Resolution in First Order Logic

Fundamentals of Artificial Intelligence

Slides are mostly adapted from AIMA and MIT Open Courseware

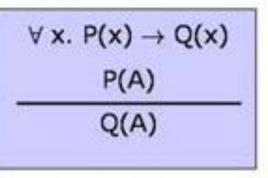
and Milos Hauskrecht (U. Pittsburgh)

Resolution Inference Rule

 Recall: Resolution inference rule is sound and complete (refutation-complete) for the propositional logic and CNF

$$\frac{A \vee B, \quad \neg A \vee C}{B \vee C}$$

 Generalized resolution rule is sound and refutation complete for the first-order logic and CNF w/o equalities (if unsatisfiable the resolution will find the contradiction)


$$\sigma = UNIFY \ (\phi_i, \neg \psi_j) \neq fail$$

$$\frac{\phi_1 \lor \phi_2 \ldots \lor \phi_k, \quad \psi_1 \lor \psi_2 \lor \ldots \psi_n}{SUBST(\sigma, \phi_1 \lor \ldots \lor \phi_{i-1} \lor \phi_{i+1} \ldots \lor \phi_k \lor \psi_1 \lor \ldots \lor \psi_{j-1} \lor \psi_{j+1} \ldots \psi_n)}$$
Example: $P(x) \lor Q(x), \quad \neg Q(John) \lor S(y)$

Example:
$$P(x) \lor Q(x), \neg Q(John) \lor S(y)$$

$$P(John) \lor S(y)$$

First Order Resolution

Syllogism:
All men are mortal
Socrates is a man
Socrates is mortal

uppercase letters: constants lowercase letters:

Equivalent by definition of implication Two new things:

variables

- converting FOL to clausal form
- resolution with variable substitution

Substitute A for x, still true then Propositional resolution

6.034 - Spring 03 • 6

Clausal Form

- like CNF in outer structure
- no quantifiers

$$\forall x. \exists y. P(x) \rightarrow R(x,y)$$

$$\neg P(x) \lor R(x,F(x))$$

Converting to Clausal Form

Eliminate arrows

$$\alpha \leftrightarrow \beta \Rightarrow (\alpha \to \beta) \land (\beta \to \alpha)$$
$$\alpha \to \beta \Rightarrow \neg \alpha \lor \beta$$

Drive in negation

$$\neg(\alpha \lor \beta) \Rightarrow \neg\alpha \land \neg\beta$$
$$\neg(\alpha \land \beta) \Rightarrow \neg\alpha \lor \neg\beta$$
$$\neg\neg\alpha \Rightarrow \alpha$$
$$\neg\forall x. \ \alpha \Rightarrow \exists x. \ \neg\alpha$$
$$\neg\exists x. \ \alpha \Rightarrow \forall x. \ \neg\alpha$$

Rename variables apart

$$\forall x. \exists y. (\neg P(x) \lor \exists x. Q(x, y)) \Rightarrow \\ \forall x_1. \exists y_2. (\neg P(x_1) \lor \exists x_3. Q(x_3, y_2))$$

Also move all quantifiers left

$$(\forall x \ P(x)) \lor (\exists y \ Q(y)) \to \forall x \ \exists y \ P(x) \lor Q(y)$$

Converting to Clausal Form - Skolemization

Skolemization (removal of existential quantifiers through elimination)

If no universal quantifier occurs before the existential quantifier, replace the variable with a new constant symbol also called Skolem constant

$$\exists y \ P(A) \lor Q(y) \to P(A) \lor Q(B)$$

If a universal quantifier precedes the existential quantifier replace the variable with a function of the "universal" variable

$$\forall x \exists y \ P(x) \lor Q(y) \rightarrow \forall x \ P(x) \lor Q(F(x))$$

