First Order Logic

Artificial Intelligence

Slides are mostly adapted from AIMA and MIT Open Courseware,
and Milos Hauskrecht (U. Pittsburgh)

Pros and cons of propositional logic

© Propositional logic is declarative
© Propositional logic allows partial/disjunctive/negated
Information
— (unlike most data structures and databases)
© Propositional logic is compositional:
— meaning of B, ; A P, Is derived from meaning of B, ; and of P, ,
© Meaning in propositional logic is context-independent
— (unlike natural language, where meaning depends on context)
@ Propositional logic has very limited expressive power
— (unlike natural language)

— E.g., cannot say "pits cause breezes in adjacent squares*
* except by writing one sentence for each square

Logic Puzzles

e Gilderoy, Minerva, Pomona and Horace each belong
to a different one of the four houses: Gryffindor,
Hufflepuff, Ravenclaw, and Slytherin House.

e Gilderoy belongs to Gryffindor or Ravenclaw.
e Pomona does not belong in Slytherin.

e Minerva belongs to Gryffindor.

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

Logic Puzzles

Propositional Symbols

GilderoyGryffindor MinervaGryffindor
GilderoyHufflepuff MinervaHufflepuff
GilderoyRavenclaw MinervaRavenclaw
GilderoySlytherin MinervaSlytherin
PomonaGryffindor HoraceGryffindor
PomonaHufflepuff HoraceHufflepuff
PomonaRavenclaw HoraceRavenclaw
PomonaSiytherin HoraceSlytherin

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

Logic Puzzles

(PomonaSlytherin — —~PomonaHufflepuff)

(MinervaRavenclaw — —GilderoyRavenclaw)

(GilderoyGryffindor v GilderoyRavenclaw)

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

First Order Logic

* Propositional logic only deals with “facts”,
statements that may or may not be true of the
world, e.g., "It is raining”, But, one cannot have
variables that stand for books or tables.

e In first-order logic, variables refer to things in the
world and, furthermore, you can quantify over
them: talk about all of them or some of them
without having to name them explicitly.

First-order logic

 First-order logic (like natural language) assumes the
world contains

— Objects: people, houses, numbers, colors, baseball games,
wars, ...

— Relations: red, round, prime, brother of, bigger than, part
of, comes between, ...

— Functions: father of, best friend, one more than, plus,
* (relations in which there is only one value for a given input)

FOL Motivation

Statements that cannot be made in propositional
logic but can be made in FOL

*» When you paint a block with green paint, it
becomes green.

- In propositional logic, one would need a statement
about every single block, one cannot make the general
statement about all blocks.

*» When you sterilize a jar, all the bacteria are
dead.

- In FOL, we can talk about all the bacteria without
naming them explicitly.

* A person is allowed access to this Web site if
they have been formally authorized or they are
known to someone who has access.

Syntax of FOL.: Basic elements

Constants : KingJohn, 2, ...
Predicates: Brother, >,...
Functions : Sgrt, LeftLegOf,...
Variables X, v, a, b,...
Connectives —, = A, V, S
Equality =

Quantifiers v, 3

Atomic sentences

10

Term = function (term,,...,term,)
or constant
or variable

Atomic sentence = predicate (term,,...,term,)

or term, = term,

« E.g., Brother(KingJohn,RichardTheLionheart)
« > (Length(LeftLegOf(Richard)), Length(LeftLegOf(KingJohn)))

Complex sentences

11

Complex sentences are made from atomic sentences using
connectives

E.Q.

Sibling(KingJohn,Richard) = Sibling(Richard,KingJohn)
>(1,2) v <(1,2)

>(1,2) A —=>(1,2)

12

Quantifiers

Universal quantification, ¥V (pronounced as “For all”)
Vv x Cat(x) = Mammal(x)
All cats are mammals

Existential quantification, 3 (pronounced as “There exists”)
3 x Sister (X, Spot) A Cat(x)
Spot has a sister who Is a cat

o VX P istrueinamodel m

Iff P is true with x being each possible object in the model
e dx P istrue ina model m

Iff P is true with x being some possible object in the model

First-Order Logic

Constant Symbol Predicate Symbol

Minerva Person
Pomona House

Horace BelongsTo
Gilderoy

Gryffindor
Hufflepuff
Ravenclaw
Slytherin

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

First-Order Logic

Person(Minerva) Minerva is a person.
House(Gryffindor) Gryffindor is a house.
—~House(Minerva) Minerva is not a house.

Belongs1o(Minerva, Gryffindor)

Minerva belongs to Gryffindor.

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

Universal Quantification

Vx. Belongs1o(x, Gryffindor) —
—Belongs1o(x, Hufflepuff)

For all objects x, If x belongs to Gryffindor,
then x does not belong to Hufflepuff.

Anyone in Gryffindor is not in Hufflepuff.

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

Existential Quantification

dx. House(x) A BelongsTo(Minerva, x)

There exists an object x such that
X IS a house and Minerva belongs to x.

Minerva belongs to a house.

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

Truth In first-order logic

17

« Sentences are true with respect to a model and an interpretation
« Model contains objects (domain elements) and relations among them

« An atomic sentence predicate(termg,...,term_) is true
Iff the objects referred to by term,,...,term_
are in the relation referred to by predicate

* Interpretation specifies referents for
constant symbols — objects
predicate symbols — relations
function symbols — functional relations

18

Interpretation

An interpretation [f1s defined by a mapping to the domain of
discourse D or relations on D

* domain of discourse: a set of objects in the world we represent
and refer to:

An interpretation / maps:
« (Constant symbols to objects in D

l(John) = fj:(”-

« Predicate symbols to relations, properties on D

I(brother) = {(%—?—)(% T }

* Function symbols to functional relations on D

[[fmhsr—ﬂﬂ={<%>—h%; (X =F }

19

Models for FOL: Example

person
erson

ing

{ leftleg

I
\

left leg
\

Semantics

20

Meaning (evaluation) function:
V' :sentence x interpretation — {True | False |

A predicate predicate(term-1, term-2, term-3, term-n) 15 true for
the interpretation [| iff the objects referred to by term-1, term-
2, term-3, term-n are in the relation referred to by predicate

[(John) = % I(Paul) = -?—
I(brother) = {(%%)(% T i }

brother(John, Paul) = < % %) in I(brother)

Vibrother(John, Paul), I = True

21

Semantics

« Equality Viterm-1= term-2, I) = True
T literm-1) =l{term-2)
* Boolean expressions: standard

