written as x,y

x y is not the same as y x

y x Loves(x,y)
– “Everyone in the world is loved by at least one person”

x y Loves(x,y)
– “There is a person who loves everyone in the world”

x y P(x,y) : every object in the universe has a particular property, given by P

x y P(x,y) : there is some object in the world that has a particular property

Rule: the variable belongs to the innermost quantifier that mentions it

x [Cat(x) V (x Brother(Richard,x))]

x [Cat(x) V (z Brother(Richard,z))]

27

Properties of quantifiers

• Quantifier duality: each can be expressed using the other

x Likes(x,Broccoli) = x Likes(x,Broccoli)

x Likes(x,IceCream) = x Likes(x,IceCream)

• De Morgan’s rules for quantifiers:

x P = x P

 x P = x  P

x P = x  P

 x P = x P

28

Equality

• term1 = term2 is true under a given interpretation if

and only if term1 and term2 refer to the same object

• E.g., definition of Sibling in terms of Parent:

x,y Sibling(x,y)  [(x = y)  m,f  (m = f) 

Parent(m,x)  Parent(f,x)  Parent(m,y)  Parent(f,y)]

29

Writing FOL

There is somebody who is loved by everybody

30

Writing FOL

31

Using FOL

The kinship domain:

• Brothers are siblings

x,y Brother(x,y)  Sibling(x,y)

• One's mother is one's female parent

m,c Mother(c) = m  (Female(m)  Parent(m,c))

• “Sibling” is symmetric

x,y Sibling(x,y)  Sibling(y,x)

• One's husband is one's male spouse

w,h Husband(h,w)  (Male(m)  Spouse(h,w))

• Sibling is another child of one’s parents

x,y Sibling(x,y)  [(x = y)  m,f  (m = f)  Parent(m,x) 

Parent(f,x)  Parent(m,y)  Parent(f,y)]

32

Inference in

First Order Logic

Artificial Intelligence

Slides are mostly adapted from AIMA and MIT Open Courseware,

Milos Hauskrecht (U. Pittsburgh)

and Max Welling (UC Irvine)

33

Logical Inference

34

Inference in Propositional Logic

35

Inference in FOL : Truth Table Approach

37

Inference Rules

38

Sentences with variables

39

Sentences with variables

40

Variable Substitutions

SUBST(θ, α)θ =

41

Universal elimination

• Every instantiation of a universally quantified sentence is entailed by it:

v α
Subst({v/g}, α)

for any variable v and ground term g

• E.g., x King(x)  Greedy(x)  Evil(x) yields:

King(John)  Greedy(John)  Evil(John), {x/John}

King(Richard)  Greedy(Richard)  Evil(Richard), {x/Richard}

King(Father(John))  Greedy(Father(John))  Evil(Father(John)),

{x/Father(John)}

.

.

{x/Ben}

42

Existential elimination

• For any sentence α, variable v, and constant symbol k that does not
appear elsewhere in the knowledge base:

v α

Subst({v/k}, α)

• E.g., x Crown(x)  OnHead(x,John) yields:

Crown(C1)  OnHead(C1,John)

provided C1 is a new constant symbol, called a Skolem constant

43

Inference rules for quantifiers

α
v Subst({g/v}, α)

44

Example Proof

• The law says that it is a crime for an American to sell weapons to
hostile nations. The country Nono, an enemy of America, has some
missiles, and all of its missiles were sold to it by Colonel West, who is
American.

• Prove that Col. West is a criminal

45

Example knowledge base contd.

... it is a crime for an American to sell weapons to hostile nations:

x,y,z American(x)  Weapon(y)  Sells(x,y,z)  Nation(z)  Hostile(z)  Criminal(x)

Nono … has some missiles, i.e.,

x Owns(Nono,x)  Missile(x):

… all of its missiles were sold to it by Colonel West

x Missile(x)  Owns(Nono,x)  Sells(West,x,Nono)

Missiles are weapons:

 x Missile(x)  Weapon(x)

An enemy of America counts as "hostile“:

x Enemy(x,America)  Hostile(x)

West, who is American …

American(West)

The country Nono

Nation(Nono)

Nono, an enemy of America …

Enemy(Nono,America), Nation(America)

46

Example knowledge base contd.