$$F(x)$$
 - a special function

- called Skolem function

Converting to Clausal Form - Skolemization

Skolemize

substitute new name for each existential var

$$\exists x. P(x) \Rightarrow P(Fred)$$

 $\exists x, y. R(x, y) \Rightarrow R(Thing1, Thing2)$
 $\exists x. P(x) \land Q(x) \Rightarrow P(Fleep) \land Q(Fleep)$
 $\exists x. P(x) \land \exists x. Q(x) \Rightarrow P(Frog) \land Q(Grog)$
 $\exists y. \forall x. Loves(x, y) \Rightarrow \forall x. Loves(x, Englebert)$

 substitute new function of all universal vars in outer scopes

```
\forall x. \exists y. \text{Loves}(x, y) \Rightarrow \forall x. \text{Loves}(x, \text{Beloved}(x))

\forall x. \exists y. \forall z. \exists w. P(x, y, z) \land R(y, z, w) \Rightarrow

P(x, F(x), z) \land R(F(x), z, G(x, z))
```

Converting to Clausal Form

Drop universal quantifiers

$$\forall x. \text{Loves}(x, \text{Beloved}(x)) \Rightarrow \text{Loves}(x, \text{Beloved}(x))$$

6. Distribute or over and; return clauses

$$P(z) \lor (Q(z,w) \land R(w,z)) \Rightarrow$$

$$\{\{P(z),Q(z,w)\},\{P(z),R(w,z)\}\}$$

Rename the variables in each clause

$$\{\{P(z),Q(z,w)\}, \{P(z),R(w,z)\}\} \Rightarrow \{\{P(z_1),Q(z_1,w_1)\}, \{P(z_2),R(w_2,z_2)\}\}$$

Inference with resolution rule

Proof by refutation:

- Prove that KB, $\neg \alpha$ is unsatisfiable
- resolution is refutation-complete

Main procedure (steps):

- 1. Convert KB, $\neg \alpha$ to CNF with ground terms and universal variables only
- Apply repeatedly the resolution rule while keeping track and consistency of substitutions
- Stop when empty set (contradiction) is derived or no more new resolvents (conclusions) follow

Dealing with Equality

- Resolution works for the first-order logic without equalities
- To incorporate equalities we need an additional inference rule
- Demodulation rule

$$\sigma = UNIFY \ (z_i, t_1) \neq fail \quad \text{where } z_i \text{ occurs in } \phi_i$$

$$\frac{\phi_1 \vee \phi_2 \dots \vee \phi_k, \quad t_1 = t_2}{SUB(SUBST(\sigma, t_1), SUBST(\sigma, t_2), \phi_1 \vee \phi_2 \dots \vee \phi_k)}$$

- Example: $\frac{P(f(a)), f(x) = x}{P(a)}$
- Paramodulation rule: more powerful
- Resolution+paramodulation give a refutation-complete proof theory for FOL

Example

a. John owns a dog

 $\exists x. D(x) \land O(J,x)$

D(Fido) ∧ O(J, Fido)

 b. Anyone who owns a dog is a lover-of-animals

 $\forall x. (\exists y. D(y) \land O(x,y)) \rightarrow L(x)$

 $\forall x. (\neg \exists y. (D(y) \land O(x,y)) \lor L(x)$

 $\forall x. \forall y. \neg(D(y) \land O(x,y)) \lor L(x)$

 $\forall x. \forall y. \neg D(y) v \neg O(x,y) v L(x)$

 $\neg D(y) \lor \neg O(x,y) \lor L(x)$

 c. Lovers-of-animals do not kill animals

 $\forall x. L(x) \rightarrow (\forall y. A(y) \rightarrow \neg K(x,y))$

 $\forall x. \neg L(x) \lor (\forall y. A(y) \rightarrow \neg K(x,y))$

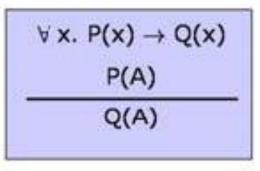
 $\forall x. \neg L(x) \lor (\forall y. \neg A(y) \lor \neg K(x,y))$

 $\neg L(x) \lor \neg A(y) \lor \neg K(x,y)$

More examples

 d. Either Jack killed Tuna or curiosity killed Tuna

 $K(J,T) \vee K(C,T)$


e. Tuna is a cat

C(T)

f. All cats are animals

¬ C(x) v A(x)

First Order Resolution

Syllogism:
All men are mortal
Socrates is a man
Socrates is mortal

uppercase letters: constants lowercase letters: variables

Equivalent by definition of implication

The key is finding the correct substitutions for the variables.