Eg Visentence-1 v sentence-2, [) = True
T Visentence-1.1y= True or Visentence-2.1y= True

* Quantifications

substitution of x with o
Vivx g, = True st

T forall d « D V(¢.l[xd]y= True

Vidx ¢ , I)= True
T there1sa d € D st V(¢ . Ifx/d]y¥~ True

Universal quantification

22

Y <variables> <sentence>

All Kings are persons:
VX King(x) = Person(x)

VX P 1s true in a model m
Iff P is true with x being each possible object in the model

Roughly speaking, equivalent to the conjunction of instantiations of P

Richard the Lionheart is a king = Richard the Lionheart is a person
A King John is a king = King John is a person
A Richard’s left leg 1s a king = Richard’s left leg 1s a person
A John’s left leg is a king = John’s left leg is a person
A The crown is a king = The crown is a person

A common mistake to avoid

23

 Typically, = Is the main connective with V
VX King(x) = Person(x)

« Common mistake: using A as the main connective with V'
VX King(x) A Person(x)

means “Everyone 1s a king and everyone is a person”
Richard the Lionheart is a king A Richard the Lionheart is a person
A King Johnisa king A King John is a person
A Richard’s left leg is a king A Richard’s left leg 1s a person
A John’s left leg is a king A John’s left leg is a person
A The crown is a king A The crown is a person

Existential quantification

24

J<variables> <sentence>
Ix Crown(x) A OnHead(x,John)

Ix P is true in a model m
Iff P is true with x being some possible object in the model

Roughly speaking, equivalent to the disjunction of
Instantiations of P

The crown Is a crown A the crown is on John’s head

v Richard the Lionheart is a crown A Richard the Lionheart is on John’s head
v King John is a crown A King John is on John’s head

AV

Another common mistake to avoid

25

» Typically, A Is the main connective with 3
« Ix Crown(X) A OnHead(x,John)

« Common mistake: using = as the main connective with 3.

dx Crown(x) = OnHead(x,John)
IS true even If there Is anything which Is not a crown

The crown Is a crown = the crown is on John’s head
v Richard the Lionheart is a crown = Richard the Lionheart is on John’s head
v King John is a crown = King John is on John’s head

Properties of quantifiers

26

VX VY Is the same as Vy VX, and can be written as VXx,y
dx 3y is the same as 3y 3Ix , and can be written as 3x,y

dx Yy Is not the same as Vy 3x
Vy 3x Loves(X,y)

— “Everyone in the world is loved by at least one person”

dx Yy Loves(x,y)

— “There 1s a person who loves everyone in the world”

vx 3y P(X,y) : every object in the universe has a particular property, given by P
dx Vy P(X,y) : there is some object in the world that has a particular property

Rule: the variable belongs to the innermost quantifier that mentions it
vx [Cat(x) V (3x Brother(Richard,x))]
vx [Cat(x) V (3z Brother(Richard,z))]

Properties of quantifiers

27

« Quantifier duality: each can be expressed using the other

3x Likes(x,Broccoli) =—-Vx —Likes(x,Broccoli)
VX Likes(x,IceCream) = —3x —Likes(x,lceCream)

* De Morgan’s rules for quantifiers:

VX =P =—-3dxP
- VXP=3dx—=P
VXP=—-3dx—=P
— VX —=P=3dxP

Equality

28

 term, = term, IS true under a given interpretation If
and only if term; and term, refer to the same object

« E.g., definition of Sibling in terms of Parent:

vx,y Sibling(x,y) < [-(X=y) A AMf—=(Mm=1) A
Parent(m,x) A Parent(f,x) A Parent(m,y) A Parent(f,y)]

29

Writing FOL

e Cats are mammals [Cat!, Mammall]
e ¥ x. Cat(x) -+ Mammal(x)
e Jane is a tall surveyor [Tall!, Surveyor!, Jane]
e Tall(Jane) A Surveyor(Jane)
* A nephew is a sibling’s son [Nephew?, Sibling?, Son?]
* Vxy. [Nephew(x,y) «» 3z . [Sibling(y,z) A Son(x,z)]]
* A maternal grandmother is a mother’s mother
[functions: mgm, mother-of]
e Vxy. x=mgm(y) «
3z. x=mother-of(z) A z=mother-of(y)

Writing FOL

30

e Nobody loves Jane
e ¥X. - Loves(x,Jane)
e -3x. Loves(x,Jane)
» Everybody has a father
e Y x. 3y. Father(y,x)
e Everybody has a father and a mother
e V¥ x. 3 yz. Father(y,x) A Mother(z,x)

e Whoever has a father, has a mother
e ¥V X.[[3y. Father(y,x)] — [3 y. Mother(y,x)]]

Using FOL

31

I'he kinship domain:
 Brothers are siblings
VvX,y Brother(x,y) < Sibling(x,y)
 One's mother Is one's female parent
vm,c Mother(c) = m < (Female(m) A Parent(m,c))
 “Sibling” 1s symmetric
vX,y Sibling(x,y) < Sibling(y,x)
» One's husband Is one's male spouse
vw,h Husband(h,w) < (Male(m) A Spouse(h,w))
* Sibling is another child of one’s parents

vx,y Sibling(x,y) < [-(X=Yy) A dAm,f — (m =) A Parent(m,x) A
Parent(f,x) A Parent(m,y) A Parent(f,y)]

32

Inference In
First Order Logic

Artificial Intelligence

Slides are mostly adapted from AIMA and MIT Open Courseware,

Milos Hauskrecht (U. Pittsburgh)
and Max Welling (UC Irvine)

Logical Inference

33

Logical inference problem:

* Given a knowledge base KB (a set of sentences) and a
sentence & , does the KB semantically entail & ?

KBl=a ?

In other words: In all interpretations in which sentences in the
KB are true, 1s also & true?

Inference In Propositional Logic

34

Computational procedures that answer:

KB |=a ?

Three approaches:
* Truth-table approach

« Inference rules

* (Conversion to the inverse SAT problem

— Resolution-refutation

Inference in FOL : Truth Table Approach

35

* [s the Truth-table approach a viable approach for the FOL?

?
+ NO!
« Why?