1.  x,y,z American(x)  Weapon(y)  Sells(x,y,z)  Nation(z)  Hostile(z)  Criminal(x)

2. x Owns(Nono,x)  Missile(x):

3. x Missile(x)  Owns(Nono,x)  Sells(West,x,Nono)

4.  x Missile(x)  Weapon(x)

5. x Enemy(x,America)  Hostile(x)

6. American(West)

7. Nation(Nono)

8. Enemy(Nono,America)

9. Nation(America)

10. Owns(Nono,M1) and Missile(M1) Existential elimination 2

11. Owns(Nono,M1) And elimination 10

12. Missile(M1) And elimination 10

13. Missile(M1)  Weapon(M1) Universal elimination 4

14. Weapon(M1) Modus Ponens, 12, 13

15. Missile(M1)  Owns(Nono,M1)  Sells(West,M1,Nono) Universal Elimination 3

16. Sells(West,M1,Nono) Modus Ponens 10,15

17. American(West)  Weapon(M1)  Sells(West,M1,Nono)  Nation(Nono)  Hostile(Nono)  Criminal(Nono) Universal
elimination, three times 1

18. Enemy(Nono,America)  Hostile(Nono) Universal Elimination 5

19. Hostile(Nono) Modus Ponens 8, 18

20. American(West)  Weapon(M1)  Sells(West,M1,Nono)  Nation(Nono)  Hostile(Nono) And Introduction 6,7,14,16,19

21. Criminal(West) Modus Ponens 17, 20

48

Reduction to propositional inference

Suppose the KB contains just the following:

x King(x)  Greedy(x)  Evil(x)

King(John)

Greedy(John)

Brother(Richard,John)

• Instantiating the universal sentence in all possible ways (there are only two ground
terms: John and Richard) , we have:

King(John)  Greedy(John)  Evil(John)

King(Richard)  Greedy(Richard)  Evil(Richard)

King(John)

Greedy(John)

Brother(Richard,John)

• The new KB is propositionalized: proposition symbols are

King(John), Greedy(John), Evil(John), King(Richard), etc.

49

Reduction contd.

• Every FOL KB can be propositionalized so as to preserve

entailment
– A ground sentence is entailed by new KB iff entailed by original KB

• Idea for doing inference in FOL:
– propositionalize KB and query

– apply inference

– return result

• Problem: with function symbols, there are infinitely many

ground terms,
– e.g., Father(Father(Father(John))), etc

50

Reduction contd.

Theorem: Herbrand (1930). If a sentence α is entailed by an FOL KB, it is entailed
by a finite subset of the propositionalized KB

Idea: For n = 0 to ∞ do

create a propositional KB by instantiating with depth-n terms

see if α is entailed by this KB

Problem: works if α is entailed, loops if α is not entailed

Theorem: Turing (1936), Church (1936)

Entailment for FOL is semidecidable (algorithms exist that say yes to every
entailed sentence, but no algorithm exists that also says no to every
nonentailed sentence.)

51

Problems with propositionalization

• Propositionalization seems to generate lots of irrelevant sentences.

• E.g., from:

x King(x)  Greedy(x)  Evil(x)

King(John)

y Greedy(y)

Brother(Richard,John)

• it seems obvious that Evil(John) is entailed, but propositionalization produces
lots of facts such as Greedy(Richard) that are irrelevant

• With p k-ary predicates and n constants, there are p·nk instantiations.