Substitute A for x, still true then Propositional resolution

6.034 - Spring 03 • 1

Substitutions

P(x, f(y), B): an atomic sentence

Substitution instances	Substitution $\{v_1/t_1,,v_n/t_n\}$	Comment
P(z, f(w), B)	{x/z, y/w}	Alphabetic variant
P(x, f(A), B)	{y/A}	
P(g(z), f(A), B)	{x/g(z), y/A}	
P(C, f(A), B)	{x/C, y/A}	Ground instance

Applying a substitution:

$$P(x, f(y), B) \{y/A\} = P(x,f(A),B)$$

 $P(x, f(y), B) \{y/A, x/y\} = P(A, f(A), B)$

Unification

- Expressions ω₁ and ω₂ are unifiable iff there exists a substitution s such that ω₁ s = ω₂ s
- Let $\omega_1 = x$ and $\omega_2 = y$, the following are unifiers

s	ω ₁ S	ω ₂ S
{y/x}	×	×
{x/y}	У	У
{x/f(f(A)), y/f(f(A))}	f(f(A))	f(f(A))
{x/A, y/A}	Α	Α

Most General Unifier

g is a most general unifier of ω_1 and ω_2 iff for all unifiers s, there exists s' such that ω_1 s = $(\omega_1$ g) s' and ω_2 s = $(\omega_2$ g) s'

ω ₁	ω2	MGU
P(x)	P(A)	{x/A}
P(f(x), y, g(x))	P(f(x), x, g(x))	{y/x} or {x/y}
P(f(x), y, g(y))	P(f(x), z, g(x))	{y/x, z/x}
P(x, B, B)	P(A, y, z)	{x/A, y/B, z/B}
P(g(f(v)), g(u))	P(x, x)	$\{x/g(f(v)), u/f(v)\}$
P(x, f(x))	P(x, x)	No MGU!

Unification Algorithm

```
unify (Expr x, Expr y, Subst s) {
 if s = fail, return fail
 else if x = y, return s
 else if x is a variable, return unify-var(x, y, s)
 else if y is a variable, return unify-var(y, x, s)
 else if x is a predicate or function application,
      if y has the same operator,
            return unify(args(x), args(y), s)
      else return fail
                        ; x and y have to be lists
 else
      return unify(rest(x), rest(y),
                   unify(first(x), first(y), s))
```

Unify-var subroutine

Substitute in for var and x as long as possible, then add new binding

```
unify-var(Variable var, Expr x, Subst s) {
  if var is bound to val in s,
      return unify(val, x, s)
  else if x is bound to val in s,
      return unify-var(var, val, s)
  else if var occurs anywhere in (x s), return fail
  else return add({var/x}, s)
}
```

Examples

ω_1	ω2	MGU
A(B, C)	A(x, y)	{x/B, y/C}
A(x, f(D,x))	A(E, f(D,y))	{x/E, y/E}
A(x, y)	A(f(C,y), z)	$\{x/f(C,y),y/z\}$
P(A, x, f(g(y)))	P(y, f(z), f(z))	${y/A,x/f(z),z/g(y)}$
P(x, g(f(A)), f(x))	P(f(y), z, y)	none
P(x, f(y))	P(z, g(w))	none