* [t would require us to enumerate and list all possible
interpretations I

» [= (assignments of symbols to objects, predicates to relations
and functions to relational mappings)

* Simply there are too many interpretations

Inference Rules

37

* Inference rules from the propositional logic:
— Modus ponens

A= B, A
B

— Resolution

Av B, —=BvC
Av C

— and others: And-introduction, And-elimination, Or-
introduction, Negation elimination

 Additional inference rules are needed for sentences with
quantifiers and variables

Rules must involve variable substitutions

Sentences with variables

38

First-order logic sentences can include variables.
» Variable 1s:
— Bound - if it 1s in the scope of some quantifier
VX Plx)
— Free — 1f 1t 1s not bound.

dx P(y) A Q(x) yis free
Examples:

Vx 3y Likes (x,y)
* Bound

Vx (Likes (x,y) A 3y Likes (y, Raymond))

* Free

Sentences with variables

39

First-order logic sentences can include variables.
* Sentence (formula) is:

— Closed — if 1t has no free variables

vydx P(y) = Q(x)

— Open — if it is not closed

Gx P(y) A Q(x) yis free

— Ground — if it does not have any variables

Likes(John, Jane)

40

Variable Substitutions

 Variables in the sentences can be substituted with terms.
(terms = constants, variables, functions)
* Substitution:

— Is represented by a mapping from variables to terms

0= 1x,/t,x,/t,,...} SUBST(8,)

— Application of the substitution to sentences
SUBST({x/Sam, y/ Pam}, Likes(x,y)) = Likes(Sam, Pam)

SUBST ({x/ z,y/ fatherof (John)}, Likes(x,y)) =
Likes(z, fatherof (John))

Universal elimination

« Every instantiation of a universally guantified sentence is entailed by it:

YV a
Subst({v/g}, a)

for any variable v and ground term g

* E.g., VX King(x) A Greedy(x) = Evil(x) yields:
King(John) A Greedy(John) = Evil(John), {x/John}
King(Richard) A Greedy(Richard) = Evil(Richard), {x/Richard}
King(Father(John)) A Greedy(Father(John)) = Evil(Father(John)),

{x/Father(John)}
Example:
Vx Likes(x, IceCream)
Vx ¢(x)
| {uBen} 5(a)

Likes(Ben, IceCream)

42

Existential elimination

» For any sentence a, variable v, and constant symbol k that does not
appear elsewhere in the knowledge base:

dv a
Subst({v/k}, o)

« E.g., 3x Crown(x) A OnHead(x,John) yields:
Crown(C,) A OnHead(C,,John)

provided C, is a new constant symbol, called a Skolem constant

Ix Kill(x,Victim) » Kill(Murderer, Victim) dx ¢(x)
e g(a)

Special constant called a Skolem constant

dx Crown(x) A OnHead(x,John) -
Crown(C,) A OnHead(C,,John)

Inference rules for quantifiers

43

* Universal instantiation (introduction)
%
Vx ¢

— Introduces a universal variable which does not affect @ or
its assumptions

Sister(Amy, Jane) Vx Sister(Amy, Jane)

x — 1s not free in @

« Existential instantiation (introduction)

¢(a) a — is a ground term in ¢

a
dx@(x) x — 1s not free in ¢ v Subst({g/v}, o)

— Substitutes a ground term 1n the sentence with a variable
and an existential statement

Likes(Ben, IceCream) dx Likes(x, IceCream)

Example Proof

44

« The law says that it is a crime for an American to sell weapons to
hostile nations. The country Nono, an enemy of America, has some

missiles, and all of its missiles were sold to it by Colonel West, who is
American.

 Prove that Col. West iIs a criminal

45

Example knowledge base contd.

... Itis a crime for an American to sell weapons to hostile nations:
vX,y,z American(x) A Weapon(y) 4 Sells(x,y,z) A Nation(z) A Hostile(z) = Criminal(x)
Nono ... has some missiles, i.e.,
Ix Owns(Nono,x) A Missile(x):
... all of its missiles were sold to it by Colonel West
Vvx Missile(x) A Owns(Nono,x) = Sells(West,x,Nono)
Missiles are weapons:
Vv x Missile(x) = Weapon(x)
An enemy of America counts as "hostile*:
VX Enemy(x,America) = Hostile(x)
West, who 1s American ...
American(\West)
The country Nono
Nation(Nono)

Nono, an enemy of America ...
Enemy(Nono,America), Nation(America)

46

Example knowledge base contd.

1. V¥V xy,z American(x) A Weapon(y) 4 Sells(x,y,z) A Nation(z) A Hostile(z) = Criminal(x)
2. 3x Owns(Nono,x) A Missile(x):

3. VX Missile(x) A Owns(Nono,x) = Sells(West,x,Nono)

4. Y x Missile(x) = Weapon(x)

5. VX Enemy(x,America) = Hostile(x)

6. American(\West)

7. Nation(Nono)

8. Enemy(Nono,America)

9. Nation(America)

10. Owns(Nono,M;) and Missile(M,) Existential elimination 2

11. Owns(Nono,M;) And elimination 10

12. Missile(M,) And elimination 10

13. Missile(M1) = Weapon(M1) Universal elimination 4

14. Weapon(M1) Modus Ponens, 12, 13

15. Missile(M1) A Owns(Nono,M1) = Sells(West,M1,Nono) Universal Elimination 3
16. Sells(West,M1,Nono) Modus Ponens 10,15

17. American(West) A Weapon(M1) » Sells(West,M1,Nono) A Nation(Nono) » Hostile(Nono) = Criminal(Nono) Universal
elimination, three times 1

18. Enemy(Nono,America) = Hostile(Nono) Universal Elimination 5

19. Hostile(Nono) Modus Ponens 8, 18

20. American(West) A Weapon(M1) » Sells(West,M1,Nono) A Nation(Nono) A Hostile(Nono) And Introduction 6,7,14,16,19
21. Criminal(West) Modus Ponens 17, 20

Reduction to propositional inference

48

Suppose the KB contains just the following:
VX King(x) A Greedy(x) = Evil(x)
King(John)

Greedy(John)
Brother(Richard,John)

« Instantiating the universal sentence in all possible ways (there are only two ground
terms: John and Richard) , we have:

King(John) A Greedy(John) = Evil(John)
King(Richard) A Greedy(Richard) = Evil(Richard)
King(John)

Greedy(John)

Brother(Richard,John)

« The new KB is propositionalized: proposition symbols are

King(John), Greedy(John), Evil(John), King(Richard), etc.

Reduction contd.

49

» Every FOL KB can be propositionalized so as to preserve

entailment
— A ground sentence is entailed by new KB iff entailed by original KB

 |dea for doing inference in FOL.:

— propositionalize KB and query
— apply inference
— return result

* Problem: with function symbols, there are infinitely many

ground terms,
— e.g., Father(Father(Father(John))), etc

Reduction contd.