• Lets see if we can do inference directly with FOL sentences

53

Generalized Modus Ponens (GMP)

p1', p2', … , pn', (p1  p2  …  pn q)

Subst(θ,q)

Example: x King(x)  Greedy(x)  Evil(x)

p1' is King(John) p1 is King(x)

p2' is Greedy(y) p2 is Greedy(x)

θ is {x/John, y/John} q is Evil(x)

Subst(θ,q) is Evil(John)

Example:x Missile(x)  Owns(Nono,x)  Sells(West,x,Nono)

p1' is Missile(M1) p1 is Missile(x)

p2' is Owns(y, M1) p2 is Owns(Nono,x)

θ is {x/M1, y/Nono} q is Sells(West, Nono, x)

Subst(θ,q) is Sells(West, Nono, M1)

• Implicit assumption that all variables universally quantified

where we can unify pi‘ and pi for all i

i.e. pi'θ = pi θ for all i

GMP used with KB of definite clauses (exactly one positive literal)

54

Soundness and completeness of GMP

• Need to show that p1', …, pn', (p1  …  pn  q) ╞ qθ

provided that pi'θ = piθ for all I

• Lemma: For any sentence p, we have p ╞ pθ by UI

1. (p1  …  pn  q) ╞ (p1  …  pn  q)θ = (p1θ  …  pnθ  qθ)

2. p1', \; …, \;pn' ╞ p1'  …  pn' ╞ p1'θ  …  pn'θ

3. From 1 and 2, qθ follows by ordinary Modus Ponens

GMP is sound

Only derives sentences that are logically entailed

GMP is complete for a KB consisting of definite clauses
– Complete: derives all sentences that entailed

– OR…answers every query whose answers are entailed by such a KB

–

– Definite clause: disjunction of literals of which exactly 1 is positive,

e.g., King(x) AND Greedy(x) -> Evil(x)

NOT(King(x)) OR NOT(Greedy(x)) OR Evil(x)

55

Generalized Modus Ponens (GMP)

p1', p2', … , pn', (p1  p2  …  pn q)

Subst(θ,q)

Convert each sentence into cannonical form prior to inference:

Either an atomic sentence or an implication with a conjunction of

atomic sentences on the left hand side and a single atom on the right

(Horn clauses)

56

Unification

57

Unification

59

Unification

• We can get the inference immediately if we can find a substitution θ such that
King(x) and Greedy(x) match King(John) and Greedy(y)

θ = {x/John,y/John} works

• Unify(α,β) = θ if αθ = βθ

p q θ

Knows(John,x) Knows(John,Jane) {x/Jane}}

Knows(John,x) Knows(y, Elizabeth) {x/ Elizabeth,y/John}}

Knows(John,x) Knows(y,Mother(y)) {y/John,x/Mother(John)}}

Knows(John,x) Knows(x, Elizabeth) {fail}

• Standardizing apart eliminates overlap of variables,
e.g., Knows(z17, Elizabeth)

60

Unification

• To unify Knows(John,x) and Knows(y,z),

θ = {y/John, x/z } or θ = {y/John, x/John, z/John}

• The first unifier is more general than the second.

• Most general unifier is the substitution that makes the least
commitment about the bindings of the variables

• There is a single most general unifier (MGU) that is unique
up to renaming of variables.

MGU = { y/John, x/z }

61

The unification algorithm

62

The unification algorithm

63

Example knowledge base revisited

1.  x,y,z American(x)  Weapon(y)  Sells(x,y,z)  Nation(z)  Hostile(z)  Criminal(x)

2. x Owns(Nono,x)  Missile(x):

3. x Missile(x)  Owns(Nono,x)  Sells(West,x,Nono)

4.  x Missile(x)  Weapon(x)

5. x Enemy(x,America)  Hostile(x)