Resolution with Variables

$$\frac{\alpha \vee \varphi}{\neg \varphi \vee \beta} \quad MGU(\varphi, \psi) = \theta$$
$$\frac{\neg \varphi \vee \beta}{(\alpha \vee \beta)\theta}$$

$$\forall x, y. \quad P(x) \lor Q(x, y)$$

 $\forall x. \quad \neg P(A) \lor R(B, x)$

$$\forall x, y. \quad P(x) \lor Q(x, y)$$

$$\forall z. \quad \neg P(A) \lor R(B, z)$$

$$(Q(x, y) \lor R(B, z))\theta$$

$$Q(A, y) \lor R(B, z)$$

$$\theta = \{x/A\}$$

$$P(x_1) \lor Q(x_1, y_1)$$

$$\neg P(A) \lor R(B, x_2)$$

$$(Q(x_1, y_1) \lor R(B, x_2))\theta$$

$$Q(A, y_1) \lor R(B, x_2)$$

$$\theta = \{x_1/A\}$$

Curiosity Killed the Cat

1	D(Fido)	a
2	O(J,Fido)	a
3	¬ D(y) v ¬ O(x,y) v L(x)	b
4	- L(x) v - A(y) v - K(x,y)	с
5	K(J,T) v K(C,T)	d
6	C(T)	e
7	C(x) v A(x)	f
8	¬ K(C,T)	Neg
9	K(J,T)	5,8
10	A(T)	6,7 {x/T}
11	L(J) v A(T)	4,9 {x/J, y/T}
12	¬ L(J)	10,11
13	¬ D(y) v ¬ O(J,y)	3,12 {x/J}
14	¬ D(Fido)	13,2 {y/Fido}
15		14,1

Proving Validity

- How do we use resolution refutation to prove something is valid?
- Normally, we prove a sentence is entailed by the set of axioms
- Valid sentences are entailed by the empty set of sentences
- To prove validity by refutation, negate the sentence and try to derive contradiction.

Example

Syllogism

$$(\forall x. P(x) \rightarrow Q(x)) \land P(A) \rightarrow Q(A)$$

Negate and convert to clausal form

$$-((\forall x. P(x) \rightarrow Q(x)) \land P(A) \rightarrow Q(A))$$

$$-((\forall x. \neg P(x) \lor Q(x)) \lor \neg P(A) \lor Q(A))$$

$$(\forall x. \neg P(x) \lor Q(x)) \land P(A) \land \neg Q(A)$$

$$(\neg P(x) \lor Q(x)) \land P(A) \land \neg Q(A)$$

Example

Do proof

1.	$\neg P(x) \lor Q(x)$	
2.	P(A)	
3.	¬Q(<i>A</i>)	
4.	Q(A)	1,2
5.		3,4

Green's Trick

Use resolution to get answers to existential queries
 ∃x. Mortal(x)

1.	$\neg Man(x) \lor Mortal(x)$	
2.	Man(Socrates)	
3.	$\neg Mortal(x) \lor Answer(x)$	
4.	Mortal(Socrates)	1,2
5.	Answer(Socrates)	3,5

Equality

- Special predicate in syntax and semantics; need to add something to our proof system
- Could add another special inference rule called paramodulation
- Instead, we will axiomatize equality as an equivalence relation

```
\forall x. \text{Eq}(x, x)

\forall x, y. \text{Eq}(x, y) \rightarrow \text{Eq}(y, x)

\forall x, y, z. \text{Eq}(x, y) \land \text{Eq}(y, z) \rightarrow \text{Eq}(x, z)
```

For every predicate, allow substitutions

$$\forall x, y . \text{Eq}(x, y) \rightarrow (P(x) \rightarrow P(y))$$

Proof Example

- Let's go back to our old geometry domain and try to prove what the hat of A is
- Axioms in FOL (plus equality axioms)

Above(A, C)Above(B, D) $\neg \exists x$. Above(x, A) $\neg \exists x$. Above(x, B) $\forall x, y$. Above $(x, y) \rightarrow \text{hat}(y) = x$ $\forall x$. $(\neg \exists y$. Above $(y, x) \rightarrow \text{hat}(x) = x$

- Desired conclusion: ∃x. hat(A) = x
- Use Green's trick to get the binding of x

The Clauses

1.	Above(A, C)	
2.	Above(B, D)	
3.	~Above(x, A)	
4.	~Above(x, B)	
5.	\sim Above(x, y) v Eq(hat(y), x)	
6.	Above($sk(x)$, x) v Eq(hat(x), x)	
7.	Eq(x, x)	
8.	\sim Eq(x, y) v \sim Eq(y, z) v Eq(x, z)	
9.	~Eq(x, y) v Eq(y, x)	
10.		
11.		
12.		