50

Theorem: Herbrand (1930). If a sentence a is entailed by an FOL KB, it is entailed
by a finite subset of the propositionalized KB

Idea: Forn=01to o do
create a propositional KB by instantiating with depth-n terms
see if a is entailed by this KB

Problem: works if a is entailed, loops if a is not entailed

Theorem: Turing (1936), Church (1936)

Entailment for FOL is semidecidable (algorithms exist that say yes to every
entailed sentence, but no algorithm exists that also says no to every
nonentailed sentence.)

Problems with propositionalization

51

« Propositionalization seems to generate lots of irrelevant sentences.

 E.g., from:
vx King(x) A Greedy(x) = Evil(x)
King(John)
vy Greedy(y)
Brother(Richard,John)

« it seems obvious that Evil(John) is entailed, but propositionalization produces
lots of facts such as Greedy(Richard) that are irrelevant

 With p k-ary predicates and n constants, there are p-nk instantiations.

« Lets see if we can do inference directly with FOL sentences

53

Generalized Modus Ponens (GMP)

where we can unify p;," and p; for all i
Py Py oo s Py (PL APy A ..o AP, =0) l.e. p'@=p,0foralli

Subst(6,q)
Example: Vx King(x) A Greedy(x) = Evil(x)
p," is King(John) p, is King(x)
P, is Greedy(y) P, is Greedy(x)
0 is {x/John, y/John} q is Evil(x)
Subst(0,q) is Evil(John)

Example:vx Missile(x) A Owns(Nono,x) = Sells(West,x,Nono)

p," is Missile(M1) p, is Missile(x)
p," is Owns(y, M1) P, is Owns(Nono,x)
0 is {x/M1, y/Nono} g is Sells(West, Nono, x)

Subst(0,q) is Sells(West, Nono, M1)

« Implicit assumption that all variables universally quantified
GMP used with KB of definite clauses (exactly one positive literal)

Soundness and completeness of GMP

54

GMP is sound
Only derives sentences that are logically entailed

« Needtoshowthat p;,....p,, (PLA ... AP, =) FQqO
provided that p;'0 = p;0 for all |
. Lemma: For any sentence p, we have p |= po by Ul

L (A Ap,=0) F(PLA . AP, =)0 =(p0 A ... APO= qb)
2. pN L \py |=p1' Ao AP |=p1'0 A ... AP,
3. From1and 2, g6 follows by ordinary Modus Ponens

GMP Is complete for a KB consisting of definite clauses

— Complete: derives all sentences that entailed
— OR...answers every query whose answers are entailed by such a KB
— Definite clause: disjunction of literals of which exactly 1 is positive,
e.g., King(x) AND Greedy(x) -> Evil(x)
NOT(King(x)) OR NOT(Greedy(x)) OR Evil(x)

Generalized Modus Ponens (GMP)

55

Py Py o s P (PLAPIA o AP, =0)
Subst(6,q)

Substitution that satisfies the generalized inference rule can be
build via unification process

Advantage of the generalized rules: they are focused
— only substitutions that allow the inferences to proceed are
tried

Use substitutions that let us make inferences !!!!

Convert each sentence into cannonical form prior to inference:
Either an atomic sentence or an implication with a conjunction of
atomic sentences on the left hand side and a single atom on the right

(Horn clauses)

56

Unification

* Problem in inference: Universal elimination gives us many
opportunities for substituting variables with ground terms

vx ¢(x)
¢(a)

* Solution: make only substitutions that mayv help

d - is a constant symbol

— Use substitutions of “similar’” sentences in KB

* Unification — takes two similar sentences and computes the
substitution that makes them look the same, 1f it exists

UNIFY (p.q)=0c st SUBST(o, p)=SUBST (o0.q9)

Unification

57

« Unification:
UNIFY (p,q)=o0c s.t. SUBST(o,p)=SUBST (0,q)

» Examples:

UNIFY (Knows(John,x), Knows(John, Jane)) = {x/ Jane}
UNIFY(Knows(John,x), Knows(y, Ann)) = {x/ Ann, y/ John}

UNIFY (Knows (John, x), Knows (v, MotherOf (v)))
= {x/ MotherOf (John),y/ John}

UNIFY (Knows (John,x), Knows (x, Elizabeth)) = fail

Unification

« W can get the inference immediately if we can find a substitution 0 such that
King(x) and Greedy(x) match King(John) and Greedy(y)

0 = {x/John,y/John} works

« Unify(a,p) = 0 if 0 = B0

P g 6

Knows(John,x) Knows(John,Jane) {x/Jane}}

Knows(John,x) Knows(y, Elizabeth) {x/ Elizabeth,y/John}}
Knows(John,Xx) Knows(y,Mother(y)) {y/John,x/Mother(John)}}
Knows(John,x) Knows(x, Elizabeth) {fail}

- Standardizing apart eliminates overlap of variables,
e.g., Knows(z,,, Elizabeth)

Unification

60

 To unify Knows(John,x) and Knows(y,z),
0 = {y/John, x/z } or 6 = {y/John, x/John, z/John}

 The first unifier is more general than the second.

« Most general unifier is the substitution that makes the least
commitment about the bindings of the variables

» There is a single most general unifier (MGU) that is unique
up to renaming of variables.

MGU = { y/John, x/z }

The unification algorithm

61

function UNIFY(z, , #) returns a substitution to make x and y identical
inputs: z, a variable, constant, list, or compound
y, a variable, constant, list, or compound
A, the substitution built up so far

if f = failure then return failure
else if = y then return ¢
else if VARIABLE?(z) then return UNIFY-VAR(z, y, #)
else if VARIABLE?(y) then return UNIrFy-VAR(y, . 0)
else if CompouND?(z) and CoMPOUND?(y) then
return UNIFY(ARGS[z], ARGS[y], UNIFY(Or[z], OP[y], #))
else if LisT?(z) and LisT?(y) then
return UNIFY(REST[z], REST[y], UNIFY(FIRST[Z], FIRST[Y], €))
else return failure

The unification algorithm

62

function UNIFY-VAR(var, z,) returns a substitution

inputs: wvar, a variable

I, any expression

A, the substitution built up so far
if {var/val} € 6 then return UNIFY(val, z,6)
else if {z/val} € # then return UNiFy(var, val, 6)
else if OCCUR-CHECK?(var, x) then return failure
else return add {var/z} to ¢