6. American(West)

7. Nation(Nono)

8. Enemy(Nono,America)

9. Nation(America)

Convert the sentences into Horn form

1. American(x)  Weapon(y)  Sells(x,y,z)  Nation(z)  Hostile(z)  Criminal(x)

2. Owns(Nono,M1)

3. Missile(M1)

4. Missile(x)  Owns(Nono,x)  Sells(West,x,Nono)

5. Missile(x)  Weapon(x)

6. Enemy(x,America)  Hostile(x)

7. American(West)

8. Nation(Nono)

9. Enemy(Nono,America)

10. Nation(America)

11. Proof

12. Weapon(M1)

13. Hostile(Nono)

14. Sells(West,M1,Nono)

15. Criminal(West)

64

Inference appoaches in FOL

• Forward-chaining

– Uses GMP to add new atomic sentences

– Useful for systems that make inferences as information streams in

– Requires KB to be in form of first-order definite clauses

• Backward-chaining

– Works backwards from a query to try to construct a proof

– Can suffer from repeated states and incompleteness

– Useful for query-driven inference

• Note that these methods are generalizations of their propositional equivalents

65

Forward chaining algorithm

66

Forward chaining proof

67

Forward chaining proof

68

Forward chaining proof

69

Properties of forward chaining

• Sound and complete for first-order definite clauses

• Datalog = first-order definite clauses + no functions

• FC terminates for Datalog in finite number of iterations

• May not terminate in general if α is not entailed

• This is unavoidable: entailment with definite clauses is
semidecidable

70

Efficiency of forward chaining

Incremental forward chaining: no need to match a rule on iteration k if a
premise wasn't added on iteration k-1

 match each rule whose premise contains a newly added positive literal

Matching itself can be expensive:

Database indexing allows O(1) retrieval of known facts

– e.g., query Missile(x) retrieves Missile(M1)

Forward chaining is widely used in deductive databases

71

Backward chaining algorithm

SUBST(COMPOSE(θ1, θ2), p) =
SUBST(θ2, SUBST(θ1, p))

72

Backward chaining example

73

Backward chaining example

74

Backward chaining example

75

Backward chaining example

76

Backward chaining example

77

Backward chaining example

78

Backward chaining example

79

Backward chaining example

80

Properties of backward chaining

• Depth-first recursive proof search: space is linear
in size of proof

• Incomplete due to infinite loops

–  fix by checking current goal against every goal on
stack

• Inefficient due to repeated subgoals (both success
and failure)

–  fix using caching of previous results (extra space)

• Widely used for logic programming

81

Logic programming: Prolog

• Algorithm = Logic + Control

• Basis: backward chaining with Horn clauses + bells & whistles

• Program = set of clauses = head :- literal1, … literaln.

criminal(X) :- american(X), weapon(Y), sells(X,Y,Z), hostile(Z).

• Depth-first, left-to-right backward chaining

• Built-in predicates for arithmetic etc., e.g., X is Y*Z+3

• Built-in predicates that have side effects (e.g., input and output

• predicates, assert/retract predicates)

• Closed-world assumption ("negation as failure")

– e.g., given alive(X) :- not dead(X).

– alive(joe) succeeds if dead(joe) fails

82

Resolution in

First Order Logic

Artificial Intelligence

Slides are mostly adapted from AIMA and MIT Open Courseware

and Milos Hauskrecht (U. Pittsburgh)