The Query

 Above(B, D) ~Above(x, A) ~Above(x, B) ~Above(x, y) v Eq(hat(y), x) Above(sk(x), x) v Eq(hat(x), x) Eq(x, x) ~Eq(x, x) ~Eq(x, y) v ~Eq(y, z) v Eq(x, z) ~Eq(x, y) v Eq(y, x) ~Eq(hat(A), x) v Answer(x) 	1.	Above(A, C)	
 -Above(x, B) -Above(x, y) v Eq(hat(y), x) Above(sk(x), x) v Eq(hat(x), x) Eq(x, x) -Eq(x, y) v -Eq(y, z) v Eq(x, z) -Eq(x, y) v Eq(y, x) 	2.	Above(B, D)	
 -Above(x, y) v Eq(hat(y), x) Above(sk(x), x) v Eq(hat(x), x) Eq(x, x) -Eq(x, y) v -Eq(y, z) v Eq(x, z) -Eq(x, y) v Eq(y, x) 	3.	~Above(x, A)	
 Above(sk(x), x) v Eq(hat(x), x) Eq(x, x) ~Eq(x, y) v ~Eq(y, z) v Eq(x, z) ~Eq(x, y) v Eq(y, x) 	4.	~Above(x, B)	
7. Eq(x, x) 8. ~Eq(x, y) v ~Eq(y, z) v Eq(x, z) 9. ~Eq(x, y) v Eq(y, x)	5.	\sim Above(x, y) v Eq(hat(y), x)	
8. ~Eq(x, y) v ~Eq(y, z) v Eq(x, z) 9. ~Eq(x, y) v Eq(y, x)	6.	Above($sk(x)$, x) v Eq($hat(x)$, x)	
9. ~Eq(x, y) v Eq(y, x)	7.	Eq(x, x)	
The state of the s	8.	\sim Eq(x, y) v \sim Eq(y, z) v Eq(x, z)	
10. ~Eq(hat(A), x) v Answer(x)	9.	~Eq(x, y) v Eq(y, x)	
	10.	~Eq(hat(A), x) v Answer(x)	

The Proof

1.	Above(A, C)	
2.	Above(B, D)	
3.	~Above(x, A)	
4.	~Above(x, B)	
5.	~Above(x, y) v Eq(hat(y), x)	
6.	Above(sk(x), x) v Eq(hat(x), x)	
7.	Eq(x, x)	
8.	\sim Eq(x, y) v \sim Eq(y, z) v Eq(x, z)	
9.	~Eq(x, y) v Eq(y, x)	
10.	~Eq(hat(A), x) v Answer(x)	conclusion
11.	Above(sk(A), A) v Answer(A)	6, 10 {x/A}
12.	Answer(A)	11, 3 {x/sk(A)}

Hat of D

1.	Above(A, C)	
2.	Above(B, D)	
3.	~Above(x, A)	
4.	~Above(x, B)	
5.	~Above(x, y) v Eq(hat(y), x)	
6.	Above($sk(x)$, x) v Eq(hat(x), x)	
7.	Eq(x, x)	
8.	\sim Eq(x, y) v \sim Eq(y, z) v Eq(x, z)	
9.	~Eq(x, y) v Eq(y, x)	
10.	~Eq(hat(D), x) v Answer(x)	conclusion
11.	~Above(x,D) v Answer(x)	5, 10 {x1/x}
12.	Answer(B)	11, 2 {x/B}

Who is Jane's Lower

- Jane's lover drives a red car
- Fred is the only person who drives a red car
- Who is Jane's lover?

1.	Drives(lover(Jane))	
2.	~Drives(x) v Eq(x,Frec)	
3.	~Eq(lover(Jane),x) v Answer(x)	
4.	Eq(lover(Jane), Fred)	1,2 {x/lover(Jane)}
5.	Answer(Fred)	3,4 {x/Fred}