Example knowledge base revisited

63

V Xx,y,z American(x) A Weapon(y) » Sells(x,y,z) A Nation(z) A Hostile(z) = Criminal(x)
3Ix Owns(Nono,x) A Missile(x):

Vvx Missile(x) A Owns(Nono,x) = Sells(West,x,Nono)

vV X Missile(x) = Weapon(x)

Vvx Enemy(x,America) = Hostile(x)

American(West)

Nation(Nono)

Enemy(Nono,America)

Nation(America)

© 0 N o g wDdh e

Convert the sentences into Horn form

American(x) A Weapon(y) A Sells(x,y,z) A Nation(z) A Hostile(z) = Criminal(x)
Owns(Nono,M,)

Missile(M,)

Missile(x) A Owns(Nono,x) = Sells(West,x,Nono)
Missile(x) = Weapon(x)

Enemy(x,America) = Hostile(x)

American(West)

Nation(Nono)

Enemy(Nono,America)

Nation(America)

Proof

Weapon(M1)

Hostile(Nono)

Sells(West,M1,Nono)

© 0o N o gD E

o i e =
> w b e o

-
o

Criminal(West)

Inference appoaches in FOL

64

« Forward-chaining
— Uses GMP to add new atomic sentences
— Useful for systems that make inferences as information streams in
— Requires KB to be in form of first-order definite clauses

« Backward-chaining
— Works backwards from a query to try to construct a proof
— Can suffer from repeated states and incompleteness
— Useful for query-driven inference

* Note that these methods are generalizations of their propositional equivalents

Forward chaining algorithm

65

function FOL-FC-ASkK(KB, @) returns a substitution or false

repeat until new is empty
new+ { }
for each sentence rin KB do
(pyA... A Py = @) STANDARDIZE-APART(r)
for each f such that (p; A ... A p,)8 = (p;{ A ... A\ p)6
for some pi,...,p! in KB
q' + SuBsT(#, q)
if ¢’ is not a renaming of a sentence already in KB or new then do
add ¢’ to new
¢ + UNIFY(q', @)
if ¢ is not fail then return ¢
add new to KB
return false

Forward chaining proof

66

Americani West)

MissileiM 1)

s Nomo, M1)

Enemw Nono America)

Forward chaining proof

67

WeapornM1)

Sells{ Wesr, M1, Nono)

Americani West)

MissileiM 1)

s Nomo, M1)

Haosrilel Nano)

Enemw Nono America)

Forward chaining proof

68

Americani West)

Criminal{ West)
WeaporiM1) Sells{ Wesr, M1, Nono)
MissileiM 1) s Nomo, M1)

Haosrilel Nano)

Enemw Nono America)

Properties of forward chaining

69

« Sound and complete for first-order definite clauses

» Datalog = first-order definite clauses + no functions
« FC terminates for Datalog in finite number of iterations

« May not terminate in general if a Is not entailed

e This is unavoidable: entailment with definite clauses is
semidecidable

Efficiency of forward chaining

70

Incremental forward chaining: no need to match a rule on iterationk if a
premise wasn't added on iteration k-1

= match each rule whose premise contains a newly added positive literal

Matching itself can be expensive:

Database indexing allows O(1) retrieval of known facts
— e.g., query Missile(x) retrieves Missile(M,)

Forward chaining is widely used in deductive databases

Backward chaining algorithm

71

function FOL-BC-ASK(KB, goals, f) returns a set of substitutions
inputs: KB, a knowledge base
goals, a list of conjuncts forming a query
6, the current substitution, initially the empty substitution { }
local variables: ans, a set of substitutions, initially empty

if goals is empty then return {6}
¢' < SUBST(#, FIRST(goals))
for each rin KB where STANDARDIZE-APART(r) = (p1 A ... A pp, = q)
and 6’ + UNIFY(¢q, ¢") succeeds
ans +— FOL-BC-ASK(KB, [p1, ..., pn|REST(goals)], COMPOSE(6, #')) U ans
return ans

SUBST(COMPOSE(#,, 6,), p) =
SUBST(6,, SUBST(0,, p))

Backward chaining example

72

Criminalf West)

Backward chaining example

73

Criminalf West)

{x/West]

R

Americanx)

Weapon y)

Sells(x,v.z)

Hostile(z)

Backward chaining example

74

Criminalf West)

{x/West]

R

American West)

Weapon y)

|

Sells(x,v.z)

Hostile(z)

Backward chaining example

75

Criminalf West)

American West)

Weapon y)

|

Missile(v)

Sells(x,v.z)

{x/West]

Hostile(z)

Backward chaining example

76

Criminalf West)

American West)

Weapon y)

|

Missile(v)

| wMi}]

Sells(x,v.z)

(c/West, WMl |

Hostile(z)

Backward chaining example

77

Criminalf West)

{x/West, wM1, z¥Nono |

Hostile(z)

American West) Weaponi vi Sells{ West M1.z)
|} | z/Vono |
Missile(v) MissileiM) Cwrisi Worneo, M1)

| wMi}]

Backward chaining example

78

Criminalf West)

{x/West, wM1, z¥Nono |

American West) Weaponi vi Sells{ West M1.z) Hostile{ Norno)
|} | z/Vono |
Missile(v) MissileiM) Owns{ Nono, M1) | | Eremw Nono, America)
| w1} L) |] |

Backward chaining example

79

Criminalf West)

{x/West, wM1, z¥Nono |

American West) Weaponi vi Sells{ West M1.z) Hostile{ Norno)
|} | z/Vono |
Missile(v) MissileiM) Owns{ Nono, M1) | | Eremw Nono, America)
| w1} L) |] |

Properties of backward chaining

80

 Depth-first recursive proof search: space is linear
In size of proof
 |Incomplete due to infinite loops

— = fix by checking current goal against every goal on
stack

* |nefficient due to repeated subgoals (both success
and failure)
— = fix using caching of previous results (extra space)

» Widely used for logic programming

Logic programming: Prolog

81

« Algorithm = Logic + Control
« Basis: backward chaining with Horn clauses + bells & whistles

* Program = set of clauses = head :- literal,, .. literal,.

criminal (X) :- american (X), weapon(Y), sells(X,Y,Z2),

» Depth-first, left-to-right backward chaining

» Built-in predicates for arithmetic etc., e.9., X is Y*Z+3

« Built-in predicates that have side effects (e.g., input and output
« predicates, assert/retract predicates)

» Closed-world assumption (*'negation as failure")
— eg.,givenalive (X) :- not dead(X).
— alive (Jjoe) succeeds if dead (joe) fails

hostile (Z) .