83

Resolution Inference Rule

84

First Order Resolution

85

Clausal Form

86

Converting to Clausal Form

Also move all quantifiers left

87

Converting to Clausal Form - Skolemization

88

Converting to Clausal Form - Skolemization

89

Converting to Clausal Form

90

Inference with resolution rule

91

92

Dealing with Equality

93

Example

94

More examples

95

First Order Resolution

96

Substitutions

97

Unification

98

Most General Unifier

99

Unification Algorithm

100

Unify-var subroutine

101

Examples

102

Resolution with Variables

103

Curiosity Killed the Cat

104

Proving Validity

105

Example

106

Example

107

Green’s Trick

108

Equality

109

Proof Example

110

The Clauses

111

The Query

112

The Proof

113

Hat of D

114

Who is Jane’s Lower

	Slide 1: First Order Logic
	Slide 2: Pros and cons of propositional logic
	Slide 3
	Slide 4
	Slide 5
	Slide 6: First Order Logic
	Slide 7: First-order logic
	Slide 8: FOL Motivation
	Slide 9: Syntax of FOL: Basic elements
	Slide 10: Atomic sentences
	Slide 11: Complex sentences
	Slide 12: Quantifiers
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17: Truth in first-order logic
	Slide 18: Interpretation
	Slide 19: Models for FOL: Example
	Slide 20: Semantics
	Slide 21: Semantics
	Slide 22: Universal quantification
	Slide 23: A common mistake to avoid
	Slide 24: Existential quantification
	Slide 25: Another common mistake to avoid
	Slide 26: Properties of quantifiers
	Slide 27: Properties of quantifiers
	Slide 28: Equality
	Slide 29: Writing FOL
	Slide 30: Writing FOL
	Slide 31: Using FOL
	Slide 32: Inference in First Order Logic
	Slide 33: Logical Inference
	Slide 34: Inference in Propositional Logic
	Slide 35: Inference in FOL : Truth Table Approach
	Slide 37: Inference Rules
	Slide 38: Sentences with variables
	Slide 39: Sentences with variables
	Slide 40: Variable Substitutions
	Slide 41: Universal elimination
	Slide 42: Existential elimination
	Slide 43: Inference rules for quantifiers
	Slide 44: Example Proof
	Slide 45: Example knowledge base contd.
	Slide 46: Example knowledge base contd.
	Slide 48: Reduction to propositional inference
	Slide 49: Reduction contd.
	Slide 50: Reduction contd.
	Slide 51: Problems with propositionalization
	Slide 53: Generalized Modus Ponens (GMP)
	Slide 54: Soundness and completeness of GMP
	Slide 55: Generalized Modus Ponens (GMP)
	Slide 56: Unification
	Slide 57: Unification
	Slide 59: Unification
	Slide 60: Unification
	Slide 61: The unification algorithm
	Slide 62: The unification algorithm
	Slide 63: Example knowledge base revisited
	Slide 64: Inference appoaches in FOL
	Slide 65: Forward chaining algorithm
	Slide 66: Forward chaining proof
	Slide 67: Forward chaining proof
	Slide 68: Forward chaining proof
	Slide 69: Properties of forward chaining
	Slide 70: Efficiency of forward chaining
	Slide 71: Backward chaining algorithm
	Slide 72: Backward chaining example
	Slide 73: Backward chaining example
	Slide 74: Backward chaining example
	Slide 75: Backward chaining example
	Slide 76: Backward chaining example
	Slide 77: Backward chaining example
	Slide 78: Backward chaining example
	Slide 79: Backward chaining example
	Slide 80: Properties of backward chaining
	Slide 81: Logic programming: Prolog
	Slide 82: Resolution in First Order Logic
	Slide 83: Resolution Inference Rule
	Slide 84: First Order Resolution
	Slide 85: Clausal Form
	Slide 86: Converting to Clausal Form
	Slide 87: Converting to Clausal Form - Skolemization
	Slide 88: Converting to Clausal Form - Skolemization
	Slide 89: Converting to Clausal Form
	Slide 90: Inference with resolution rule
	Slide 91
	Slide 92: Dealing with Equality
	Slide 93: Example
	Slide 94: More examples
	Slide 95: First Order Resolution
	Slide 96: Substitutions
	Slide 97: Unification
	Slide 98: Most General Unifier
	Slide 99: Unification Algorithm
	Slide 100: Unify-var subroutine
	Slide 101: Examples
	Slide 102: Resolution with Variables
	Slide 103: Curiosity Killed the Cat
	Slide 104: Proving Validity
	Slide 105: Example
	Slide 106: Example
	Slide 107: Green’s Trick
	Slide 108: Equality
	Slide 109: Proof Example
	Slide 110: The Clauses
	Slide 111: The Query
	Slide 112: The Proof
	Slide 113: Hat of D
	Slide 114: Who is Jane’s Lower