82

Resolution In
First Order Logic

Artificial Intelligence

Slides are mostly adapted from AIMA and MIT Open Courseware

and Milos Hauskrecht (U. Pittsburgh)

83

Resolution Inference Rule

* Recall: Resolution inference rule is sound and complete
(refutation-complete) for the propositional logic and CNF

Av B, —=AvC

Bv(C

* Generalized resolution rule is sound and refutation complete
for the first-order logic and CNF w/o equalities (if unsatisfiable
the resolution will find the contradiction)

o =UNIFY (¢,,—w ;) # fail

AN .. NG, YVW, V.. Y,
SUBST(G,§ NV ..V G NPy o NG NYN N N Y

Example: P(x)vO(x), —0O(John)v S(y)
P(John)v S(y)

84

First Order Resolution

¥ x. P(x) = Q(x)
P(A)

Q(A)

Vv X. = P(x) v Q(x)
P(A)

Q(A)

- P(A) v Q(A)
P(A)

Q(A)

Syllogism: uppercase letters:

constants
All men ar ortal
Seiat aiem 7 lowercase letters:

Socrates is mortal

Two new things:

Equivalent by
definition of
implication

e converting FOL to
clausal form

e resolution with
variable substitution

Substitute A for
X, still true

then

Propositional

resolution 6.034 - Spring 03 « 6

Clausal Form

85

e like CNF in outer structure
e no quantifiers

vx. 3y. P(x) > R(x,y)

4

-P(x) vR(x, F(x))

Converting to Clausal Form

86

1. Eliminate arrows
ad e ff=a->pn(f > a)
a—> p=-avp

2. Drive in negation

~av f) = -an-p
—(CZ/\/}) :>—aavﬁﬂ

= A
-VX. @ = IX. -~
—dX. @ = YX. -
3. Rename variables apart

vx. 3y. (=P(x) v 3x. Q(x,y)) =

VX. 3)’2. (—aP(XI) v 3X3. Q(x3l Y2))

Also move all quantifiers left
_ (YxP(x))v(3y O(y)) = Vx Iy P(x)v O(»)

Converting to Clausal Form - Skolemization

87

Skolemization (removal of existential quantifiers through
elimination)

[f no universal quantifier occurs before the existential
quantifier, replace the variable with a new constant symbol

also called Skolem constant
dy P(4A)v Q(y) = P(4)v Q(B)

If a universal quantifier precedes the existential quantifier
replace the variable with a function of the “universal” variable

Vxdy P(x)v O(y)— Vx P(x)v O(F(x))

F(x) - a special function
- called Skolem function

88

Converting to Clausal Form - Skolemization

4. Skolemize
« substitute new name for each existential var

Ix. P(x) = P(Fred)
ix,y.R(x,y) = R(Thingl, Thing2)
3x. P(x) AQ(x) = P(Fleep) A Q(Fleep)
3x. P(x)A3x. Q(x) = P(Frog) A Q(Grog)
Jy. ¥x. Loves(x, y) = ¥x. Loves(x,Englebert)

« substitute new function of all universal vars in
outer scopes
vx. 3y. Loves(x, y) = ¥x. Loves(x, Beloved(x))

Vx. dy. Vz. 3w. P(x,y,z)AR(y,z,w) =
P(x,F(x),z) nR(F(x),z,G(x, 2))

Converting to Clausal Form

89

5. Drop universal quantifiers

vx. Loves(x, Beloved(x)) = Loves(x, Beloved(x))

6. Distribute or over and; return clauses
P(z) v(Q(z,w) AR(w, 2)) =
{{P(2),Q(z,w)},{P(2),R(w,2)}}

7. Rename the variables in each clause

{{P(2),Q(z,w)}, {P(2),R(w,2)}} =
{{P(=,),Q(z,,w;)},{P(=;),R(w;, 2;) } }

Inference with resolution rule

90

* Proof by refutation:
— Provethat KB ,— a 1s unsatisfiable

— resolution 1s refutation-complete

* Main procedure (steps):

1. Convert KB ,— @ to CNF with ground terms and
universal variables only

2. Apply repeatedly the resolution rule while keeping track
and consistency of substitutions

3. Stop when empty set (contradiction) 1s derived or no more
new resolvents (conclusions) follow

91

KB —{L

__:—"-ﬁ""—__

SPW)V Q(9),20() v S(3), P(x)V R(x), ~R()V S(), —S(4)

wh’}

—P(w)v S(w) fx/ wh

S(w)v R(w)

S(w)

s/
Empty resolution
- Contradiction [

92

Dealing with Equality

» Resolution works for the first-order logic without equalities
* To incorporate equalities we need an additional inference rule

* Demodulation rule

o =UNIFY (z,,t,) # fail ~ where z, occurs in 3

AVP..V@, L =L,
SUB(SUBST(o.,t,),SUBST(o,t,), ¢ V...V @,)

« Example: P(f(a)), f(x)=x
P(a)

* Paramodulation rule: more powerful

* Resolution+paramodulation give a refutation-complete
proof theory for FOL

Example

93

a. Juhn owns a duy
3 x. D(x) A O(J,x)
D(Fido) A O(J, Fido)

c. Lovers-of-animals do not kill
animals

¥ x. L(x) = (Vy. A(y) = -~ K(x,y))

b. Anyone who owns a dog is a
lover-of-animals

VX, = LX) v (Vy. A(y) = = K(x,y))

Vx. (3y. D(y) A O(x,y)) — L(x)

v x. (-3 y. (D(y) A O(x,y)) v L(x)

¥Yx. - L{x)v(Vy - A(y) v - K(xy))

¥ x. ¥ v. -(D(y) A O(x,y)) v L(x)

- L(x) v = A(y) v - K(x,Yy)

Vx.¥Vy.=D(y) v-0(xy) v L(x)

= D(y) v - O(x,y) v L(x)

More examples

94

d. Either Jack killed Tuna
or curiosity killed Tuna

K(J,T) v K{(C,T)

2. Tuna is a cat
C(T)

f All cats are ammals

- t:l::-:] vhl{x]

95

First Order Resolution

WX P(x) +Q(x) | Syllogism: parcas latters:
All men are mortal
P(A) e lowercase letters:
Q(A) Socrates is martal Vtiatiies
YV x. = P(x) v Q(x
'F:((A))) Equivalent by
definition of .
O L The key is finding
Q(A) Impcation the correct

substitutions for
Substitute A for the variables.

- P(A) v Q(A) x, still true
P(A) then
Q(A) Propositional

resolution 6.034 - Sprisg 03 « 1

Substitutions

P(x, f(y), B) : an atomic sentence

Substitution Substitution Comment

Instances {vy /by, Vo /to)

P(z, f(w), B) {x/z, y/wW} Alphabetic
variant

P(x, f(A), B) {y/A}

P(g(z), f(A), B) |{x/a(2), y/A}

P(C, f(A), B) {x/C, y/A} Ground instance

Applying a sLbstitution:
P(x, f(y), B) {y/A} = P(x,f(A),B)
P(x, f(y), B) {y/A, x/y} = P(A, f(A), B)

Unification

* Expressions o, and o, are unifiable iff there exists a
substitution s such that ®, s = ®, S

elLet v, = x and o, = y, the following are unifiers

! v/x}
{x/y}

{x/f(F(A)), Y/f(F(A))} f(F(A)) | f(f(A))
{x/A, y/A} A A

Most General Unifier

98

g is a most general unifier of v, and o, iff for all
unifiers s, there exists s’ such that o, s = (0o, g) &
and o, s = (v, g) &

0, m, MGU

P(x) P(A) {x/A} |
P(f(x), y, a(x)) | P(f(x), x, g(x)) |{y/x} or {x/y}

P(f(x), v, a(y)) | P(f(x), z, g(x)) |<{y/x, z/x}

P(x, B, B) P(A, Y, 2) {X/A, y/B, z/B}
P(g(f(v)), g(u)) |P(x, x) {x/g(f(v)), u/f(v)}

P(x, 7(x)) P(x, x) No MGU!

99

Unification Algorithm

unify(Expr x, Expr y, Subst s){
if s = fail, return fail
else if x = y, return s
else if x is a variable, return unify-var(x, y, s)
else i1f y 1s a variable, return unify-var(y, x, s)
else if x is a predicate or function application,
if y has the same operator,
return unify(args(x), args(y), s)
else return fail
else ; x and y have to be lists
return unify(rest(x), rest(y),.
unify(first(x), first(y), s))

100

Unify-var subroutine

Substitute In for var and x as long as possible, then add new
binding

unify-var(Variable var, Expr x, Subst s){
if var is bound to val in s,
return unify(val, x, s)
else 1f x is bound to val in s,
return unify-var (var, val, s)
else if var occurs anywhere in (x s), return fail
else return add({var/x}, s)

}

Examples

101

0y ®, . MGU

A(8, C) A(X, y) {x/B, y/C}

A(x, f(D,x)) A(E, f(D,y)) |{¥/E, y/E}

A(x, y) A(f(Cy), z) | OUF(Cy).y/z}
| P(A, x, f(a(y))) | P(y, [(2), f(2)) | {y/Ax/F(2),2/9(y)}
>(x, g(f(A)), f(x)) |P(f(y), z,y) |none

P(x, f(y)) P(z, g(w)) none

Resolution with Variables

102

VP MGU(p,y) =0
—1¢ V/}
(a v p)o

vx,y. P(x)vQ(x,y)
vz. —P(A)vR(B,z)
(Q(x,y) vR(B,2))0

Q(A,y) vR(B, 2)

D= {x/A}

vx,y. P(x)vQ(x,y)
Vx. —-P(A) vR(B, x)

P(x;) vQ(x,, y;)
_ —P(A) vR(8, x;)
(Q(x;, y,) vR(B, x;))9
Q(A, y;) vR(B, x;)

0 = {x;A}

Curiosity Killed the Cat

103

D{Fido)

507
4 = L{x) v - Aly) v - K(x,y) -
[5 [xumvkieT d
6 |cMm e
|7 - C(x) v A{x) f
B - K(C,T) Meg
g |[K{T) 5,8
10 | A(T) 8,7 {x/T}
11 | =LJ)v-AT) 4.9 {x/1, y/T}
12 [-1) 10,11
13 [=p{y) v - O{¥) 3,12 {x/1}
14 |- D(Fido) 13,2 {y/fido}
15 14,1

104

Proving Validity

* How do we use resolution refutation to prove
something is valid?

e Normally, we prove a sentence is entailed by the
set of axioms

e Valid sentences are entailed by the empty set of
sentences

e To prove validity by refutation, negate the sentence
and try to derive contradiction.

Example

105

e Syllogism
(#x.P(x) > Q(x))AP(A) - Q(A)

* Negate and convert to clausal form

-((vx. P(x) - QU))AP(A) - Q(A))
~Ex. <P(x) v Q(x))v-~P(A) vQ(A))
(vx. ~P(x) v Q(x))/\ P(A) A—~Q(A)
(P(x) v Q(x))AP(A) A-Q(A)

Example

106

e Do proof
1| PO vQX)
2. P(A)
3.| ~Q(A)
4.| Q(A) 1,2
5] 3,4

Green’s Trick

107

e Use resolution to get answers to existential queries

3x. Mortal(x)

.| —Man(x)vMortal(x)

2.| Man(Socrates)

3. —Mortal(x) v Answer(x)

4.1 Mortal(Socrates)

1,2

5.1 Answer(Socrates)

39

Equality

108

e Special predicate in syntax and semantics; need to
add something to our proof system

* Could add another special inference rule called
paramodulation

e Instead, we will axiomatize equality as an
equivalence relation

vx.Eq(x, x)
vx,y.Eq(x,y) — Eq(y, x)
vx,y,z.Eq(x,y) nEq(y, z) - Eq(x, 2)

e For every predicate, allow substitutions
vx,y.Eq(x,y) - (P(x) - P(y))

109

Proof Example

e Let’s go back to our old geometry domain and try
to prove what the hat of A is

e Axioms in FOL (plus equality axioms)
Above(A,C)

Above(B, D) G
—3x. Above(x, A) A @

-3x. Above(x, B)
vx,y. Above(x, y) - hat(y) = x
vx. (=3y. Above(y, x)) — hat(x) = x

e Desired conclusion: 3x. hat(A) = x
e Use Green’s trick to get the binding of x

The Clauses

110

. | Above(A, C)

Above(B, D)

~Above(x, A)

~Above(x, B)

~Above(x, y) v Ea(hat(y), x)

Above(sk(x), x) v Eqg(hat(x), x)

Eq(x, x)

ol ol Bl A8 b ad ol

~Eq(x, y) v ~Eq(y, z) v Eq(x, z)

.| ~Ea(x, y) v Eq(y, x)

=1
o

s
Gt

-y
;” L

111

The Query

1. | Above(A, C)
2. | Above(B, D)
3. | ~Above(x, A)
4, | ~Above(x, B)
5.1 ~Above(x, v) v Egq(hat(y), x)
6. | Above(sk(x), x) v Eg(hat(x), x)
7. | Eq(x, x)
8.| ~Eq(x, y) v ~Eq(y, z) v Eq(x, 2)
9. | ~Eq(x, y) v Eqly, x)
10. | ~Eq(hat{A), x) v Answer(x)

112

The Proof

1. | Above(A, C)

2. | Above(B, D)

3. | ~Above(x, A}

4, | ~Above(x, B)

5.| ~Above(x, y) v Eg(hat(y), x)

5. | Above(sk(x), x) v Eg(hat(x), x)

7. | Ea(x, x)

8.| ~Eq(x, y) v ~Eq(y, z) v Eq(x, 2)

9. | ~Ea(x, y) v Eq(y, x) i
10. | ~Eg(hat(A), x) v Answer(x) conclusion
11. | Above(sk(A), A) v Answer(A) 6, 10 {x/A}
12 Answer(A) 11, 3

' {x/sk(A)}

Hat of D

113

1. | Above(A, C)

2. | Above(B, D)

3. | ~Above(x, A}

4, | ~Above(x, B)

5.| ~Above(x, y) v Eg{hat(y), x)

6. | Above(sk(x), »x) v Eq{hat(x), x)

7. | EqQ(x, x)

8.| ~Eq(x, y) v ~Eq(y,) v Eq(x, 2)

S.| ~Eq(x, y) v Eqly, X)
10. | ~Eq(hat(D), x) v Answer(x) conclusion
11. | ~Above(x,D) v Answer(x) 5, 10 {x1/x}
12. | Answer(B) 11, 2 {x/B}

Who 1s Jane’s Lower

114

e Jane’s lover drives a red car
* Fred is the only person who drives a red car
* Who is Jane’s lover?

Drives(lover(Jane))

~Drives(x) v EqQ(x,Frec)

~Eq(lover(Jane),x) v Answer(x)

Eq(lover{Jane), Fred)

1,2 {'xfln'ver'{JénE}}

il ol oS B o

Answer(Fred)

3,4 {x/Fred}

	Slide 1: First Order Logic
	Slide 2: Pros and cons of propositional logic
	Slide 3
	Slide 4
	Slide 5
	Slide 6: First Order Logic
	Slide 7: First-order logic
	Slide 8: FOL Motivation
	Slide 9: Syntax of FOL: Basic elements
	Slide 10: Atomic sentences
	Slide 11: Complex sentences
	Slide 12: Quantifiers
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17: Truth in first-order logic
	Slide 18: Interpretation
	Slide 19: Models for FOL: Example
	Slide 20: Semantics
	Slide 21: Semantics
	Slide 22: Universal quantification
	Slide 23: A common mistake to avoid
	Slide 24: Existential quantification
	Slide 25: Another common mistake to avoid
	Slide 26: Properties of quantifiers
	Slide 27: Properties of quantifiers
	Slide 28: Equality
	Slide 29: Writing FOL
	Slide 30: Writing FOL
	Slide 31: Using FOL
	Slide 32: Inference in First Order Logic
	Slide 33: Logical Inference
	Slide 34: Inference in Propositional Logic
	Slide 35: Inference in FOL : Truth Table Approach
	Slide 37: Inference Rules
	Slide 38: Sentences with variables
	Slide 39: Sentences with variables
	Slide 40: Variable Substitutions
	Slide 41: Universal elimination
	Slide 42: Existential elimination
	Slide 43: Inference rules for quantifiers
	Slide 44: Example Proof
	Slide 45: Example knowledge base contd.
	Slide 46: Example knowledge base contd.
	Slide 48: Reduction to propositional inference
	Slide 49: Reduction contd.
	Slide 50: Reduction contd.
	Slide 51: Problems with propositionalization
	Slide 53: Generalized Modus Ponens (GMP)
	Slide 54: Soundness and completeness of GMP
	Slide 55: Generalized Modus Ponens (GMP)
	Slide 56: Unification
	Slide 57: Unification
	Slide 59: Unification
	Slide 60: Unification
	Slide 61: The unification algorithm
	Slide 62: The unification algorithm
	Slide 63: Example knowledge base revisited
	Slide 64: Inference appoaches in FOL
	Slide 65: Forward chaining algorithm
	Slide 66: Forward chaining proof
	Slide 67: Forward chaining proof
	Slide 68: Forward chaining proof
	Slide 69: Properties of forward chaining
	Slide 70: Efficiency of forward chaining
	Slide 71: Backward chaining algorithm
	Slide 72: Backward chaining example
	Slide 73: Backward chaining example
	Slide 74: Backward chaining example
	Slide 75: Backward chaining example
	Slide 76: Backward chaining example
	Slide 77: Backward chaining example
	Slide 78: Backward chaining example
	Slide 79: Backward chaining example
	Slide 80: Properties of backward chaining
	Slide 81: Logic programming: Prolog
	Slide 82: Resolution in First Order Logic
	Slide 83: Resolution Inference Rule
	Slide 84: First Order Resolution
	Slide 85: Clausal Form
	Slide 86: Converting to Clausal Form
	Slide 87: Converting to Clausal Form - Skolemization
	Slide 88: Converting to Clausal Form - Skolemization
	Slide 89: Converting to Clausal Form
	Slide 90: Inference with resolution rule
	Slide 91
	Slide 92: Dealing with Equality
	Slide 93: Example
	Slide 94: More examples
	Slide 95: First Order Resolution
	Slide 96: Substitutions
	Slide 97: Unification
	Slide 98: Most General Unifier
	Slide 99: Unification Algorithm
	Slide 100: Unify-var subroutine
	Slide 101: Examples
	Slide 102: Resolution with Variables
	Slide 103: Curiosity Killed the Cat
	Slide 104: Proving Validity
	Slide 105: Example
	Slide 106: Example
	Slide 107: Green’s Trick
	Slide 108: Equality
	Slide 109: Proof Example
	Slide 110: The Clauses
	Slide 111: The Query
	Slide 112: The Proof
	Slide 113: Hat of D
	Slide 114: Who is Jane’s Lower

